Search results for: stochastic reward net
331 Personal Characteristics Related to Hasty Behaviour in Korea
Authors: Sun Jin Park, Kyung-Ja Cho
Abstract:
This study focused on characteristics related to hasty behaviour. To investigate the relation between personal characteristics and hasty behaviour, 601 data were collected, 335 males and 256 females answered their own 'social avoidance and distress’, ‘anxiety’, ‘sensation seeking', 'hope', and ' hasty behaviour. And then 591 data were used for the analysis. The factor analysis resulted hasty behaviour consisted of 5 factors, time pressure, isolation, uncomfortable situation, boring condition, and expectation of reward. The result showed anxiety, sensation seeking, and hope related to hasty behaviour. Specifically, anxiety was involved in every hasty behaviour. This result means that psychological tension and worry are related to hasty behaviour in common. 'Social avoidance and distress', 'sensation seeking' and 'hope' influenced on hasty behaviour under time pressure, in isolation, in expectation of rewards respectively. This means that each factor of hasty behaviour has anxiety as its basis, expressed through a varied nature.Keywords: hasty behaviour, social avoidance and distress, anxiety, sensation seeking, hope
Procedia PDF Downloads 328330 Perception of TQM Implementation and Perceived Cost of Poor Quality: A Case Study of Local Automotive Company’s Supplier
Authors: Fakhruddin Esa, Yusri Yusof
Abstract:
The confirmatory of Total Quality Management (TQM) implementation is most vital in quality management. This paper focuses on employees' perceptions towards TQM implementation in a local automotive company supplier. The objectives of this study are first and foremost to determine the perception of TQM implementation among the staff, and secondly to ascertain the correlation between the variables, and lastly to identify the relative influence of the 10 TQM variables on the cost of poor quality (COPQ). The TQM implementation is perceived to be moderate. All correlation is found to be significant and five variables having positively moderate to high correlation. Out of 10 variables, quality system improvement, reward and recognition and customer focus influence the perceived COPQ. This study extended a discussion on these three variables contribution to TQM in general and the human resource development in the organization. A significant recommendation to lowering costs of internal error, such as trouble shooting and scraps are also discussed. Certain components of further research that would add value to this study have also been suggested and perhaps could be implemented at policy-level initiatives.Keywords: cost of poor quality (COPQ), correlation, total quality management (TQM), variables
Procedia PDF Downloads 216329 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 292328 Using Gaussian Process in Wind Power Forecasting
Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui
Abstract:
The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.Keywords: wind power, Gaussien process, modelling, forecasting
Procedia PDF Downloads 417327 Maintenance Optimization for a Multi-Component System Using Factored Partially Observable Markov Decision Processes
Authors: Ipek Kivanc, Demet Ozgur-Unluakin
Abstract:
Over the past years, technological innovations and advancements have played an important role in the industrial world. Due to technological improvements, the degree of complexity of the systems has increased. Hence, all systems are getting more uncertain that emerges from increased complexity, resulting in more cost. It is challenging to cope with this situation. So, implementing efficient planning of maintenance activities in such systems are getting more essential. Partially Observable Markov Decision Processes (POMDPs) are powerful tools for stochastic sequential decision problems under uncertainty. Although maintenance optimization in a dynamic environment can be modeled as such a sequential decision problem, POMDPs are not widely used for tackling maintenance problems. However, they can be well-suited frameworks for obtaining optimal maintenance policies. In the classical representation of the POMDP framework, the system is denoted by a single node which has multiple states. The main drawback of this classical approach is that the state space grows exponentially with the number of state variables. On the other side, factored representation of POMDPs enables to simplify the complexity of the states by taking advantage of the factored structure already available in the nature of the problem. The main idea of factored POMDPs is that they can be compactly modeled through dynamic Bayesian networks (DBNs), which are graphical representations for stochastic processes, by exploiting the structure of this representation. This study aims to demonstrate how maintenance planning of dynamic systems can be modeled with factored POMDPs. An empirical maintenance planning problem of a dynamic system consisting of four partially observable components deteriorating in time is designed. To solve the empirical model, we resort to Symbolic Perseus solver which is one of the state-of-the-art factored POMDP solvers enabling approximate solutions. We generate some more predefined policies based on corrective or proactive maintenance strategies. We execute the policies on the empirical problem for many replications and compare their performances under various scenarios. The results show that the computed policies from the POMDP model are superior to the others. Acknowledgment: This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no: 117M587.Keywords: factored representation, maintenance, multi-component system, partially observable Markov decision processes
Procedia PDF Downloads 134326 A Cohort and Empirical Based Multivariate Mortality Model
Authors: Jeffrey Tzu-Hao Tsai, Yi-Shan Wong
Abstract:
This article proposes a cohort-age-period (CAP) model to characterize multi-population mortality processes using cohort, age, and period variables. Distinct from the factor-based Lee-Carter-type decomposition mortality model, this approach is empirically based and includes the age, period, and cohort variables into the equation system. The model not only provides a fruitful intuition for explaining multivariate mortality change rates but also has a better performance in forecasting future patterns. Using the US and the UK mortality data and performing ten-year out-of-sample tests, our approach shows smaller mean square errors in both countries compared to the models in the literature.Keywords: longevity risk, stochastic mortality model, multivariate mortality rate, risk management
Procedia PDF Downloads 53325 An Experimental Investigation of the Cognitive Noise Influence on the Bistable Visual Perception
Authors: Alexander E. Hramov, Vadim V. Grubov, Alexey A. Koronovskii, Maria K. Kurovskaуa, Anastasija E. Runnova
Abstract:
The perception of visual signals in the brain was among the first issues discussed in terms of multistability which has been introduced to provide mechanisms for information processing in biological neural systems. In this work the influence of the cognitive noise on the visual perception of multistable pictures has been investigated. The study includes an experiment with the bistable Necker cube illusion and the theoretical background explaining the obtained experimental results. In our experiments Necker cubes with different wireframe contrast were demonstrated repeatedly to different people and the probability of the choice of one of the cubes projection was calculated for each picture. The Necker cube was placed at the middle of a computer screen as black lines on a white background. The contrast of the three middle lines centered in the left middle corner was used as one of the control parameter. Between two successive demonstrations of Necker cubes another picture was shown to distract attention and to make a perception of next Necker cube more independent from the previous one. Eleven subjects, male and female, of the ages 20 through 45 were studied. The choice of the Necker cube projection was detected with the Electroencephalograph-recorder Encephalan-EEGR-19/26, Medicom MTD. To treat the experimental results we carried out theoretical consideration using the simplest double-well potential model with the presence of noise that led to the Fokker-Planck equation for the probability density of the stochastic process. At the first time an analytical solution for the probability of the selection of one of the Necker cube projection for different values of wireframe contrast have been obtained. Furthermore, having used the results of the experimental measurements with the help of the method of least squares we have calculated the value of the parameter corresponding to the cognitive noise of the person being studied. The range of cognitive noise parameter values for studied subjects turned to be [0.08; 0.55]. It should be noted, that experimental results have a good reproducibility, the same person being studied repeatedly another day produces very similar data with very close levels of cognitive noise. We found an excellent agreement between analytically deduced probability and the results obtained in the experiment. A good qualitative agreement between theoretical and experimental results indicates that even such a simple model allows simulating brain cognitive dynamics and estimating important cognitive characteristic of the brain, such as brain noise.Keywords: bistability, brain, noise, perception, stochastic processes
Procedia PDF Downloads 445324 Controlling the Expense of Political Contests Using a Modified N-Players Tullock’s Model
Abstract:
This work introduces a generalization of the classical Tullock’s model of one-stage contests under complete information with multiple unlimited numbers of contestants. In classical Tullock’s model, the contest winner is not necessarily the highest bidder. Instead, the winner is determined according to a draw in which the winning probabilities are the relative contestants’ efforts. The Tullock modeling fits well political contests, in which the winner is not necessarily the highest effort contestant. This work presents a modified model which uses a simple non-discriminating rule, namely, a parameter to influence the total costs planned for an election, for example, the contest designer can control the contestants' efforts. The winner pays a fee, and the losers are reimbursed the same amount. Our proposed model includes a mechanism that controls the efforts exerted and balances competition, creating a tighter, less predictable and more interesting contest. Additionally, the proposed model follows the fairness criterion in the sense that it does not alter the contestants' probabilities of winning compared to the classic Tullock’s model. We provide an analytic solution for the contestant's optimal effort and expected reward.Keywords: contests, Tullock's model, political elections, control expenses
Procedia PDF Downloads 145323 Smaa-Gaia: A Complementary Tool of the Smaa-Promethee Method
Authors: Y. de Smet, J. Hubinont
Abstract:
PROMETHEE and GAIA are well-known Multiple Criteria Decision Aid methods. Given an evaluation table and preference parameters they allow to rank the alternatives, to visualize the problem, to perform sensitivity and robustness analysis, etc. Unfortunately, it is often hard for the Decision Maker (DM) to estimate the precise values of these parameters. Therefore an alternative option is to give ranges of potential values in order to apply Stochastic Multicriteria Acceptability Analysis. This has been recently studied in the context of the SMAA-PROMETHEE method. The aim of this contribution is to propose an SMAA extension of GAIA. We show how this tool can be useful and provide complementary information to SMAA-PROMETHEE. This is illustrated on a pedagogical example.Keywords: multiple criteria decision making, PROMETHEE, GAIA, SMAA
Procedia PDF Downloads 429322 Temperament and Character Dimensions as Personality Predictors of Relationship Quality: An Actor-Partner Interdependence Model
Authors: Dora Vajda, Somayyeh Mohammadi, Sandor Rozsa
Abstract:
Predicting the relationship satisfaction based on the personality characteristics of both partners has a long history. The association between relationship quality and personality traits has been previously demonstrated. Personality traits are most commonly assessed using the Five-Factor Model. The present study has focused on Cloninger's psychobiological model of personality that accounts for dimensions of both temperament and character. The goal of this study was to examine the actor and partner effect of couple's personality on relationship outcomes. In total, 184 heterosexual couples completed the Temperament and Character Inventory (TCI) and the Dyadic Adjustment Scale. The analysis was based on Actor-Partner Interdependence Model (APIM) using multilevel modeling (MLwiN). Results showed that character dimensions Self-Directedness and Cooperativeness had a statistically meaningful actor and partner effect on both partner's relationship quality. However, male's personality temperament dimension Reward Dependence had an only actor effect on his relationship quality. The findings contribute to the literature by highlighting the role of character dimensions of personality in romantic relationships.Keywords: APIM (actor-partner interdependence model), MLwiN, personality, relationship quality
Procedia PDF Downloads 414321 Spectral Clustering from the Discrepancy View and Generalized Quasirandomness
Authors: Marianna Bolla
Abstract:
The aim of this paper is to compare spectral, discrepancy, and degree properties of expanding graph sequences. As we can prove equivalences and implications between them and the definition of the generalized (multiclass) quasirandomness of Lovasz–Sos (2008), they can be regarded as generalized quasirandom properties akin to the equivalent quasirandom properties of the seminal Chung-Graham-Wilson paper (1989) in the one-class scenario. Since these properties are valid for deterministic graph sequences, irrespective of stochastic models, the partial implications also justify for low-dimensional embedding of large-scale graphs and for discrepancy minimizing spectral clustering.Keywords: generalized random graphs, multiway discrepancy, normalized modularity spectra, spectral clustering
Procedia PDF Downloads 197320 A Model of Knowledge Management Culture Change
Authors: Reza Davoodi, Hamid Abbasi, Heidar Norouzi, Gholamabbas Alipourian
Abstract:
A dynamic model shaping a process of knowledge management (KM) culture change is suggested. It is aimed at providing effective KM of employees for obtaining desired results in an organization. The essential requirements for obtaining KM culture change are determined. The proposed model realizes these requirements. Dynamics of the model are expressed by a change of its parameters. It is adjusted to the dynamic process of KM culture change. Building the model includes elaboration and integration of interconnected components. The “Result” is a central component of the model. This component determines a desired organizational goal and possible directions of its attainment. The “Confront” component engenders constructive confrontation in an organization. For this reason, the employees are prompted toward KM culture change with the purpose of attaining the desired result. The “Assess” component realizes complex assessments of employee proposals by management and peers. The proposals are directed towards attaining the desired result in an organization. The “Reward” component sets the order of assigning rewards to employees based on the assessments of their proposals.Keywords: knowledge management, organizational culture change, employee, result
Procedia PDF Downloads 407319 Implementation of an Associative Memory Using a Restricted Hopfield Network
Authors: Tet H. Yeap
Abstract:
An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.Keywords: restricted Hopfield network, Lyapunov function, simultaneous perturbation stochastic approximation
Procedia PDF Downloads 133318 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators
Authors: Fathi Abid, Bilel Kaffel
Abstract:
The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode
Procedia PDF Downloads 339317 Self-Disclosure of Location: Influences of Personality Traits, Intrinsic Motivations and Extrinsic Motivations
Authors: Chechen Liao, Sheng Yi Lin
Abstract:
With the popularity of smartphone usage and the flourish of social networks, many people began to use the 'check-in' functions to share their location information and days of live and self-disclosure. In order to increase exposure and awareness, some stores provide discounts and other benefits to attract consumers to 'check-in' in their stores. The purpose of this study was to investigate whether personality traits, intrinsic motivations, extrinsic motivations, and privacy concerns would affect self-disclosure of location for consumers. Research data were collected from 407 individuals that have used Facebook check-in in Taiwan. This study used SmartPLS 2.0 structural equation modeling to validate the model. The results show that information sharing, information storage, enjoyment, self-presentation, get a feedback, economic reward, and keep up with trends had significant positive effects on self-disclosure. While extroversion and openness to use have significant positive effects on self-disclosure, conscientiousness and privacy concerns have significant negative effects on self-disclosure. The results of the study provide academic and practical implications for the future growth of location-based self-disclosure.Keywords: check-in, extrinsic motivation, intrinsic motivation, personality trait, self-disclosure
Procedia PDF Downloads 170316 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network
Authors: Gulfam Haider, sana danish
Abstract:
Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent
Procedia PDF Downloads 125315 The Case for Implementing a Supplier Diversity and Inclusion Program beyond the Ethical Value
Authors: Arnaud Deshais
Abstract:
The supply chain industry has integrated the need for supplier Diversity and Inclusion (D&I), mostly from an ethical and moral argument. In addition, in some countries, it is also a legal requirement for companies reaching a certain size. As a matter of fact, a lot of successful companies have developed a Corporate Social Responsibility Program that encourages diversity and inclusion in the supply chain, such as building strong relationships with minority owned businesses (women, LGBT, veterans, etc.). Outside ethical and legal perspectives, it is also worth researching the economic and financial benefits of pursuing such efforts. Through surveys of purchasing and supply chain managers in their current roles as well as review of some case studies on supplier based D&I programs, it becomes apparent that a financial return on investment is to be expected as well for companies who make a concerted effort to grow their D&I programs. The study explores the levers to increase shareholder value and business efficiencies. Finally, the research highlights the competitive advantage related to a broad minority based supplier network. The benefits manifest themselves in the areas of competitiveness, innovation, and collaboration. The economic reward ends up being at the forefront of those programs while being an opportunity for organizations to become 'a good citizen'.Keywords: diversity, inclusion, purchasing, supplier
Procedia PDF Downloads 123314 Secrecy Analysis in Downlink Cellular Networks in the Presence of D2D Pairs and Hardware Impairment
Authors: Mahdi Rahimi, Mohammad Mahdi Mojahedian, Mohammad Reza Aref
Abstract:
In this paper, a cellular communication scenario with a transmitter and an authorized user is considered to analyze its secrecy in the face of eavesdroppers and the interferences propagated unintentionally through the communication network. It is also assumed that some D2D pairs and eavesdroppers are randomly located in the cell. Assuming hardware impairment, perfect connection probability is analytically calculated, and upper bound is provided for the secrecy outage probability. In addition, a method based on random activation of D2Ds is proposed to improve network security. Finally, the analytical results are verified by simulations.Keywords: physical layer security, stochastic geometry, device-to-device, hardware impairment
Procedia PDF Downloads 182313 Estimating Destinations of Bus Passengers Using Smart Card Data
Authors: Hasik Lee, Seung-Young Kho
Abstract:
Nowadays, automatic fare collection (AFC) system is widely used in many countries. However, smart card data from many of cities does not contain alighting information which is necessary to build OD matrices. Therefore, in order to utilize smart card data, destinations of passengers should be estimated. In this paper, kernel density estimation was used to forecast probabilities of alighting stations of bus passengers and applied to smart card data in Seoul, Korea which contains boarding and alighting information. This method was also validated with actual data. In some cases, stochastic method was more accurate than deterministic method. Therefore, it is sufficiently accurate to be used to build OD matrices.Keywords: destination estimation, Kernel density estimation, smart card data, validation
Procedia PDF Downloads 352312 A Principal-Agent Model for Sharing Mechanism in Integrated Project Delivery Context
Abstract:
Integrated project delivery (IPD) is a project delivery method distinguished by a shared risk/rewards mechanism and multiparty agreement. IPD has drawn increasingly attention from construction industry because of its efficiency of solving adversarial problems and reliability to deliver high-performing buildings. However, some evidence showed that some project participants obtained less profit from IPD projects than the typical projects. They attributed it to the unfair IPD sharing mechanism, which resulted in additional time and cost of negotiation on the sharing fractions among project participants. The study is aimed to investigate the reward distribution by constructing a principal-agent model. Based on cooperative game theory, it is examined how to distribute the shared project rewards between client and non-client parties, and identify the sharing fractions among non-client parties. It is found that at least half of the project savings should be allocated to the non-client parties to motivate them to create more project value. Second, the client should raise his sharing fractions when the integration among project participants is efficient. In addition, the client should allocate higher sharing fractions to the non-client party who is more able. This study can help the IPD project participants make fair and motivated sharing mechanisms.Keywords: cooperative game theory, IPD, principal agent model, sharing mechanism
Procedia PDF Downloads 292311 Comparison Analysis on the Safety Culture between the Executives and the Operators: Case Study in the Aircraft Manufacturer in Taiwan
Authors: Wen-Chen Hwang, Yu-Hsi Yuan
Abstract:
According to the estimation made by researchers of safety and hygiene, 80% to 90% of workplace accidents in enterprises could be attributed to human factors. Nevertheless, human factors are not the only cause for accidents; instead, happening of accidents is also closely associated with the safety culture of the organization. Therefore, the most effective way of reducing accident rate would be to improve the social and the organizational factors that influence organization’s safety performance. Overview the present study is to understand the current level of safety culture in manufacturing enterprises. A tool for evaluating safety culture matching the needs and characteristics of manufacturing enterprises was developed by reviewing literature of safety culture, and taking the special backgrounds of the case enterprises into consideration. Expert validity was also implied for developing the questionnaire. Moreover, safety culture assessment was conducted through the practical investigation of the case enterprises. Total 505 samples were involved, 53 were executives and 452 were operators. The result of this study in comparison of the safety culture level between the executives and the operators was reached the significant level in 8 dimensions: Safety Commitment, Safety System, Safety Training, Safety Involvement, Reward and Motivation, Communication and Reporting, Leadership and Supervision, Learning and Changing. In general, the overall safety culture were executive level higher than operators level (M: 74.98 > 69.08; t=2.87; p < 0.01).Keywords: questionnaire survey, safety culture, t-test, media studies
Procedia PDF Downloads 315310 Piloting a Prototype Virtual Token Economy Intervention for On-Task Support within an Inclusive Canadian Classroom
Authors: Robert L. Williamson
Abstract:
A 'token economy' refers to a method of positive behaviour support whereby ‘tokens’ are delivered to students as a reward for exhibiting specific behaviours. Students later exchange tokens to ‘purchase’ items of interest. Unfortunately, implementation fidelity can be problematic as some find physical delivery of tokens while teaching difficult. This project developed and tested a prototype, iPad-based tool that enabled teachers to deliver and track tokens electronically. Using an alternating treatment design, any differences in on-task individual and/or group behaviours between the virtual versus physical token delivery systems were examined. Results indicated that while students and teachers preferred iPad-based implementation, no significant difference was found concerning on-task behaviours of students between the two methodologies. Perhaps more interesting was that the teacher found implementation of both methods problematic and suggested a second person was most effective in implementing a token economy method. This would represent a significant cost to the effective use of such a method. Further research should focus on the use of a lay volunteer regarding method implementation fidelity and associated outcomes of the method.Keywords: positive behaviour support, inclusion, token economy, applied behaviour analysis
Procedia PDF Downloads 150309 Overcoming the Obstacles to Green Campus Implementation in Indonesia
Authors: Mia Wimala, Emma Akmalah, Ira Irawati, M. Rangga Sururi
Abstract:
One way that has been aggressively implemented in creating a sustainable environment nowadays is through the implementation of green building concept. In order to ensure the success of its implementation, the support and initiation from educational institutions, especially higher education institutions are indispensable. This research was conducted to figure out the obstacles restraining the success of green campus implementation in Indonesia, as well as to propose strategies to overcome those obstacles. The data presented in this paper are mainly derived from interview and questionnaire distributed randomly to the staffs and students in 10 (ten) major institutions around Jakarta and West Java area. The data were further analyzed using ANOVA and SWOT analysis. According to 182 respondents, it is found that resistance to change, inadequate knowledge, information and understanding, no penalty for any environmental violation, lack of reward for green campus practices, lack of stringent regulations/laws, lack of management commitment, insufficient funds are the obstacles to the green campus movement in Indonesia. In addition, out of 6 criteria considered in UI GreenMetric World Ranking, education was the only criteria that had no significant difference between public and private universities in generating the green campus performance. The work concludes with recommendation of strategies to improve the implementation of green campus in the future.Keywords: green campus, obstacles, sustainable, higher education institutions
Procedia PDF Downloads 224308 Multi-Criteria Evolutionary Algorithm to Develop Efficient Schedules for Complex Maintenance Problems
Authors: Sven Tackenberg, Sönke Duckwitz, Andreas Petz, Christopher M. Schlick
Abstract:
This paper introduces an extension to the well-established Resource-Constrained Project Scheduling Problem (RCPSP) to apply it to complex maintenance problems. The problem is to assign technicians to a team which has to process several tasks with multi-level skill requirements during a work shift. Here, several alternative activities for a task allow both, the temporal shift of activities or the reallocation of technicians and tools. As a result, switches from one valid work process variant to another can be considered and may be selected by the developed evolutionary algorithm based on the present skill level of technicians or the available tools. An additional complication of the observed scheduling problem is that the locations of the construction sites are only temporarily accessible during a day. Due to intensive rail traffic, the available time slots for maintenance and repair works are extremely short and are often distributed throughout the day. To identify efficient working periods, a first concept of a Bayesian network is introduced and is integrated into the extended RCPSP with pre-emptive and non-pre-emptive tasks. Thereby, the Bayesian network is used to calculate the probability of a maintenance task to be processed during a specific period of the shift. Focusing on the domain of maintenance of the railway infrastructure in metropolitan areas as the most unproductive implementation process at construction site, the paper illustrates how the extended RCPSP can be applied for maintenance planning support. A multi-criteria evolutionary algorithm with a problem representation is introduced which is capable of revising technician-task allocations, whereas the duration of the task may be stochastic. The approach uses a novel activity list representation to ensure easily describable and modifiable elements which can be converted into detailed shift schedules. Thereby, the main objective is to develop a shift plan which maximizes the utilization of each technician due to a minimization of the waiting times caused by rail traffic. The results of the already implemented core algorithm illustrate a fast convergence towards an optimal team composition for a shift, an efficient sequence of tasks and a high probability of the subsequent implementation due to the stochastic durations of the tasks. In the paper, the algorithm for the extended RCPSP is analyzed in experimental evaluation using real-world example problems with various size, resource complexity, tightness and so forth.Keywords: maintenance management, scheduling, resource constrained project scheduling problem, genetic algorithms
Procedia PDF Downloads 231307 Lee-Carter Mortality Forecasting Method with Dynamic Normal Inverse Gaussian Mortality Index
Authors: Funda Kul, İsmail Gür
Abstract:
Pension scheme providers have to price mortality risk by accurate mortality forecasting method. There are many mortality-forecasting methods constructed and used in literature. The Lee-Carter model is the first model to consider stochastic improvement trends in life expectancy. It is still precisely used. Mortality forecasting is done by mortality index in the Lee-Carter model. It is assumed that mortality index fits ARIMA time series model. In this paper, we propose and use dynamic normal inverse gaussian distribution to modeling mortality indes in the Lee-Carter model. Using population mortality data for Italy, France, and Turkey, the model is forecasting capability is investigated, and a comparative analysis with other models is ensured by some well-known benchmarking criterions.Keywords: mortality, forecasting, lee-carter model, normal inverse gaussian distribution
Procedia PDF Downloads 360306 Fault Detection and Isolation in Attitude Control Subsystem of Spacecraft Formation Flying Using Extended Kalman Filters
Authors: S. Ghasemi, K. Khorasani
Abstract:
In this paper, the problem of fault detection and isolation in the attitude control subsystem of spacecraft formation flying is considered. In order to design the fault detection method, an extended Kalman filter is utilized which is a nonlinear stochastic state estimation method. Three fault detection architectures, namely, centralized, decentralized, and semi-decentralized are designed based on the extended Kalman filters. Moreover, the residual generation and threshold selection techniques are proposed for these architectures.Keywords: component, formation flight of satellites, extended Kalman filter, fault detection and isolation, actuator fault
Procedia PDF Downloads 434305 An Implementation of Incentive Systems within Property Life Cycles Will Reward Investors, Planners and Users
Authors: Nadine Wills
Abstract:
The whole life thinking of buildings (independent if these are commercial properties or residential properties) will raise if incentive systems are provided to investors, planners and users. The Use of Building Information Modelling (BIM)-Systems offers planners the possibility to plan and re-plan buildings for decades after a period of utilization without spending many capacities. The strategy-incentive should be to plan the building in a way that makes rescheduling possible by changing just parameters in the system and not re-planning the whole building. If users receive the chance to patient incentive systems, the building stock will have a long life period. Business models of tenant electricity or self-controlled operating costs are incentive systems for building –users to let fixed running costs decline without producing damages due to wrong purposes. BIM is the controlling body to ensure that users do not abuse the incentive solution and take negative influence on the building stock. The investor benefits from the planner’s and user’s incentives: the fact that the building becomes useful for the whole life without making unnecessary investments provides possibilities to make investments in different assets. Moreover, the investor gains the facility to achieve higher rents by merchandise the property with low operating costs. To execute BIM offers whole property life cycles.Keywords: BIM, incentives, life cycle, sustainability
Procedia PDF Downloads 297304 Percolation Transition in an Agglomeration of Spherical Particles
Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin
Abstract:
Agglomerations of polydisperse systems of spherical particles are created in computer simulations using a simplified stochastic-hydrodynamic model: Particles sink to the bottom of the cylinder, taking into account gravity reduced by the buoyant force, the Stokes friction force, the added mass effect, and random velocity changes. Two types of particles are considered, with one of them being able to create connections to neighboring particles of the same type, thus forming a network within the agglomeration at the bottom of a cylinder. Decreasing the fraction of these particles, a percolation transition occurs. The critical regime is determined by investigating the maximum cluster size and the percolation susceptibility.Keywords: binary system, maximum cluster size, percolation, polydisperse
Procedia PDF Downloads 61303 Predicting the Uniaxial Strength Distribution of Brittle Materials Based on a Uniaxial Test
Authors: Benjamin Sonnenreich
Abstract:
Brittle fracture failure probability is best described using a stochastic approach which is based on the 'weakest link concept' and the connection between a microstructure and macroscopic fracture scale. A general theoretical and experimental framework is presented to predict the uniaxial strength distribution according to independent uniaxial test data. The framework takes as input the applied stresses, the geometry, the materials, the defect distributions and the relevant random variables from uniaxial test results and gives as output an overall failure probability that can be used to improve the reliability of practical designs. Additionally, the method facilitates comparisons of strength data from several sources, uniaxial tests, and sample geometries.Keywords: brittle fracture, strength distribution, uniaxial, weakest link concept
Procedia PDF Downloads 325302 Preventing Perpetuation of Structural Violence in the Workplace: An Australian Settlement Services Case Study
Authors: Jordan Fallow
Abstract:
Service and advocacy organisations that serve refugee populations are often staffed by a large percentage of former refugees themselves, and this carries a number of implications for refugee rights, specifically economic and social rights. This paper makes an argument for the importance of introducing an understanding of intersectionality theory into organizations who provide services to and employ, refugee staff. The benefits of this are threefold; on an individual level it reduces the risks of burn out, vicarious trauma and compassion fatigue while increasing employee satisfaction and development, at an organizational level services become more effective, and at a systems level it helps reduce structural violence, which may itself have been a contributing factor in the movement of refugee staff from their origin countries. In support of this argument, a case study of an Australian settlement services organization is provided. Mixed methods research, utilising both qualitative and quantitative data, measured the perceived efficacy of diversity management tools at the organization and the impact this had on staff performance, retention and wellbeing. The paper also draws on strategic human resource and reward management, diversity management, international development and intersectionality texts.Keywords: structural violence, employment, human resource management, intersectionality
Procedia PDF Downloads 220