Search results for: natural features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9299

Search results for: natural features

9029 Windphil Poetic in Architecture: Energy Efficient Strategies in Modern Buildings of Iran

Authors: Sepideh Samadzadehyazdi, Mohammad Javad Khalili, Sarvenaz Samadzadehyazdi, Mohammad Javad Mahdavinejad

Abstract:

The term ‘Windphil Architecture’ refers to the building that facilitates natural ventilation by architectural elements. Natural ventilation uses the natural forces of wind pressure and stacks effect to direct the movement of air through buildings. Natural ventilation is increasingly being used in contemporary buildings to minimize the consumption of non-renewable energy and it is an effective way to improve indoor air quality. The main objective of this paper is to identify the strategies of using natural ventilation in Iranian modern buildings. In this regard, the research method is ‘descriptive-analytical’ that is based on comparative techniques. To simulate wind flow in the interior spaces of case studies, FLUENT software has been used. Research achievements show that it is possible to use natural ventilation to create a thermally comfortable indoor environment. The natural ventilation strategies could be classified into two groups of environmental characteristics such as public space structure, and architectural characteristics including building form and orientation, openings, central courtyards, wind catchers, roof, wall wings, semi-open spaces and the heat capacity of materials. Having investigated modern buildings of Iran, innovative elements like wind catchers and wall wings are less used than the traditional architecture. Instead, passive ventilation strategies have been more considered in the building design as for the roof structure and openings.

Keywords: natural ventilation strategies, wind catchers, wind flow, Iranian modern buildings

Procedia PDF Downloads 344
9028 Assessment of the Natural and Human Potential of the Municipality of Tirana for the Development of Agritourism

Authors: Dritan Lloçi, Xhulia Bygjymi

Abstract:

The topic is about one of the new trends with the greatest expectations in the field of tourism, such as agritourism. It is chosen exactly this type of tourism to address as this issue is one of the newest trends not only for Tirana or Albania but also beyond. The other reason is that this topic is quite current and challenging for the reality in which we find ourselves, and the opportunities for research work and to make our own contribution are quite large. It is chosen Tirana because seeing the many opportunities it offers for the development of agritourism as a result of the rich natural potential it offers; the fact that it is the capital of Albania makes this space absorb a good part of the investments in the rural tourism sector but not alone. The study is organized into several main issues regarding the natural and human potentials of the area, which are in function of the development of agrotourism. The first issue has to do with the natural potentials of the municipality of Tirana and how they can be used for agritourism. The second issue has to do with the cultural potential that the municipality of Tirana possesses, causing tourist flows to be more concentrated in this geographical-administrative space. The third issue has to do with the human potential that is a function of agrotourism. So the way of life, hospitality, cooking, etc.

Keywords: agrotourism, natural potential, agrotourism farms, tirana municipality, tourism development

Procedia PDF Downloads 76
9027 The Hurricane 'Bump': Measuring the Effects of Hurricanes on Wages in Southern Louisiana

Authors: Jasmine Latiolais

Abstract:

Much of the disaster-related literature finds a positive relationship between the impact of a natural disaster and the growth of wages. Panel datasets are often used to explore these effects. However, natural disasters do not impact a single variable in the economy. Rather, natural disasters affect all facets of the economy, simultaneously, upon impact. It is difficult to control for all factors that would be influenced by the impact of a natural disaster, which can lead to lead to omitted variable bias in those studies employing panel datasets. To address this issue of omitted variable bias, an interrupted time series analysis is used to test the short-run relationship between the impact of Hurricanes Katrina and Rita on parish wage levels in Southern Louisiana, inherently controlling for economic conditions. This study provides evidence that natural disasters do increase wages in the very short term (one quarter following the impact of the hurricane) but that these results are not seen in the longer term and are not robust. In addition, the significance of the coefficients changes depending on the parish. Overall, this study finds that previous literature on this topic may not be robust when considered through a time-series lens.

Keywords: economic recovery, local economies, local wage growth, natural disasters

Procedia PDF Downloads 132
9026 Real Time Multi Person Action Recognition Using Pose Estimates

Authors: Aishrith Rao

Abstract:

Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.

Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks

Procedia PDF Downloads 139
9025 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.

Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer

Procedia PDF Downloads 262
9024 Feature Extraction of MFCC Based on Fisher-Ratio and Correlated Distance Criterion for Underwater Target Signal

Authors: Han Xue, Zhang Lanyue

Abstract:

In order to seek more effective feature extraction technology, feature extraction method based on MFCC combined with vector hydrophone is exposed in the paper. The sound pressure signal and particle velocity signal of two kinds of ships are extracted by using MFCC and its evolution form, and the extracted features are fused by using fisher-ratio and correlated distance criterion. The features are then identified by BP neural network. The results showed that MFCC, First-Order Differential MFCC and Second-Order Differential MFCC features can be used as effective features for recognition of underwater targets, and the fusion feature can improve the recognition rate. Moreover, the results also showed that the recognition rate of the particle velocity signal is higher than that of the sound pressure signal, and it reflects the superiority of vector signal processing.

Keywords: vector information, MFCC, differential MFCC, fusion feature, BP neural network

Procedia PDF Downloads 529
9023 Thermo-Economic Analysis of a Natural Draft Direct Cooling System for a Molten Salt Power Tower

Authors: Huiqiang Yang, Domingo Santana

Abstract:

Reducing parasitic power consumption of concentrating solar power plants is the main challenge to increase the overall efficiency, particularly for molten salt tower technology. One of the most effective approaches to reduce the parasitic power consumption is to implement a natural draft dry cooling system instead of the standard utilized mechanical draft dry cooling system. In this paper, a thermo-economic analysis of a natural draft direct cooling system was performed based on a 100MWe commercial scale molten salt power plant. In this configuration with a natural draft direct cooling system, the exhaust steam from steam turbine flows directly to the heat exchanger bundles inside the natural draft dry cooling tower, which eliminates the power consumption of circulation pumps or fans, although the cooling tower shadows a portion of the heliostat field. The simulation results also show that compared to a mechanical draft cooling system the annual solar field efficiency is decreased by about 0.2% due to the shadow, which is equal to a reduction of approximately 13% of the solar field area. As a contrast, reducing the solar field size by 13% in purpose in a molten salt power plant with a natural draft drying cooling system actually will lead to a reduction of levelized cost of electricity (LCOE) by about 4.06% without interfering the power generated.

Keywords: molten salt power tower, natural draft dry cooling, parasitic power consumption, commercial scale

Procedia PDF Downloads 167
9022 A Literature Review on Community Awareness, Education in Disaster Risk Reduction and Best Practices

Authors: Alwyn John Lim

Abstract:

Philippines is one of the most vulnerable areas to natural disasters in the world. Almost every year different types of natural disasters occur in Philippines and destroy many lives and resources of people. Although it is not possible to prevent the occurrence of disasters influenced by natural causes, proper plan and management such as disaster risk reduction may minimize the damage cause by natural disasters. Based on literature review this paper will analyze literatures on public/community awareness and education in disaster risk reduction that would help promote a country wide public disaster awareness and education program in the Philippines. This will include best practices and importance of community disaster awareness and education. The paper will also tackle ICT tools that will help boost the process and effectiveness of community/public disaster awareness and education.

Keywords: community awareness, disaster education, disaster risk reduction, Philippines

Procedia PDF Downloads 503
9021 Research on Community-based Nature Education Design at the Gateway Communities of National Parks

Authors: Yulin Liang

Abstract:

Under the background of protecting ecology, natural education is an effective way for people to understand nature. At the same time, it is a new means of sustainable development of eco-tourism, which can improve the functions of China 's protected areas and develop new business formats for the development of national parks. This study takes national park gateway communities as the research object and uses literature review, inductive reasoning and other research methods to sort out the development process of natural education in China and the research progress of natural education design in national park gateway communities. Finally, it discuss how gateway communities can use natural education to transform their development methods and provide theoretical and practical basis for the development of gateway communities in national parks.

Keywords: nature education, gateway communities, national park, sustainable development

Procedia PDF Downloads 60
9020 Combined Surface Tension and Natural Convection of Nanofluids in a Square Open Cavity

Authors: Habibis Saleh, Ishak Hashim

Abstract:

Combined surface tension and natural convection heat transfer in an open cavity is studied numerically in this article. The cavity is filled with water-{Cu} nanofluids. The left wall is kept at low temperature, the right wall at high temperature and the bottom and top walls are adiabatic. The top free surface is assumed to be flat and non--deformable. Finite difference method is applied to solve the dimensionless governing equations. It is found that the insignificant effect of adding the nanoparticles were obtained about $Ma_{bf}=250$.

Keywords: natural convection, marangoni convection, nanofluids, square open cavity

Procedia PDF Downloads 550
9019 Square Concrete Columns under Axial Compression

Authors: Suniti Suparp, Panuwat Joyklad, Qudeer Hussain

Abstract:

This is a well-known fact that the actual latera forces due to natural disasters, for example, earthquakes, floods and storms are difficult to predict accurately. Among these natural disasters, so far, the highest amount of deaths and injuries have been recorded for the case of earthquakes all around the world. Therefore, there is always an urgent need to establish suitable strengthening methods for existing concrete and steel structures. This paper is investigating the structural performance of square concrete columns strengthened using low cost and easily available steel clamps. The salient features of these steel clamps are comparatively low cost, easy availability and ease of installation. To achieve research objectives, a large-scale experimental program was established in which a total number of 12 square concrete columns were constructed and tested under pure axial compression. Three square concrete columns were tested without any steel lamps to serve as a reference specimen. Whereas, remaining concrete columns were externally strengthened using steel clamps. The steel clamps were installed at a different spacing to investigate the best configuration of the steel clamps. The experimental results indicate that steel clamps are very effective in altering the structural performance of the square concrete columns. The square concrete columns externally strengthened using steel clamps demonstrate higher load carrying capacity and ductility as compared with the control specimens.

Keywords: concrete, strength, ductility, pre-stressed, steel, clamps, axial compression, columns, stress and strain

Procedia PDF Downloads 130
9018 Abnormal Features of Two Quasiparticle Rotational Bands in Rare Earths

Authors: Kawalpreet Kalra, Alpana Goel

Abstract:

The behaviour of the rotational bands should be smooth but due to large amount of inertia and decreased pairing it is not so. Many experiments have been done in the last few decades, and a large amount of data is available for comprehensive study in this region. Peculiar features like signature dependence, signature inversion, and signature reversal are observed in many two quasiparticle rotational bands of doubly odd and doubly even nuclei. At high rotational frequencies, signature and parity are the only two good quantum numbers available to label a state. Signature quantum number is denoted by α. Even-angular momentum states of a rotational band have α =0, and the odd-angular momentum states have α =1. It has been observed that the odd-spin members lie lower in energy up to a certain spin Ic; the normal signature dependence is restored afterwards. This anomalous feature is termed as signature inversion. The systematic of signature inversion in high-j orbitals for doubly odd rare earth nuclei have been done. Many unusual features like signature dependence, signature inversion and signature reversal are observed in rotational bands of even-even/odd-odd nuclei. Attempts have been made to understand these phenomena using several models. These features have been analyzed within the framework of the Two Quasiparticle Plus Rotor Model (TQPRM).

Keywords: rotational bands, signature dependence, signature quantum number, two quasiparticle

Procedia PDF Downloads 168
9017 Water Absorption Studies on Natural Fiber Reinforced Polymer Composites

Authors: G. L. Devnani, Shishir Sinha

Abstract:

In the recent years, researchers have drawn their focus on natural fibers reinforced composite materials because of their excellent properties like low cost, lower weight, better tensile and flexural strengths, biodegradability etc. There is little concern however that when these materials are put in moist conditions for long duration, their mechanical properties degrade. Therefore, in order to take maximum advantage of these novel materials, one should have a complete understanding of their moisture or water absorption phenomena. Various fiber surface treatment methods like alkaline treatment, acetylation etc. have also been suggested for reduction in water absorption of these composites. In the present study, a detailed review is done for water absorption behavior of natural fiber reinforced polymer composites, and experiments also have been performed on these composites with varying the parameters like fiber loading etc. for understanding the water absorption kinetics. Various surface treatment methods also performed to reduce the water absorption behavior of these materials and effort is made to develop a proper understanding of water absorption mechanism mathematically and experimentally for full potential utilization of natural fiber reinforced polymer composite materials.

Keywords: alkaline treatment, composites, natural fiber, water absorption

Procedia PDF Downloads 287
9016 Double Diffusive Natural Convection in Horizontal Elliptical Annulus Containing a Fluid-Saturated Porous Medium: Effects of Lewis Number

Authors: Hichem Boulechfar, Mahfoud Djezzar

Abstract:

Two-dimensional double diffusive natural convection in an annular elliptical space filled with fluid-saturated porous medium, is analyzed by solving numerically the mass balance, momentum, energy and concentration equations, using Darcy's law and Boussinesq approximation. Both walls delimiting the annular space are maintained at two uniform different temperatures and concentrations. The external parameter considered is the Lewis number. For the present work, the heat and mass transfer for natural convection is studied for the case of aiding buoyancies, where the flow is generated in a cooperative mode by both temperature and solutal gradients. The local Nusselt and Sherwood numbers are presented in term of the external parameter.

Keywords: double diffusive, natural convection, porous media, elliptical annulus

Procedia PDF Downloads 208
9015 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 130
9014 Universality as Opportunity Domain behind the Threats and Challenges of Natural Disasters

Authors: Kunto Wibowo Agung Prodjonoto

Abstract:

Occasionally, opportunities occur not due to chances but threats. This, however, is often not realized because a greater threat is perceived to be anything that threatens, endangers, or harms, resulting in bad impacts that are also part of the risk and consequence. As a result, more focus tends to direct towards the bad impacts. Risk, in this case, shall be seen rather as something challenging, which can turn to be an opportunity to tackle an obstacle. Therefore, it does not seem exaggerating if later, risk can be considered as a challenge that presents an opportunity. So as in the context of the threat of natural disasters which gives an idea that opportunities exist. Nature referred to in a fashion as 'natural disasters' captured an expression to picture the 'threats' aspect, which instructively implying a chance of opportunity. This is quite logical, as SWOT (strengths, weaknesses, opportunities, threats) analysis can evaluate the situation at hand related to the analysis of various factors in formulating strategies to deal with natural disaster situations. The analytical method created by Albert Humphrey is indeed not an analytical tool to provide solutions, but certainly 'opportunities and challenges' are discussed therein on a vertical line, where opportunities are posited on the positive axis, and threats are posed on the negative axis. Observing this dynamism, the challenges and threats of disasters are having opportunity relevance to moralizing opportunities, that by quality poses universalism populist characteristics, universalism characteristics, and regional characteristics. Here, universalism appears as an opportunity domain underneath the threats and challenges of natural disasters.

Keywords: universality, opportunities, threats, challenges of natural disasters

Procedia PDF Downloads 151
9013 Investigation of Green Dye-Sensitized Solar Cells Based on Natural Dyes

Authors: M. Hosseinnezhad, K. Gharanjig

Abstract:

Natural dyes, extracted from black carrot and bramble, were utilized as photosensitizers to prepare dye-sensitized solar cells (DSSCs). Spectrophotometric studies of the natural dyes in solution and on a titanium dioxide substrate were carried out in order to assess changes in the status of the dyes. The results show that the bathochromic shift is seen on the photo-electrode substrate. The chemical binding of the natural dyes at the surface photo-electrode were increased by the chelating effect of the Ti(IV) ions. The cyclic voltammetry results showed that all extracts are suitable to be performed in DSSCs. Finally, photochemical performance and stability of DSSCs based on natural dyes were studied. The DSSCs sensitized by black carrot extract have been reported to achieve up to Jsc=1.17 mAcm-2, Voc= 0.55 V, FF= 0.52, η=0.34%, whereas Bramble extract can obtain up to Jsc=2.24 mAcm-2, Voc= 0.54 V, FF= 0.57, η=0.71%. The power conversion efficiency was obtained from the mixed dyes in DSSCs. The power conversion efficiency of dye-sensitized solar cells using mixed Black carrot and Bramble dye is the average of the their efficiency in single DSSCs.

Keywords: anthocyanin, dye-sensitized solar cells, green energy, optical materials

Procedia PDF Downloads 245
9012 Utilizing Temporal and Frequency Features in Fault Detection of Electric Motor Bearings with Advanced Methods

Authors: Mohammad Arabi

Abstract:

The development of advanced technologies in the field of signal processing and vibration analysis has enabled more accurate analysis and fault detection in electrical systems. This research investigates the application of temporal and frequency features in detecting faults in electric motor bearings, aiming to enhance fault detection accuracy and prevent unexpected failures. The use of methods such as deep learning algorithms and neural networks in this process can yield better results. The main objective of this research is to evaluate the efficiency and accuracy of methods based on temporal and frequency features in identifying faults in electric motor bearings to prevent sudden breakdowns and operational issues. Additionally, the feasibility of using techniques such as machine learning and optimization algorithms to improve the fault detection process is also considered. This research employed an experimental method and random sampling. Vibration signals were collected from electric motors under normal and faulty conditions. After standardizing the data, temporal and frequency features were extracted. These features were then analyzed using statistical methods such as analysis of variance (ANOVA) and t-tests, as well as machine learning algorithms like artificial neural networks and support vector machines (SVM). The results showed that using temporal and frequency features significantly improves the accuracy of fault detection in electric motor bearings. ANOVA indicated significant differences between normal and faulty signals. Additionally, t-tests confirmed statistically significant differences between the features extracted from normal and faulty signals. Machine learning algorithms such as neural networks and SVM also significantly increased detection accuracy, demonstrating high effectiveness in timely and accurate fault detection. This study demonstrates that using temporal and frequency features combined with machine learning algorithms can serve as an effective tool for detecting faults in electric motor bearings. This approach not only enhances fault detection accuracy but also simplifies and streamlines the detection process. However, challenges such as data standardization and the cost of implementing advanced monitoring systems must also be considered. Utilizing temporal and frequency features in fault detection of electric motor bearings, along with advanced machine learning methods, offers an effective solution for preventing failures and ensuring the operational health of electric motors. Given the promising results of this research, it is recommended that this technology be more widely adopted in industrial maintenance processes.

Keywords: electric motor, fault detection, frequency features, temporal features

Procedia PDF Downloads 46
9011 Prevention of COVID-19 Using Herbs and Natural Products

Authors: Nada Alqadri, Omaima Nasir

Abstract:

Natural compounds are an important source of potential inhibitors; they have a lot of pharma potential with less adverse effects. The effective antiviral activities of natural products have been proved in different studies. The outbreak of COVID-19 in Wuhan, Hubei, in December 2019, coronavirus has had a significant impact on people's health and lives. Based on previous studies, natural products can be introduced as preventive and therapeutic agents in the fight against COVID-19; considering that no food or supplement has been authorized to prevent COVID-19, individuals continue to search for and consume specific herbs, foods, and commercial supplements for this purpose. This study will be aimed to estimate the uses of herbal and natural products during the COVID-19 infection to determine their usage reasons and evaluate their potential side effects. An online cross-sectional survey of different participants will be conducted and will be a focus on respondents’ chronic disease histories, socio-dmographic characteristics, and frequency and trends of using these products. Descriptive and univariate analyses will be performed to determine prevalence and associations between various products used and respondents’ socio-demographic data. Relationships will be tested using Pearson’s chi-square test or an exact probability test. Our main findings will give evidence of beneficial uses of natural products and herbal medicine as prophylactic and will be a vigorous approach to stop or at least slow down COVID-19 infection and transmission. This will be of great interest of public health, and the results of our study will lend health officials better control on the current pandemic.

Keywords: COVID-19, herbs, natural products, saudi arabia

Procedia PDF Downloads 218
9010 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 478
9009 Natural Dyes: A Global Perspective on Commercial Solutions and Industry Players

Authors: Laura Seppälä, Ana Nuutinen

Abstract:

Environmental concerns are increasing the interest in the potential uses of natural dyes. Natural dyes are more safe and environmentally friendly option than synthetic dyes. However, one must be also cautious with natural dyes, because, for example, some dyestuff such as plants or mushrooms, as well as some mordants are poisonous. By natural dyes we mean dyes that are derived from plants, fungi, bark, lichens, algae, insects, and minerals. Different plant parts, such as stems, leaves, flowers, roots, bark, berries, fruits, and cones, can be utilized for textile dyeing and printing, pigment manufacture, and other processes depending on the season. They may be utilized to produce distinctive colour tones that are challenging to do with synthetic dyes. This adds value to textiles and makes them stand out. Synthetic dyes quickly replaced natural dyes, after being developed in the middle of the 19th century, but natural dyes have remained the dyeing method of crafters until recently. This research examines the commercial solutions for natural dyes in many parts of the world, such as Europe, the United States, South America, Africa, Asia, New Zealand, and Australia. This study aims to determine the commercial status of natural dyes. Each continent has its own traditions and specific dyestuffs. The availability of natural dyes can vary depending on several aspects, including plant species, temperature, and harvesting techniques, which poses a challenge to the work of designers and crafters. While certain plants may only provide dyes during specific seasons, others may do so continuously. To find the ideal time to collect natural dyes, it is critical to research various plant species and their harvesting techniques. Furthermore, to guarantee the quality and colour of the dye, plant material must be handled and processed properly. This research was conducted via an internet search, and results were searched systematically for commercial stakeholders in the field. The research question looked at commercial players in the field of natural dyes. This qualitative case study interpreted the data using thematic analysis. Each webpage was screenshotted and analyzed in reflection on to research question. Online content analysis means systematically coding and analyzing qualitative data. The most evident result was that the natural dyes interest in different parts of the World. There are clothing collections dyed with natural dyes, dyestuff stores, and courses for natural dyeing. This article presents the designers who work with natural dyes and actors who are involved with the natural dye industry. Several websites emphasized the safety and environmental benefits of natural dyes. Many of them included eye-catching images of textiles dyed naturally, and the colours of such dyes are thought to be attractive since they are beautiful and natural hues. The search did not find big-scale industrial solutions for natural dyes, but there were several instances of dyeing with natural dyes. Understanding the players, designers, and stakeholders in the natural dye business is the purpose of this article. The comprehension of the current state of the art illustrates the direction that the natural dye business is currently taking.

Keywords: commercial solutions, environmental issues, key stakeholders, natural dyes, sustainability, textile dyeing

Procedia PDF Downloads 65
9008 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 46
9007 Egg Yolk and Serum Cholesterol Reducing Effect of Garlic and Natural Cocoa Powder Using Laying Birds as Model

Authors: Onyimonyi Anselm Ego, Obi-Keguna Christy, Dim Emmanuel Chinonso, Ugwuanyi Evelyn, Uzochukwu Ifeanyi Emmanuel

Abstract:

A total of 144 Shaver Brown Layers in their sixteenth week of lay were used in a twelve weeks study to evaluate the egg yolk and serum cholesterol of the birds when fed varying dietary combinations of garlic and natural cocoa powder. The birds were randomly assigned into nine dietary treatments with 16 birds per treatment. Each bird was housed separately in a cage measuring 45 cm x 35 cm in an open sided battery cage house typical of the tropics. A standard poultry mash diet with 16.5% CP and 2800 KcalME/kg was formulated as the basal ration which also served as the control diet. Garlic and natural cocoa powder were incorporated in varying combinations (50 g or 100 g/100 kg of feed) in the remaining eight treatments. Weekly data of egg weight, egg length, egg diameter, yolk weight, albumen weight and hen day egg production were kept. Egg yolk and serum cholesterol levels were determined using a Randox kit. Results showed that birds receiving garlic and natural cocoa powder had significantly (P<0.05) reduced egg and albumen weight as compared to control birds. Hen day production of the birds was also significantly higher than control birds. Egg yolk and serum cholesterol of birds receiving the garlic and natural cocoa powder were significantly (P<0.05) lower than the control. Serum cholesterol levels showed decline in the birds receiving garlic and natural cocoa powder. The least yolk cholesterol level of 160 mg/dl was observed in birds receiving 50g garlic and 50 g natural cocoa powder (Treatment 5). Control birds had an egg cholesterol level of 245.45 mg/dl. It was concluded that incorporating garlic and natural cocoa powder in the diets of laying hens can result in a significant reduction in the egg and serum cholesterol levels.

Keywords: egg, serum, cholesterol, garlic

Procedia PDF Downloads 766
9006 Eco-Friendly Natural Dyes from Butea monosperma and Their Application on Cotton Fabric

Authors: Archna Mall, Neelam Agrawal, Hari O. Saxena, Bhavana Sharma

Abstract:

Butea monosperma occurs widely throughout central Indian states. Eco-friendly natural dyes were isolated in aqueous medium from leaves, bark and flowers of this plant. These dyes were used for dyeing on cotton fabric using various chemical (potassium aluminium sulphate, potassium dichromate, ferrous sulphate, stannous chloride & tannic acid) and natural mordants (rinds of Terminallia bellerica & Terminalia chebula fruits and shells of Prunus dulcis & Juglans regia nuts). Dyeing was carried out using the pre-mordanting technique. Large range of beautiful shades in terms of hue and darkness were recorded because of varying mordant concentrations and combinations. More importantly dyed fabrics registered varying the degree of colour fastness properties to washing (1-3, colour change and 4-5, colour staining), light (2-4), rubbing (4-5, dry and 3-5, wet) and perspiration (1-4, colour change and 4-5, colour staining). Thus, along with flowers which are traditionally known for natural dyes, the leaves and bark may also find their place in textile industries.

Keywords: Butea monosperma, cotton, mordants, natural dyes

Procedia PDF Downloads 340
9005 Bi-Functional Natural Carboxylic Acid Catalysts for the Synthesis of Diethyl α-Aminophosphonates in Aqueous Media

Authors: Hellal Abdelkader, Chafaa Salah, Boudjemaa Fouzia

Abstract:

A new, convenient, and high yielding procedure for the preparation of diethyl α-aminophosphonates in water via Kabachnik-Fields reaction by one-pot reaction of aromatic aldehydes, ortho-aminophenols, and dialkylphosphites in the presence of a low catalytic amount of citric, malic, tartaric, and oxalic acids as a natural, bi-functional, and highly stable catalyst is described, the obtained products were characterized by elemental analyses, molar conductance, magnetic susceptibility, FTIR, Uv-Vis spectral data, NMR-C, NMR-H, and NMR-P analyses.

Keywords: α-aminophosphonates, aminophenols, natural acids, aqueous media, Kabachnik-Fields reaction

Procedia PDF Downloads 336
9004 A Comprehensive Study and Evaluation on Image Fashion Features Extraction

Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen

Abstract:

Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.

Keywords: convolutional neural network, feature representation, image processing, machine modelling

Procedia PDF Downloads 139
9003 Structural Optimization Using Catenary and Other Natural Shapes

Authors: Mitchell Gohnert

Abstract:

This paper reviews some fundamental concepts of structural optimization, which is focused on the shape of the structure. Bending stresses produce high peak stresses at each face of the member, and therefore, substantially more material is required to resist bending. The shape of the structure has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape to accommodate natural stress flow. The main objective of structural optimization is to direct the thrust line along the axis of the member. Optimal shapes include the catenary arch or dome, triangular shapes, and columns. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined. Structures, however, must resist multiple load patterns. An optimal shape is still possible by ensuring that the thrust lines fall within the middle third of the member.

Keywords: optimization, natural structures, shells, catenary, domes, arches

Procedia PDF Downloads 41
9002 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method

Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat

Abstract:

Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.

Keywords: feature extraction, feature selection, image annotation, classification

Procedia PDF Downloads 586
9001 Sustainable Design Features Implementing Public Rental Housing for Remodeling

Authors: So-Young Lee, Myoung-Won Oh, Soon-Cheol Eom, Yeon-Won Suh

Abstract:

Buildings produce more than one thirds of the total energy consumption and CO₂ emissions. Korean government agency pronounced and initiated Zero Energy Buildings policy for construction as of 2025. The net zero energy design features include passive (daylight, layout, materials, insulation, finishes, etc.) and active (renewable energy sources) elements. The Zero Energy House recently built in Nowon-gu, Korea is provided for 121 households as a public rental housing complex. However most of public rental housing did not include sustainable features which can reduce housing maintaining cost significantly including energy cost. It is necessary to implement net zero design features to the obsolete public rental housing during the remodeling procedure since it can reduce housing cost in long term. The purpose of this study is to investigate sustainable design elements implemented in Net Zero Energy House in Korea and passive and active housing design features in order to apply the sustainable features to the case public rental apartment for remodeling. Housing complex cases in this study are Nowan zero Energy house, Gangnam Bogemjari House, and public rental housings built in more than 20 years in Seoul areas. As results, energy consumption in public rental housing built in 5-years can be improved by exterior surfaces. Energy optimizing in case housing built in more than 20 years can be enhanced by renovated materials, insulation, replacement of windows, exterior finishes, lightings, gardening, water, renewable energy installation, Green IT except for sunlight and layout of buildings. Further life costing analysis is needed for energy optimizing for case housing alternatives.

Keywords: affordable housing, remodeling, sustainable design, zero-energy house

Procedia PDF Downloads 190
9000 Real-World PM, PN and NOx Emission Differences among DOC+CDPF Retrofit Diesel-, Diesel- And Natural Gas-Fueled Bus

Authors: Zhiwen Yang, Jingyuan Li, Zhenkai Xie, Jian Ling, Jiguang Wang, Mengliang Li

Abstract:

To reflect the effects of different emission control strategies, such as retrofitting after-treatment system and replacing with natural gas-fueled vehicles, on particle number (PN), particle mass (PM) and nitrogen oxides (NOx) emissions emitted by urban bus, a portable emission measurement system (PEMS) was employed herein to conduct real-world driving emission measurements on a diesel oxidation catalytic converter (DOC) and catalyzed diesel particulate filter (CDPF) retrofitting China IV diesel bus, a China IV diesel bus, and a China V natural gas bus. The results show that both tested diesel buses possess markedly advantages in NOx emission control when compared to the lean-burn natural gas bus equipped without any NOx after-treatment system. As to PN and PM, only the DOC+CDPF retrofitting diesel bus exhibits enormous benefits on emission control relate to the natural gas bus, especially the normal diesel bus. Meanwhile, the differences in PM and PN emissions between retrofitted and normal diesel buses generally increase with the increase in vehicle-specific power (VSP). Furthermore, the differences in PM emissions, especially those in the higher VSP ranges, are more significant than those in PN. In addition, the maximum peak PN particle size (32 nm) of the retrofitted diesel bus was significantly lower than that of the normal diesel bus (100 nm). These phenomena indicate that the CDPF retrofitting can effectively reduce diesel bus exhaust particle emissions, especially those with large particle sizes.

Keywords: CDPF, diesel, natural gas, real-world emissions

Procedia PDF Downloads 297