Search results for: reconfigurable manufacturing system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18614

Search results for: reconfigurable manufacturing system

18344 Compensation Strategies and Their Effects on Employees' Motivation and Organizational Citizenship Behaviour in Some Manufacturing Companies in Lagos, Nigeria

Authors: Ade Oyedijo

Abstract:

This paper reports the findings of a study on the strategic and organizational antecedents and effects of two opposing pay patterns used by some manufacturing companies in Lagos Nigeria with particular reference to the behavioural correlates of the pay strategies considered. The assumed relationship between pay strategies and some organizational correlates such as business and corporate strategies and firm size was considered problematic in view of their likely implications for employee motivation and citizenship behaviour and firm performance. The survey research method was used for the study. Structured, close ended questions were used to collect primary data from the respondents. A multipart Likert scale was used to measure the pay orientations of the respondent firms and the job and organizational involvement of the respondent employees. Utilizing hierarchical linear regression method and "t-test" to analyze the data obtained from 48 manufacturing companies of various sizes and strategies, it was found that the dominant pattern of employee compensation in the sampled manufacturing companies. The study also revealed that the choice of a pay strategy was strongly influenced by organizational size as well as the type of business and corporate level strategies adopted by afirm. Firms pursuing a strategy of related and unrelated diversification are more likely to adopt the algorithmic compensation system than single product firms because of their relatively larger size and scope. However; firms that pursue a competitive advantage through a business level strategy of cost efficiency are more likely to use the experiential, variable pay strategy. The study found that an algorithmic compensation strategy is as effective as experiential compensation strategy in the promotion of organizational citizenship behaviour and motivation of employees.

Keywords: compensation, corporate strategy, business strategy, motivation, citizenship behaviour, algorithmic, experiential, organizational commitment, work environment

Procedia PDF Downloads 361
18343 Firm's Growth Leading Dimensions of Blockchain Empowered Information Management System: An Empirical Study

Authors: Umang Varshney, Amit Karamchandani, Rohit Kapoor

Abstract:

Practitioners and researchers have realized that Blockchain is not limited to currency. Blockchain as a distributed ledger can ensure a transparent and traceable supply chain. Due to Blockchain-enabled IoTs, a firm’s information management system can now take inputs from other supply chain partners in real-time. This study aims to provide empirical evidence of dimensions responsible for blockchain implemented firm’s growth and highlight how sector (manufacturing or service), state's regulatory environment, and choice of blockchain network affect the blockchain's usefulness. This post-adoption study seeks to validate the findings of pre-adoption studies done on the blockchain. Data will be collected through a survey of managers working in blockchain implemented firms and analyzed through PLS-SEM.

Keywords: blockchain, information management system, PLS-SEM, firm's growth

Procedia PDF Downloads 94
18342 Exchange Rate Fluctuations and Economic Performance of Manufacturing Sector: Evidence from Nigeria

Authors: Ifeoma Patricia Osamor, Ayotunde Qudus Saka, Godwin Omoregbee, Hikmat Oreoluwalomo Omolaja

Abstract:

Persistent fall in the value of Nigeria's currency compared to other foreign currencies, constant fluctuations in the exchange rate, and an increase in the price of goods and services necessitated the examination of the effects of exchange rate fluctuations on the economic performance of the manufacturing sector in Nigeria. An ex-post facto research design was adopted. Manufacturing gross domestic product (MGDP) was proxied for performance; Naira/Dollar exchange rate (NDE), Naira/Pounds exchange rate (NPE), Foreign exchange supply (FES) were used for exchange rate fluctuations; and inflation rate (INF) was a control variable. Data were collected from CBN Statistical Bulletin (2020) also World Development Indicators of the World Bank, while data collected were analysed using descriptive analysis, unit root, bounds cointegration test, and ARDL. Findings showed that changes in Naira/Dollar exchange rate (NDE) and Naira/Pound Sterling exchange rate negatively but significantly impact the economic performance of the manufacturing sector, while foreign exchange supply leads to an insignificant positive effect on the economic performance of the manufacturing. The study concludes that exchange rate fluctuations negatively impact the performance of the manufacturing sector in Nigeria and, therefore, recommends that government should encourage export diversification through agriculture, agro-investment, and agro-allied industries that would boost export in order to improve the value of the Naira, thereby stabilizing the exchange rate.

Keywords: exchange rate, economic performance, gross domestic product, inflation rate, foreign exchange supply

Procedia PDF Downloads 168
18341 Technical Determinants of the Success of the Quality Management Systems Implementation in Automotive Industry

Authors: Agnieszka Misztal

Abstract:

The popularity of the quality management system models continues to grow despite the transitional crisis in 2008. Their development is associated with the demands of the new requirements for entrepreneurs, such as risk analysis projects and more emphasis on supervision of outsourced processes. In parallel appropriate to focus attention on the selection of companies aspiring to quality management system. This is particularly important in the automotive supplier industry, where requirements transferred to the levels in the supply chain should be clear, transparent and fairly satisfied. The author has carried out series of researches aimed at finding the factors that allow for the effective implementation of the quality management system in automotive companies. The research was focused on four groups of companies: 1) manufacturing (parts and assemblies for the purpose of sale or for vehicle manufacturers), 2) service (repair and maintenance of the car), 3) services for the transport of goods or people, 4) commercial (auto parts and vehicles). Identified determinants were divided in two types of criteria into: internal and external, as well as: hard and soft. The article presents hard - technical factors that automotive company must meet in order to achieve the goal of the quality management system implementation.

Keywords: automotive industry, quality management system, automotive technology, automotive company

Procedia PDF Downloads 378
18340 Simulation as a Problem-Solving Spotter for System Reliability

Authors: Wheyming Tina Song, Chi-Hao Hong, Peisyuan Lin

Abstract:

An important performance measure for stochastic manufacturing networks is the system reliability, defined as the probability that the production output meets or exceeds a specified demand. The system parameters include the capacity of each workstation and numbers of the conforming parts produced in each workstation. We establish that eighteen archival publications, containing twenty-one examples, provide incorrect values of the system reliability. The author recently published the Song Rule, which provides the correct analytical system-reliability value; it is, however, computationally inefficient for large networks. In this paper, we use Monte Carlo simulation (implemented in C and Flexsim) to provide estimates for the above-mentioned twenty-one examples. The simulation estimates are consistent with the analytical solution for small networks but is computationally efficient for large networks. We argue here for three advantages of Monte Carlo simulation: (1) understanding stochastic systems, (2) validating analytical results, and (3) providing estimates even when analytical and numerical approaches are overly expensive in computation. Monte Carlo simulation could have detected the published analysis errors.

Keywords: Monte Carlo simulation, analytical results, leading digit rule, standard error

Procedia PDF Downloads 333
18339 Optimization of 3D Printing Parameters Using Machine Learning to Enhance Mechanical Properties in Fused Deposition Modeling (FDM) Technology

Authors: Darwin Junnior Sabino Diego, Brando Burgos Guerrero, Diego Arroyo Villanueva

Abstract:

Additive manufacturing, commonly known as 3D printing, has revolutionized modern manufacturing by enabling the agile creation of complex objects. However, challenges persist in the consistency and quality of printed parts, particularly in their mechanical properties. This study focuses on addressing these challenges through the optimization of printing parameters in FDM technology, using Machine Learning techniques. Our aim is to improve the mechanical properties of printed objects by optimizing parameters such as speed, temperature, and orientation. We implement a methodology that combines experimental data collection with Machine Learning algorithms to identify relationships between printing parameters and mechanical properties. The results demonstrate the potential of this methodology to enhance the quality and consistency of 3D printed products, with significant applications across various industrial fields. This research not only advances understanding of additive manufacturing but also opens new avenues for practical implementation in industrial settings.

Keywords: 3D printing, additive manufacturing, machine learning, mechanical properties

Procedia PDF Downloads 15
18338 Optimal Continuous Scheduled Time for a Cumulative Damage System with Age-Dependent Imperfect Maintenance

Authors: Chin-Chih Chang

Abstract:

Many manufacturing systems suffer failures due to complex degradation processes and various environment conditions such as random shocks. Consider an operating system is subject to random shocks and works at random times for successive jobs. When successive jobs often result in production losses and performance deterioration, it would be better to do maintenance or replacement at a planned time. A preventive replacement (PR) policy is presented to replace the system before a failure occurs at a continuous time T. In such a policy, the failure characteristics of the system are designed as follows. Each job would cause a random amount of additive damage to the system, and the system fails when the cumulative damage has exceeded a failure threshold. Suppose that the deteriorating system suffers one of the two types of shocks with age-dependent probabilities: type-I (minor) shock is rectified by a minimal repair, or type-II (catastrophic) shock causes the system to fail. A corrective replacement (CR) is performed immediately when the system fails. In summary, a generalized maintenance model to scheduling replacement plan for an operating system is presented below. PR is carried out at time T, whereas CR is carried out when any type-II shock occurs and the total damage exceeded a failure level. The main objective is to determine the optimal continuous schedule time of preventive replacement through minimizing the mean cost rate function. The existence and uniqueness of optimal replacement policy are derived analytically. It can be seen that the present model is a generalization of the previous models, and the policy with preventive replacement outperforms the one without preventive replacement.

Keywords: preventive replacement, working time, cumulative damage model, minimal repair, imperfect maintenance, optimization

Procedia PDF Downloads 334
18337 FEM Simulations to Study the Effects of Laser Power and Scan Speed on Molten Pool Size in Additive Manufacturing

Authors: Yee-Ting Lee, Jyun-Rong Zhuang, Wen-Hsin Hsieh, An-Shik Yang

Abstract:

Additive manufacturing (AM) is increasingly crucial in biomedical and aerospace industries. As a recently developed AM technique, selective laser melting (SLM) has become a commercial method for various manufacturing processes. However, the molten pool configuration during SLM of metal powders is a decisive issue for the product quality. It is very important to investigate the heat transfer characteristics during the laser heating process. In this work, the finite element method (FEM) software ANSYS® (work bench module 16.0) was used to predict the unsteady temperature distribution for resolving molten pool dimensions with consideration of temperature-dependent thermal physical properties of TiAl6V4 at different laser powers and scanning speeds. The simulated results of the temperature distributions illustrated that the ratio of laser power to scanning speed can greatly influence the size of molten pool of titanium alloy powder for SLM development.

Keywords: additive manufacturing, finite element method, molten pool dimensions, selective laser melting

Procedia PDF Downloads 259
18336 Hybrid Manufacturing System to Produce 3D Structures for Osteochondral Tissue Regeneration

Authors: Pedro G. Morouço

Abstract:

One utmost challenge in Tissue Engineering is the production of 3D constructs capable of mimicking the functional hierarchy of native tissues. This is well stated for osteochondral tissue due to the complex mechanical functional unit based on the junction of articular cartilage and bone. Thus, the aim of the present study was to develop a new additive manufacturing system coupling micro-extrusion with hydrogels printing. An integrated system was developed with 2 main features: (i) the printing of up to three distinct hydrogels; (ii) in coordination with the printing of a thermoplastic structural support. The hydrogel printing module was projected with a ‘revolver-like’ system, where the hydrogel selection was made by a rotating mechanism. The hydrogel deposition was then controlled by pressured air input. The use of specific components approved for medical use was incorporated in the material dispensing system (Nordson EDF Optimum® fluid dispensing system). The thermoplastic extrusion modulus enabled the control of required extrusion temperature through electric resistances in the polymer reservoir and the extrusion system. After testing and upgrades, a hydrogel modulus with 3 syringes (3cm3 capacity each), with a pressure range of 0-2.5bar, a rotational speed of 0-5rpm, and working with needles from 200-800µm was obtained. This modulus was successfully coupled to the extrusion system that presented a temperature up to 300˚C, a pressure range of 0-12bar, and working with nozzles from 200-500µm. The applied motor could provide a velocity range 0-2000mm/min. Although, there are distinct printing requirements for hydrogels and polymers, the novel system could develop hybrid scaffolds, combining the 2 moduli. The morphological analysis showed high reliability (n=5) between the theoretical and obtained filament and pore size (350µm and 300µm vs. 342±4µm and 302±3µm, p>0.05, respectively) of the polymer; and multi-material 3D constructs were successfully obtained. Human tissues present very distinct and complex structures regarding their mechanical properties, organization, composition and dimensions. For osteochondral regenerative medicine, a multiphasic scaffold is required as subchondral bone and overlying cartilage must regenerate at the same time. Thus, a scaffold with 3 layers (bone, intermediate and cartilage parts) can be a promising approach. The developed system may give a suitable solution to construct those hybrid scaffolds with enhanced properties. The present novel system is a step-forward regarding osteochondral tissue engineering due to its ability to generate layered mechanically stable implants through the double-printing of hydrogels with thermoplastics.

Keywords: 3D bioprinting, bone regeneration, cartilage regeneration, regenerative medicine, tissue engineering

Procedia PDF Downloads 138
18335 WEMax: Virtual Manned Assembly Line Generation

Authors: Won Kyung Ham, Kang Hoon Cho, Sang C. Park

Abstract:

Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.

Keywords: performance forecasting, simulation, virtual manned assembly line, WEMax

Procedia PDF Downloads 307
18334 Optimizing SCADA/RTU Control System Alarms for Gas Wells

Authors: Mohammed Ali Faqeeh

Abstract:

SCADA System Alarms Optimization Process has been introduced recently and applied accordingly in different implemented stages. First, MODBUS communication protocols between RTU/SCADA were improved at the level of I/O points scanning intervals. Then, some of the technical issues related to manufacturing limitations were resolved. Afterward, another approach was followed to take a decision on the configured alarms database. So, a couple of meetings and workshops were held among all system stakeholders, which resulted in an agreement of disabling unnecessary (Diagnostic) alarms. Moreover, a leap forward step was taken to segregate the SCADA Operator Graphics in a way to show only process-related alarms while some other graphics will ensure the availability of field alarms related to maintenance and engineering purposes. This overall system management and optimization have resulted in a huge effective impact on all operations, maintenance, and engineering. It has reduced unneeded open tickets for maintenance crews which led to reduce the driven mileages accordingly. Also, this practice has shown a good impression on the operation reactions and response to the emergency situations as the SCADA operators can be staying much vigilant on the real alarms rather than gets distracted by noisy ones. SCADA System Alarms Optimization process has been executed utilizing all applicable in-house resources among engineering, maintenance, and operations crews. The methodology of the entire enhanced scopes is performed through various stages.

Keywords: SCADA, RTU Communication, alarm management system, SCADA alarms, Modbus, DNP protocol

Procedia PDF Downloads 139
18333 AI-based Optimization Model for Plastics Biodegradable Substitutes

Authors: Zaid Almahmoud, Rana Mahmoud

Abstract:

To mitigate the environmental impacts of throwing away plastic waste, there has been a recent interest in manufacturing and producing biodegradable plastics. Here, we study a new class of biodegradable plastics which are mixed with external natural additives, including catalytic additives that lead to a successful degradation of the resulting material. To recommend the best alternative among multiple materials, we propose a multi-objective AI model that evaluates the material against multiple objectives given the material properties. As a proof of concept, the AI model was implemented in an expert system and evaluated using multiple materials. Our findings showed that Polyethylene Terephalate is potentially the best biodegradable plastic substitute based on its material properties. Therefore, it is recommended that governments shift the attention to the use of Polyethylene Terephalate in the manufacturing of bottles to gain a great environmental and sustainable benefits.

Keywords: plastic bottles, expert systems, multi-objective model, biodegradable substitutes

Procedia PDF Downloads 84
18332 A Simplified, Fabrication-Friendly Acoustophoretic Model for Size Sensitive Particle Sorting

Authors: V. Karamzadeh, J. Adhvaryu, A. Chandrasekaran, M. Packirisamy

Abstract:

In Bulk Acoustic Wave (BAW) microfluidics, the throughput of particle sorting is dependent on the complex interplay between the geometric configuration of the channel, the size of the particles, and the properties of the fluid medium, which therefore calls for a detailed modeling and understanding of the fluid-particle interaction dynamics under an acoustic field, prior to designing the system. In this work, we propose a simplified Bulk acoustophoretic system that can be used for size dependent particle sorting. A Finite Element Method (FEM) based analytical model has been developed to study the dependence of particle sizes on channel parameters, and the sorting efficiency in a given fluid medium. Based on the results, the microfluidic system has been designed to take into account all the variables involved with the underlying physics, and has been fabricated using an additive manufacturing technique employing a commercial 3D printer, to generate a simple, cost-effective system that can be used for size sensitive particle sorting.

Keywords: 3D printing, 3D microfluidic chip, acoustophoresis, cell separation, MEMS (Microelectromechanical Systems), microfluidics

Procedia PDF Downloads 145
18331 Continuous Improvement as an Organizational Capability in the Industry 4.0 Era

Authors: Lodgaard Eirin, Myklebust Odd, Eleftheriadis Ragnhild

Abstract:

Continuous improvement is becoming increasingly a prerequisite for manufacturing companies to remain competitive in a global market. In addition, future survival and success will depend on the ability to manage the forthcoming digitalization transformation in the industry 4.0 era. Industry 4.0 promises substantially increased operational effectiveness, were all equipment are equipped with integrated processing and communication capabilities. Subsequently, the interplay of human and technology will evolve and influence the range of worker tasks and demands. Taking into account these changes, the concept of continuous improvement must evolve accordingly. Based on a case study from manufacturing industry, the purpose of this paper is to point out what the concept of continuous improvement will meet and has to take into considering when entering the 4th industrial revolution. In the past, continuous improvement has the focus on a culture of sustained improvement targeting the elimination of waste in all systems and processes of an organization by involving everyone. Today, it has to be evolved into the forthcoming digital transformation and the increased interplay of human and digital communication system to reach its full potential. One main findings of this study, is how digital communication systems will act as an enabler to strengthen the continuous improvement process, by moving from collaboration within individual teams to interconnection of teams along the product value chain. For academics and practitioners, it will help them to identify and prioritize their steps towards an industry 4.0 implementation integrated with focus on continuous improvement.

Keywords: continuous improvement, digital communication system, human-machine-interaction, industry 4.0, team perfomance

Procedia PDF Downloads 174
18330 Total Quality Management in Algerian Manufacturing

Authors: Nadia Fatima Zahra Malki

Abstract:

The aim of the study is to show the role of total Quality Management on firm performance, research relied on the views of a sample managers working in the Marinel pharmaceutical company. The research aims to achieve many objectives, including increasing awareness of the concepts of Total Quality Management on Firm Performance, especially in the manufacturing firm, providing a future vision of the possibility of success, and the actual application of the Principles of Total Quality Management in the manufacturing company. The research adopted a default model was built after a review and analysis of the literature review in the context of one hypothesis's main points at the origin of a group of sub-hypotheses. The research presented a set of conclusions, and the most important of these conclusions was that there is a relationship between the Principles of TQM and Firm Performance.

Keywords: total quality management, competitive advantage, companies, objectives

Procedia PDF Downloads 23
18329 Application of Lean Manufacturing Tools in Hot Asphalt Production

Authors: S. Bayona, J. Nunez, D. Paez, C. Diaz

Abstract:

The application of Lean manufacturing tools continues to be an effective solution for increasing productivity, reducing costs and eliminating waste in the manufacture of goods and services. This article analyzes the production process of a hot asphalt manufacturing company from an administrative and technical perspective. Three main phases were analyzed, the first phase was related to the determination of the risk priority number of the main operations in asphalt mix production process by an FMEA (Failure Mode Effects Analysis), in the second phase the Value Stream Mapping (VSM) of the production line was performed and in the third phase a SWOT (Strengths, Weaknesses Opportunities, Threats) matrix was constructed. Among the most valued failure modes were the lack training of workers in occupational safety and health issues, the lack of signaling and classification of granulated material, and the overweight of vehicles loaded. The analysis of the results in the three phases agree on the importance of training operational workers, improve communication with external actors in order to minimize delays in material orders and strengthen control suppliers.

Keywords: asphalt, lean manufacturing, productivity, process

Procedia PDF Downloads 97
18328 Jagiellonian-PET: A Novel TOF-PET Detector Based on Plastic Scintillators

Authors: P. Moskal, T. Bednarski, P. Bialas, E. Czerwinski, A. Gajos, A. Gruntowski, D. Kaminska, L. Kaplon, G. Korcyl, P. Kowalski, T. Kozik, W. Krzemien, E. Kubicz, Sz. Niedzwiecki, M. Palka, L. Raczynski, Z. Rudy, P. Salabura, N. G. Sharma, M. Silarski, A. Slomski, J. Smyrski, A. Strzelecki, A. Wieczorek, W. Wislicki, M. Zielinski, N. Zon

Abstract:

A new concept and results of the performance tests of the TOF-PET detection system developed at the Jagiellonian University will be presented. The novelty of the concept lies in employing long strips of polymer scintillators instead of crystals as detectors of annihilation quanta, and in using predominantly the timing of signals instead of their amplitudes for the reconstruction of Lines-of-Response. The diagnostic chamber consists of plastic scintillator strips readout by pairs of photo multipliers arranged axially around a cylindrical surface. To take advantage of the superior timing properties of plastic scintillators the signals are probed in the voltage domain with the accuracy of 20 ps by a newly developed electronics, and the data are collected by the novel trigger-less and reconfigurable data acquisition system. The hit-position and hit-time are reconstructed by the dedicated reconstruction methods based on the compressing sensing theory and the library of synchronized model signals. The solutions are subject to twelve patent applications. So far a time-of-flight resolution of ~120 ps (sigma) was achieved for a double-strip prototype with 30 cm field-of-view (FOV). It is by more than a factor of two better than TOF resolution achievable in current TOF-PET modalities and at the same time the FOV of 30 cm long prototype is significantly larger with respect to typical commercial PET devices. The Jagiellonian PET (J-PET) detector with plastic scintillators arranged axially possesses also another advantage. Its diagnostic chamber is free of any electronic devices and magnetic materials thus giving unique possibilities of combining J-PET with CT and J-PET with MRI for scanning the same part of a patient at the same time with both methods.

Keywords: PET-CT, PET-MRI, TOF-PET, scintillator

Procedia PDF Downloads 463
18327 Parametric Screening and Design Refinement of Ceiling Fan Blades

Authors: Shamraiz Ahmad, Riaz Ahmad, Adnan Maqsood

Abstract:

This paper describes the application of 2k-design of experiment in order to screen the geometric parameters and experimental refinement of ceiling fan blades. The ratio of the air delivery to the power consumed is commonly known as service value (SV) in ceiling fan designer’s community. Service value was considered as the response for 56 inch ceiling fan and four geometric parameters (bend position at root, bend position at tip, bent angle at root and bent angle at tip) of blade were analyzed. With two levels, the 4-design parameters along with their eleven interactions were studied and design of experiment was employed for experimental arrangement. Blade manufacturing and testing were done in a medium scale enterprise. The objective was achieved and service value of ceiling fan was increased by 10.4 % without increasing the cost of production and manufacturing system. Experiments were designed and results were analyzed using Minitab® 16 software package.

Keywords: parametric screening, 2k-design of experiment, ceiling fan, service value, performance improvement

Procedia PDF Downloads 535
18326 The Mediating Effect of SMEs Export Performance between Technological Advancement Capabilities and Business Performance

Authors: Fawad Hussain, Mohammad Basir Bin Saud, Mohd Azwardi Md Isa

Abstract:

The aim of this study is to empirically investigate the mediating impact of export performance (EP) between technological advancement capabilities (TAC) and business performance (BP) of Malaysian manufacturing MSME’s. Firm’s technological advancement resources are hypothesized as a platform to enhance both exports and business performance of manufacturing MSMEs in Malaysia. This study is twofold, primary it has investigated that technological advancement capabilities helps to appreciates main performance measures noted in terms of export performance and Secondly it investigates that how efficiently and effectively technological advancement capabilities can contributes in overall Malaysian MSME’s business performance. Smart PLS-3 statistical software is used to know the association between technological advancement capabilities, MSME’s export performance and business performance. In this study the data was composed from Malaysian manufacturing MSME’s in east coast industrial zones known as manufacturing hub of MSMEs. Seven Hundred and Fifty (750) questionnaires were distributed but only 148 usable questionnaires are returned. The finding of this study indicated that technological advancement capabilities helps to strengthen the export in term of time and cost efficient and it plays a significant role in appreciating their business performance. This study is helpful for small and medium enterprises owners who intent to expand their business overseas and though smart technological advancement resources they can achieve their business competitiveness and excellence both at local and international markets.

Keywords: technological advancement capabilities, export performance, business performance, small and medium manufacturing enterprises, malaysia

Procedia PDF Downloads 398
18325 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model

Authors: Catherine Maware, Olufemi Adetunji

Abstract:

The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.

Keywords: impact measurement model, lean bundles, lean manufacturing, organizational performance

Procedia PDF Downloads 457
18324 A Prioritisation Guide for More Sustainable Manufacturing Processes

Authors: Cansu Kandemir, Marco Franchino

Abstract:

To attain sustainability goals, the manufacturing industries must assess and improve their processes, adopt the latest technologies, and ensure minimal environmental impact. Ongoing debates claim that the definition of sustainability and its assessment is vague. Companies struggle with understanding which processes they should prioritise and necessitate a methodology to aid decision-making. For that reason, our investigation focused on defining a prioritisation guide to help to manufacture engineers identify areas of a facility to prioritise de-carbonisation efforts based on existing sources of data. The authors at the University of Sheffield Advanced Manufacturing Research Centre (AMRC) worked with a range of major businesses, including Food and Drink (Moy Park), Automotive (Nissan), Aerospace and Defence (BAE, Meggitt, Leonardo, and GKN) and Technology (Accenture and Intellium AI). Collected information has been integrated into a prioritisation guide framework that helps process comparison and decision-making. The framework developed in this study aims to ensure that companies have guidance on where to focus their efforts whilst striving to fulfil their environmental and societal obligations.

Keywords: decision making, sustainability, carbon emissions, manufacturing

Procedia PDF Downloads 35
18323 Optimization of Lean Methodologies in the Textile Industry Using Design of Experiments

Authors: Ahmad Yame, Ahad Ali, Badih Jawad, Daw Al-Werfalli Mohamed Nasser, Sabah Abro

Abstract:

Industries in general have a lot of waste. Wool textile company, Baniwalid, Libya has many complex problems that led to enormous waste generated due to the lack of lean strategies, expertise, technical support and commitment. To successfully address waste at wool textile company, this study will attempt to develop a methodical approach that integrates lean manufacturing tools to optimize performance characteristics such as lead time and delivery. This methodology will utilize Value Stream Mapping (VSM) techniques to identify the process variables that affect production. Once these variables are identified, Design of Experiments (DOE) Methodology will be used to determine the significantly influential process variables, these variables are then controlled and set at their optimal to achieve optimal levels of productivity, quality, agility, efficiency and delivery to analyze the outputs of the simulation model for different lean configurations. The goal of this research is to investigate how the tools of lean manufacturing can be adapted from the discrete to the continuous manufacturing environment and to evaluate their benefits at a specific industrial.

Keywords: lean manufacturing, DOE, value stream mapping, textiles

Procedia PDF Downloads 422
18322 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach

Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri

Abstract:

In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.

Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications

Procedia PDF Downloads 27
18321 Engineers’ Ability to Lead Effectively the Transformation to Sustainable Manufacturing: A Case Study of Saudi Arabia

Authors: Mohammed Alharbi, Clare Wood, Vasileios Samaras

Abstract:

Sustainability leadership is a controversial topic, particularly in the engineering context. The theoretical and practical technical focus of the engineering profession impacts our lives. Technologically, engineers significantly contribute to our modern civilization. Industrial revolutions are among the top engineering accomplishments that have contributed to the flourishing of our life. However, engineers have not always received the credit they deserve; instead, they have been blamed for the advent of various global issues, among them the global warming phenomena that are believed to be a result of the industrial revolutions. Global challenges demand engineers demonstrate more than their technical skills for effective contribution to a sustainable future. As a result, engineering leadership has emerged as a new research field. Sustainable manufacturing is a cornerstone for sustainable development. Investigating the change to more sustainable manufacturing practices is a significant issue for all, and even more in the field of engineering leadership. Engineers dominate the manufacturing industry; however, one of the main criticism of engineers is the lack of leadership skills. The literature on engineering leadership has not highlighted enough the engineers' leadership ability in leading sustainable manufacturing. Since we are at the cusp of a new industrial revolution -Industry 4.0, it is vital to investigate the ability of engineers to lead the industry towards a sustainable future. The primary purpose of this paper is to evaluate engineers' sustainability leadership competencies utilizing The Cambridge University Behavioral Competency Model. However, the practical application of the Cambridge model is limited due to the absence of a reliable measurement tool. Therefore, this study developed a valid and reliable survey instrument tool compatible with the Cambridge model as a secondary objective. More than 300 Saudi engineers from the manufacturing industry responded to an online questionnaire collected through the Qualtrics platform and analyzed using SPSS software. The findings provide a contemporary understanding of engineers' mindset related to sustainability leadership. The output of this research study could be valuable in designing effective engineering leadership programs in academia or industry, particularly for enhancing a sustainable manufacturing environment.

Keywords: engineer, leadership, manufacturing, sustainability

Procedia PDF Downloads 128
18320 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network

Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson

Abstract:

The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.

Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0

Procedia PDF Downloads 153
18319 A Study on Manufacturing of Head-Part of Pipes Using a Rotating Manufacturing Process

Authors: J. H. Park, S. K. Lee, Y. W. Kim, D. C. Ko

Abstract:

A large variety of pipe flange is required in marine and construction industry.Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts.This approach is very simple and widely used for a long time, however, it results in high development cost and low productivity, and the productions made by this approach usually have safety problem at the welding area.In this research, a new approach of forming pipe flange based on cold forging and floating die concept is presented.This innovative approach increases the effectiveness of the material usage and save the time cost compared with conventional welding method. To ensure the dimensional accuracy of the final product, the finite element analysis (FEA) was carried out to simulate the process of cold forging, and the orthogonal experiment methods were used to investigate the influence of four manufacturing factors (pin die angle, pipe flange angle, rpm, pin die distance from clamp jig) and predicted the best combination of them. The manufacturing factors were obtained by numerical and experimental studies and it shows that the approach is very useful and effective for the forming of pipe flange, and can be widely used later.

Keywords: cold forging, FEA (finite element analysis), forge-3D, rotating forming, tubes

Procedia PDF Downloads 357
18318 Total Quality Management in Companies Manufacturing

Authors: Malki Nadia Fatima Zahra, Kellal Cheimaa, Brahimi Houria

Abstract:

Aim of the study is to show the role of total Quality Management on firm performance; the research relied on the views of sample managers working in the Marinel pharmaceutical company. The research aims to achieve many objectives, including increasing awareness of the concepts of Total Quality Management on Firm Performance, especially in the manufacturing firm, providing a future vision of the possibility of success, and the actual application of the Principles of Total Quality Management in the manufacturing company. The research adopted a default model was built after a review and analysis of the literature review in the context of one hypothesis main points at the origin of a group of sub-hypotheses. The research presented a set of conclusions, and the most important of these conclusions was there is a relationship between the Principles of TQM and Firm Performance.

Keywords: total quality management, TQM dimension, firm performance, strategies

Procedia PDF Downloads 36
18317 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles

Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil

Abstract:

The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.

Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing

Procedia PDF Downloads 47
18316 Exploratory Analysis and Development of Sustainable Lean Six Sigma Methodologies Integration for Effective Operation and Risk Mitigation in Manufacturing Sectors

Authors: Chukwumeka Daniel Ezeliora

Abstract:

The Nigerian manufacturing sector plays a pivotal role in the country's economic growth and development. However, it faces numerous challenges, including operational inefficiencies and inherent risks that hinder its sustainable growth. This research aims to address these challenges by exploring the integration of Lean and Six Sigma methodologies into the manufacturing processes, ultimately enhancing operational effectiveness and risk mitigation. The core of this research involves the development of a sustainable Lean Six Sigma framework tailored to the specific needs and challenges of Nigeria's manufacturing environment. This framework aims to streamline processes, reduce waste, improve product quality, and enhance overall operational efficiency. It incorporates principles of sustainability to ensure that the proposed methodologies align with environmental and social responsibility goals. To validate the effectiveness of the integrated Lean Six Sigma approach, case studies and real-world applications within select manufacturing companies in Nigeria will be conducted. Data were collected to measure the impact of the integration on key performance indicators, such as production efficiency, defect reduction, and risk mitigation. The findings from this research provide valuable insights and practical recommendations for selected manufacturing companies in South East Nigeria. By adopting sustainable Lean Six Sigma methodologies, these organizations can optimize their operations, reduce operational risks, improve product quality, and enhance their competitiveness in the global market. In conclusion, this research aims to bridge the gap between theory and practice by developing a comprehensive framework for the integration of Lean and Six Sigma methodologies in Nigeria's manufacturing sector. This integration is envisioned to contribute significantly to the sector's sustainable growth, improved operational efficiency, and effective risk mitigation strategies, ultimately benefiting the Nigerian economy as a whole.

Keywords: lean six sigma, manufacturing, risk mitigation, sustainability, operational efficiency

Procedia PDF Downloads 169
18315 Advanced Manufacturing Technology Adoption and Organizational Structure

Authors: George Nyori Makari

Abstract:

Data on 92 industrial organizations point to the existence of relationships between advanced manufacturing technology (AMT) adoption and some aspects of organizational structure, including the number of specialized sub-units, the number of levels of authority, span of control, degree of role programming specification, degree of communication programming specification and the degree of output programming. Primary finding is that as the investments and integration of AMTs increases, the more likely the foregoing aspects of structure increase. The findings hold with size and a number of other organizational variables controlled. The results indicate that a company’s capacity to assimilate technology depends on its organizational capabilities. The study encapsulates the need for companies to increase their organizational capabilities during investment and integration of AMTs.

Keywords: advanced manufacturing technology, adoption, organizational structure, Kenya

Procedia PDF Downloads 428