Search results for: friction contact
2219 A Coupled Extended-Finite-Discrete Element Method: On the Different Contact Schemes between Continua and Discontinua
Authors: Shervin Khazaeli, Shahab Haj-zamani
Abstract:
Recently, advanced geotechnical engineering problems related to soil movement, particle loss, and modeling of local failure (i.e. discontinua) as well as modeling the in-contact structures (i.e. continua) are of the great interest among researchers. The aim of this research is to meet the requirements with respect to the modeling of the above-mentioned two different domains simultaneously. To this end, a coupled numerical method is introduced based on Discrete Element Method (DEM) and eXtended-Finite Element Method (X-FEM). In the coupled procedure, DEM is employed to capture the interactions and relative movements of soil particles as discontinua, while X-FEM is utilized to model in-contact structures as continua, which may consist of different types of discontinuities. For verification purposes, the new coupled approach is utilized to examine benchmark problems including different contacts between/within continua and discontinua. Results are validated by comparison with those of existing analytical and numerical solutions. This study proves that extended-finite-discrete element method can be used to robustly analyze not only contact problems, but also other types of discontinuities in continua such as (i) crack formations and propagations, (ii) voids and bimaterial interfaces, and (iii) combination of previous cases. In essence, the proposed method can be used vastly in advanced soil-structure interaction problems to investigate the micro and macro behaviour of the surrounding soil and the response of the embedded structure that contains discontinuities.Keywords: contact problems, discrete element method, extended-finite element method, soil-structure interaction
Procedia PDF Downloads 5052218 Qualitative Narrative Framework as Tool for Reduction of Stigma and Prejudice
Authors: Anastasia Schnitzer, Oliver Rehren
Abstract:
Mental health has become an increasingly important topic in society in recent years, not least due to the challenges posed by the corona pandemic. Along with this, the public has become more and more aware that a lack of enlightenment and proper coping mechanisms may result in a notable risk to develop mental disorders. Yet, there are still many biases against those affected, which are further connected to issues of stigmatization and societal exclusion. One of the main strategies to combat these forms of prejudice and stigma is to induce intergroup contact. More specifically, the Intergroup Contact Theory states engaging in certain types of contact with members of marginalized groups may be an effective way to improve attitudes towards these groups. However, due to the persistent prejudice and stigmatization, affected individuals often do not dare to speak openly about their mental disorders, so that intergroup contact often goes unnoticed. As a result, many people only experience conscious contact with individuals with a mental disorder through media. As an analogy to the Intergroup Contact Theory, the Parasocial Contact Hypothesis proposes that repeatedly being exposed to positive media representations of outgroup members can lead to a reduction of negative prejudices and attitudes towards this outgroup. While there is a growing body of research on the merit of this mechanism, measurements often only consist of 'positive' or 'negative' parasocial contact conditions (or examine the valence or quality of the previous contact with the outgroup); meanwhile, more specific conditions are often neglected. The current study aims to tackle this shortcoming. By scrutinizing the potential of contemporary series as a narrative framework of high quality, we strive to elucidate more detailed aspects of beneficial parasocial contact -for the sake of reducing prejudice and stigma towards individuals with mental disorders. Thus, a two-factorial between-subject online panel study with three measurement points was conducted (N = 95). Participants were randomly assigned to one of two groups, having to watch episodes of either a series with a narrative framework of high (Quality-TV) or low quality (Continental-TV), with one-week interval in-between the episodes. Suitable series were determined with the help of a pretest. Prejudice and stigma towards people with mental disorders were measured at the beginning of the study, before and after each episode, and in a final follow-up one week after the last two episodes. Additionally, parasocial interaction (PSI), quality of contact (QoC), and transportation were measured several times. Based on these data, multivariate multilevel analyses were performed in R using the lavaan package. Latent growth models showed moderate to high increases in QoC and PSI as well as small to moderate decreases in stigma and prejudice over time. Multilevel path analysis with individual and group levels further revealed that a qualitative narrative framework leads to a higher quality of contact experience, which then leads to lower prejudice and stigma, with effects ranging from moderate to high.Keywords: prejudice, quality of contact, parasocial contact, narrative framework
Procedia PDF Downloads 832217 Seismic Fragility of Base-Isolated Multi-Story Piping System in Critical Facilities
Authors: Bu Seog Ju, Ho Young Son, Yong Hee Ryu
Abstract:
This study is focused on the evaluation of seismic fragility of multi-story piping system installed in critical structures, isolated with triple friction pendulum bearing. The concept of this study is to isolate the critical building structure as well as nonstructural component, especially piping system in order to mitigate the earthquake damage and achieve the reliable seismic design. Then, the building system and multi-story piping system was modeled in OpenSees. In particular, the triple friction pendulum isolator was accounted for the vertical and horizontal coupling behavior in the building system subjected to seismic ground motions. Consequently, in order to generate the seismic fragility of base-isolated multi-story piping system, 21 selected seismic ground motions were carried out, by using Monte Carlo Simulation accounted for the uncertainties in demand. Finally, the system-level fragility curves corresponding to the limit state of the piping system was conducted at each T-joint system, which was commonly failure points in piping systems during and after an earthquake. Additionally, the system-level fragilities were performed to the first floor and second floor level in critical structures.Keywords: fragility, friction pendulum bearing, nonstructural component, seismic
Procedia PDF Downloads 1502216 Microstructure Analysis of TI-6AL-4V Friction Stir Welded Joints
Authors: P. Leo, E. Cerri, L. Fratini, G. Buffa
Abstract:
The Friction Stir Welding process uses an inert rotating mandrel and a force on the mandrel normal to the plane of the sheets to generate the frictional heat. The heat and the stirring action of the mandrel create a bond between the two sheets without melting the base metal. As matter of fact, the use of a solid state welding process limits the insurgence of defects, due to the presence of gas in melting bath, and avoids the negative effects of materials metallurgical transformation strictly connected with the change of phase. The industrial importance of Ti-6Al-4V alloy is well known. It provides an exceptional good balance of strength, ductility, fatigue and fracture properties together with good corrosion resistance and good metallurgical stability. In this paper, the authors analyze the microstructure of friction stir welded joints of Ti-6Al-4V processed at the same travel speed (35 mm/min) but at different rotation speeds (300-500 rpm). The microstructure of base material (BM), as result from both optical microscope and scanning electron microscope analysis is not homogenous. It is characterized by distorted α/β lamellar microstructure together with smashed zone of fragmented β layer and β retained grain boundary phase. The BM has been welded in the-as received state, without any previous heat treatment. Even the microstructure of the transverse and longitudinal sections of joints is not homogeneous. Close to the top of weld cross sections a much finer microstructure than the initial condition has been observed, while in the center of the joints the microstructure is less refined. Along longitudinal sections, the microstructure is characterized by equiaxed grains and lamellae. Both the length and area fraction of lamellas increases with distance from longitudinal axis. The hardness of joints is higher than that of BM. As the process temperature increases the average microhardness slightly decreases.Keywords: friction stir welding, microhardness, microstructure, Ti-6Al-4V
Procedia PDF Downloads 3812215 Load Carrying Capacity of Soils Reinforced with Encased Stone Columns
Authors: S. Chandrakaran, G. Govind
Abstract:
Stone columns are effectively used to improve bearing strength of soils and also for many geotechnical applications. In soft soils when stone columns are loaded they undergo large settlements due to insufficient lateral confinement. Use of geosynthetics encasement has proved to be a solution for this problem. In this paper, results of a laboratory experimental study carried out with model stone columns with and without encasement. Sand was used for making test beds, and grain size of soil varies from 0.075mm to 4.75mm. Woven geotextiles produced by Gareware ropes India with mass per unit area of 240gm/M2 and having tensile strength of 52KN/m is used for the present investigation. Tests were performed with large scale direct shear box and also using scaled laboratory plate load tests. Stone column of 50mm and 75mm is used for the present investigation. Diameter of stone column, size of stones used for making stone columns is varied in making stone column in the present study. Two types of stone were used namely small and bigger in size. Results indicate that there is an increase in angle of internal friction and also an increase in the shear strength of soil when stone columns are encased. With stone columns with 50mm dia, an average increase of 7% in shear strength and 4.6 % in angle of internal friction was achieved. When large stones were used increase in the shear strength was 12.2%, and angle of internal friction was increased to 5.4%. When the stone column diameter has increased to 75mm increase in shear strength and angle of internal friction was increased with smaller size of stones to 7.9 and 7.5%, and with large size stones, it was 7.7 and 5.48% respectively. Similar results are obtained in plate load tests, also.Keywords: stone columns, encasement, shear strength, plate load test
Procedia PDF Downloads 2362214 Cimifugin Inhibited Th2-Type Allergic Contact Dermatitis
Authors: Xiaoyan Jiang, Huizhu Wang, Lili Gui, Dandan Shen, Xiao Wei, Xi Yu, Hailiang Liu, Min Hong
Abstract:
Objective: Applicate FITC to establish Th2-type allergic contact dermatitis model, and study the effect and mechanism of Cimifugin on Th2-type allergic contact dermatitis. Methods: The Balb/c mice were sensitized with painting 80 ul of 1.5% FITC onto the shaved abdomen skin at DAY1 and DAY2. The animals were challenged on their right ears with 20 ul of 0.6% FITC, and the left ears were painted with solvent alone at day 6, mice were administered cimifugin for 7 days. 24h later, ear swelling was noted, and the infiltration of eosinophils was investigated by hematoxylin and eosin (H&E) staining. while part of the ear tissue homogenates prepared for detecting interleukin-4 levels by ELISA .Mice were administered cimifugin In the initial stage of the above model for 5 days(-1DAY—DAY3), ear tissue were homogenized to detect IL-33 levels by ELISA. Results: Cimifugin 25mg/kg, 50mg/kg inhibited mouse ear swelling, ear histopathology showed that mice given Cimifugin has significantly reduced levels of local tissue fluid exudation, congestion, infiltration of lymphocytes, and other inflammatory conditions compared with the model group. At the same time, it has significantly reduce of Th2 cytokines IL-4 in the mouse ear tissue homogenate. Data of the initial stage shows that 12.5mg/kg, 50mg/kg Cimifugin significantly inhibited IL-33 levels. Conclusion: Cimifugin inhibit FITC-induced Th2-type allergic contact dermatitis, and its mechanism may be related to inhibition of IL-33.Keywords: cimifugin, allergic contact dermatitis, Th1/Th2, IL-33
Procedia PDF Downloads 4792213 Improved Ohmic Contact by Li Doping in Electron Transport Layers
Authors: G. Sivakumar, T. Pratyusha, D. Gupta, W. Shen
Abstract:
To get ohmic contact between the cathode and organic semiconductor, transport layers are introduced between the active layer and the electrodes. Generally zinc oxide or titanium dioxide are used as electron transport layer. When electron transport layer is doped with lithium, the resultant film exhibited superior electronic properties, which enables faster electron transport. Doping is accomplished by heat treatment of films with Lithium salts. Li-doped films. We fabricated organic solar cell using PTB7(poly(3-hexylthiopene-2,5- diyl):PCBM(phenyl-C61-butyric acid methyl ester) and found that the solar cells prepared using Li doped films had better performance in terms of efficiency when compared to the undoped transport layers.Keywords: electron transport layer, higher efficiency, lithium doping, ohmic contact
Procedia PDF Downloads 5132212 FEM Simulation of Tool Wear and Edge Radius Effects on Residual Stress in High Speed Machining of Inconel718
Authors: Yang Liu, Mathias Agmell, Aylin Ahadi, Jan-Eric Stahl, Jinming Zhou
Abstract:
Tool wear and tool geometry have significant effects on the residual stresses in the component produced by high-speed machining. In this paper, Coupled Eulerian and Lagrangian (CEL) model is adopted to investigate the residual stress in high-speed machining of Inconel718 with a CBN170 cutting tool. The result shows that the mesh with the smallest size of 5 um yields cutting forces and chip morphology in close agreement with the experimental data. The analysis of thermal loading and mechanical loading are performed to study the effect of segmented chip morphology on the machined surface topography and residual stress distribution. The effects of cutting edge radius and flank wear on residual stresses formation and distribution on the workpiece were also investigated. It is found that the temperature within 100um depth of the machined surface increases drastically due to the more friction heat generation with the contact area of tool and workpiece increasing when a larger edge radius and flank wear are used. With the depth further increasing, the temperature drops rapidly for all cases due to the low conductivity of Inconel718. Consequently, higher and deeper tensile residual stress is generated on the superficial. Furthermore, an increased depth of plastic deformation and compressive residual stress is noticed in the subsurface, which is attributed to the reduction of the yield strength under the thermal effect. Besides, the ploughing effect produced by a larger tool edge radius contributes more than flank wear. The magnitude variation of the compressive residual stress caused by various edge radius and flank wear have a totally opposite trend, which depends on the magnitude of the ploughing and friction pressure acting on the machined surface.Keywords: Coupled Eulerian Lagrangian, segmented chip, residual stress, tool wear, edge radius, Inconel718
Procedia PDF Downloads 1462211 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model
Authors: Quy Dang Nguyen, Reza Nakhaie Jazar
Abstract:
The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.Keywords: quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation
Procedia PDF Downloads 922210 Stress Distribution in Axisymmetric Indentation of an Elastic Layer-Substrate Body
Authors: Kotaro Miura, Makoto Sakamoto, Yuji Tanabe
Abstract:
We focus on internal stress and displacement of an elastic axisymmetric contact problem for indentation of a layer-substrate body. An elastic layer is assumed to be perfectly bonded to an elastic semi-infinite substrate. The elastic layer is smoothly indented with a flat-ended cylindrical indenter. The analytical and exact solutions were obtained by solving an infinite system of simultaneous equations using the method to express a normal contact stress at the upper surface of the elastic layer as an appropriate series. This paper presented the numerical results of internal stress and displacement distributions for hard-coating system with constant values of Poisson’s ratio and the thickness of elastic layer.Keywords: indentation, contact problem, stress distribution, coating materials, layer-substrate body
Procedia PDF Downloads 1562209 Effects of Beeswax Coating on the Properties of Cocoa Bean Shell Based Papers
Authors: Sri Rejeki, Tamrin Tamrin, RH. F. Faradilla, Muhammad N. Ibrahim, Mariana M., Irnawati Irnawati
Abstract:
Cocoa bean shells, despite their antioxidant and antimicrobial properties, are still considered as an underutilized agricultural waste. The functional properties and their lignocelluloses content make cocoa bean shells a potential material for paper-based food packaging. In our previous research, we have successfully produced papers from cocoa bean shells that had antioxidant and antibacterial activities. However, the hydrophilic nature of the lignocelluloses of cocoa bean shells hinders the application of the paper to be used as a food packaging. In this research, we aimed to study the effects of beeswax coating on the wettability and mechanical properties of the paper. The coating was done by dipping the papers in beeswax solution several times and in three different beeswax concentrations. The number of dipping and beeswax concentration significantly (p<0.05) affected the water contact angle of the papers. Results show that the water contact angle increases dramatically due to the coating treatment. The control paper or uncoated paper had a contact angle of 40.50o, while the contact angle of the best-coated paper (D3B3: 3x dipping, 3g/10mL beeswax) reached 96.93o. Both tensile strength and percent elongation were not significantly (p>0.05) affected by the coating treatment. This showed that beeswax was a potential organic material to improve the hydrophobicity of paper from cocoa bean shells without any undesirable effects on the mechanical properties of the paper.Keywords: cocoa bean shell, paper, beeswax, coating, contact angle
Procedia PDF Downloads 1482208 Digital Humanities in The US/Mexico Borderlands: Activism, Literature, and Border Crossers
Authors: Martin Camps
Abstract:
The two-thousand-mile border that divides the United States and Mexico is a “contact zone” of cultural friction and unbalanced power relations as defined by Mary Louise Pratt. The interest of this paper is to analyze digital platforms created to address the study and comprehension of the borderlands with pedagogical and research reasons. The paper explores ways to engage students in archival and analytical practices to build a repository of resources, links, and digital tools and consider how to adapt them to the study of the borderlands. Sites such as “Torn Apart / Separados,” “Digital Borderlands,” “Borderlands Archives Cartography,” and “Juaritos Literario” show visualizations, mapping, and access to materials and marginal literature on the border phenomenon. Analyzing these projects contributes to highlighting digital projects and the study of the border and how to engage in activism via the study of literature and the representation of a human tragedy that underscores the divisions and biopolitics imposed on the Global South and imagine the digital border futures.Keywords: borderlands, digital humanities, activism, border literature
Procedia PDF Downloads 772207 Equivalent Circuit Model for the Eddy Current Damping with Frequency-Dependence
Authors: Zhiguo Shi, Cheng Ning Loong, Jiazeng Shan, Weichao Wu
Abstract:
This study proposes an equivalent circuit model to simulate the eddy current damping force with shaking table tests and finite element modeling. The model is firstly proposed and applied to a simple eddy current damper, which is modelled in ANSYS, indicating that the proposed model can simulate the eddy current damping force under different types of excitations. Then, a non-contact and friction-free eddy current damper is designed and tested, and the proposed model can reproduce the experimental observations. The excellent agreement between the simulated results and the experimental data validates the accuracy and reliability of the equivalent circuit model. Furthermore, a more complicated model is performed in ANSYS to verify the feasibility of the equivalent circuit model in complex eddy current damper, and the higher-order fractional model and viscous model are adopted for comparison.Keywords: equivalent circuit model, eddy current damping, finite element model, shake table test
Procedia PDF Downloads 1912206 Bilingualism: A Case Study of Assamese and Bodo Classifiers
Authors: Samhita Bharadwaj
Abstract:
This is an empirical study of classifiers in Assamese and Bodo, two genetically unrelated languages of India. The objective of the paper is to address the language contact between Assamese and Bodo as reflected in classifiers. The data has been collected through fieldwork in Bodo recording narratives and folk tales and eliciting specific data from the speakers. The data for Assamese is self-produced as native speaker of the language. Assamese is the easternmost New-Indo-Aryan (henceforth NIA) language mainly spoken in the Brahmaputra valley of Assam and some other north-eastern states of India. It is the lingua franca of Assam and is creolised in the neighbouring state of Nagaland. Bodo, on the other hand, is a Tibeto-Burman (henceforth TB) language of the Bodo-Garo group. It has the highest number of speakers among the TB languages of Assam. However, compared to Assamese, it is still a lesser documented language and due to the prestige of Assamese, all the Bodo speakers are fluent bi-lingual in Assamese, though the opposite isn’t the case. With this context, classifiers, a characteristic phenomenon of TB languages, but not so much of NIA languages, presents an interesting case study on language contact caused by bilingualism. Assamese, as a result of its language contact with the TB languages which are rich in classifiers; has developed the richest classifier system among the IA languages in India. Yet, as a part of rampant borrowing of Assamese words and patterns into Bodo; Bodo is seen to borrow even Assamese classifiers into its system. This paper analyses the borrowed classifiers of Bodo and finds the route of this borrowing phenomenon in the number system of the languages. As the Bodo speakers start replacing the higher numbers from five with Assamese ones, they also choose the Assamese classifiers to attach to these numbers. Thus, the partial loss of number in Bodo as a result of language contact and bilingualism in Assamese is found to be the reason behind the borrowing of classifiers in Bodo. The significance of the study lies in exploring an interesting aspect of language contact in Assam. It is hoped that this will attract further research on bilingualism and classifiers in Assam.Keywords: Assamese, bi-lingual, Bodo, borrowing, classifier, language contact
Procedia PDF Downloads 2222205 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials
Authors: Mohamed Akbi, Aissa Bouchou
Abstract:
The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission
Procedia PDF Downloads 3852204 Microstructure and SEM Analysis of Joints Fabricated by FSW of Aluminum Alloys 5083 and 6063
Authors: Jaskirat Singh, Roshan Lal Virdi, Khushdeep Goyal
Abstract:
The purpose of this paper is to perform a microstructural analysis of Friction Stir Welded joints of aluminum alloys 6063 and 5083, also to check the properties of the weld zone by SEM analysis. FSW experiments were carried on CNC Vertical milling machine. The tools used for welding were the round cylindrical pin shape and square pin shape. It is found that Microstructure shows the uniformly distributed material with minimum heat affected zone and dense welded zone without any defect. Microstructures indicate that the weld material is defect free. The SEM shows the diffusion of material with base metal with proper bonding without any defect.Keywords: friction stir welding, aluminum alloy, microstructure, SEM analysis
Procedia PDF Downloads 3082203 Static and Dynamical Analysis on Clutch Discs on Different Material and Geometries
Authors: Jairo Aparecido Martins, Estaner Claro Romão
Abstract:
This paper presents the static and cyclic stresses in combination with fatigue analysis resultant of loads applied on the friction discs usually utilized on industrial clutches. The material chosen to simulate the friction discs under load is aluminum. The numerical simulation was done by software COMSOLTM Multiphysics. The results obtained for static loads showed enough stiffness for both geometries and the material utilized. On the other hand, in the fatigue standpoint, failure is clearly verified, what demonstrates the importance of both approaches, mainly dynamical analysis. The results and the conclusion are based on the stresses on disc, counted stress cycles, and fatigue usage factor.Keywords: aluminum, industrial clutch, static and dynamic loading, numerical simulation
Procedia PDF Downloads 1882202 Two Dimensional Steady State Modeling of Temperature Profile and Heat Transfer of Electrohydrodynamically Enhanced Micro Heat Pipe
Authors: H. Shokouhmand, M. Tajerian
Abstract:
A numerical investigation of laminar forced convection flows through a square cross section micro heat pipe by applying electrohydrodynamic (EHD) field has been studied. In the present study, pentane is selected as working fluid. Temperature and velocity profiles and heat transfer enhancement in the micro heat pipe by using EHD field at the two-dimensional and single phase fluid flow in steady state regime have been numerically calculated. At this model, only Coulomb force is considered. The study has been carried out for the Reynolds number 10 to 100 and EHD force field up to 8 KV. Coupled, non-linear equations governed on the model (continuity, momentum, and energy equations) have been solved simultaneously by CFD numerical methods. Steady state behavior of affecting parameters, e.g. friction factor, average temperature, Nusselt number and heat transfer enhancement criteria, have been evaluated. It has been observed that by increasing Reynolds number, the effect of EHD force became more significant and for smaller Reynolds numbers the rate of heat transfer enhancement criteria is increased. By obtaining and plotting the mentioned parameters, it has been shown that the EHD field enhances the heat transfer process. The numerical results show that by increasing EHD force field the absolute value of Nusselt number and friction factor increases and average temperature of fluid flow decreases. But the increasing rate of Nusselt number is greater than increasing value of friction factor, which makes applying EHD force field for heat transfer enhancement in micro heat pipes acceptable and applicable. The numerical results of model are in good agreement with the experimental results available in the literature.Keywords: micro heat pipe, electrohydrodynamic force, Nusselt number, average temperature, friction factor
Procedia PDF Downloads 2712201 Adjustment of the Whole-Body Center of Mass during Trunk-Flexed Walking across Uneven Ground
Authors: Soran Aminiaghdam, Christian Rode, Reinhard Blickhan, Astrid Zech
Abstract:
Despite considerable studies on the impact of imposed trunk posture on human walking, less is known about such locomotion while negotiating changes in ground level. The aim of this study was to investigate the behavior of the VBCOM in response to a two-fold expected perturbation, namely alterations in body posture and in ground level. To this end, the kinematic data and ground reaction forces of twelve able participants were collected. We analyzed the vertical position of the body center of mass (VBCOM) from the ground determined by the body segmental analysis method relative to the laboratory coordinate system at touchdown and toe-off instants during walking across uneven ground — characterized by perturbation contact (a 10-cm visible drop) and pre- and post-perturbation contacts — in comparison to unperturbed level contact while maintaining three postures (regular erect, ~30° and ~50° of trunk flexion from the vertical). The VBCOM was normalized to the distance between the greater trochanter marker and the lateral malleoli marker at the instant of TD. Moreover, we calculated the backward rotation during step-down as the difference of the maximum of the trunk angle in the pre-perturbation contact and the minimal trunk angle in the perturbation contact. Two-way repeated measures ANOVAs revealed contact-specific effects of posture on the VBCOM at touchdown (F = 5.96, p = 0.00). As indicated by the analysis of simple main effects, during unperturbed level and pre-perturbation contacts, no between-posture differences for the VBCOM at touchdown were found. In the perturbation contact, trunk-flexed gaits showed a significant increase of VBCOM as compared to the pre-perturbation contact. In the post-perturbation contact, the VBCOM demonstrated a significant decrease in all gait postures relative to the preceding corresponding contacts with no between-posture differences. Main effects of posture revealed that the VBCOM at toe-off significantly decreased in trunk-flexed gaits relative to the regular erect gait. For the main effect of contact, the VBCOM at toe-off demonstrated changes across perturbation and post-perturbation contacts as compared to the unperturbed level contact. Furthermore, participants exhibited a backward trunk rotation during step-down possibly to control the angular momentum of their whole body. A more pronounced backward trunk rotation (2- to 3-fold compared with level contacts) in trunk-flexed walking contributed to the observed elevated VBCOM during the step-down which may have facilitated drop negotiation. These results may shed light on the interaction between posture and locomotion in able gait, and specifically on the behavior of the body center of mass during perturbed locomotion.Keywords: center of mass, perturbation, posture, uneven ground, walking
Procedia PDF Downloads 1802200 The Influence of Water Content on the Shear Resistance of Silty Sands
Authors: Mohamed Boualem Salah
Abstract:
This work involves an experimental study of the behavior of chlef sand under effect of various parameters influencing on shear strength. Because of their distinct nature, sands, silts and clays exhibit completely different behavior (shear strength, the contracting and dilatancy, the angle of internal friction and cohesion etc.). By cons when these materials are mixed, their behavior will become different from each considered alone. The behavior of these mixtures (silty sands etc.) is currently the state of several studies to better use. We studied in this work: The influence of the following factors on the shear strength: (The density, the fines content, the water content). The apparatus used for the tests is the shear box casagrande. This device, although one may have some disadvantages and modern instrumentation is appropriate used to study the shear strength of soils.Keywords: behavior, shear strength, sand, silt, friction angle, cohesion, fines content, moisture content
Procedia PDF Downloads 4082199 An Experimental Study on Heat and Flow Characteristics of Water Flow in Microtube
Authors: Zeynep Küçükakça, Nezaket Parlak, Mesut Gür, Tahsin Engin, Hasan Küçük
Abstract:
In the current research, the single phase fluid flow and heat transfer characteristics are experimentally investigated. The experiments are conducted to cover transition zone for the Reynolds numbers ranging from 100 to 4800 by fused silica and stainless steel microtubes having diameters of 103-180 µm. The applicability of the Logarithmic Mean Temperature Difference (LMTD) method is revealed and an experimental method is developed to calculate the heat transfer coefficient. Heat transfer is supplied by a water jacket surrounding the microtubes and heat transfer coefficients are obtained by LMTD method. The results are compared with data obtained by the correlations available in the literature in the study. The experimental results indicate that the Nusselt numbers of microtube flows do not accord with the conventional results when the Reynolds number is lower than 1000. After that, the Nusselt number approaches the conventional theory prediction. Moreover, the scaling effects in micro scale such as axial conduction, viscous heating and entrance effects are discussed. On the aspect of fluid characteristics, the friction factor is well predicted with conventional theory and the conventional friction prediction is valid for water flow through microtube with a relative surface roughness less than about 4 %.Keywords: microtube, laminar flow, friction factor, heat transfer, LMTD method
Procedia PDF Downloads 4602198 Determination of Forced Convection Heat Transfer Performance in Lattice Geometric Heat Sinks
Authors: Bayram Sahin, Baris Gezdirici, Murat Ceylan, Ibrahim Ates
Abstract:
In this experimental study, the effects of heat transfer and flow characteristics on lattice geometric heat sinks, where high rates of heat removal are required, were investigated. The design parameters were Reynolds number, the height of heat sink (H), horizontal (Sy) and vertical (Sx) distances between heat sinks. In the experiments, the Reynolds number ranged from 4000 to 20000; heat sink heights were (H) 20 mm and 40 mm; the distances (Sy) between the heat sinks in the flow direction were45 mm, 32 mm, 23.3 mm; the distances (Sx) between the heat sinks perpendicular to the flow direction were selected to be 23.3 mm, 12.5 mm and 6 mm. A total of 90 experiments were conducted and the maximum Nusselt number and minimum friction coefficient were targeted. Experimental results have shown that heat sinks in lattice geometry have a significant effect on heat transfer enhancement. Under the different experimental conditions, the highest increase in Nusselt number was 283% while the lowest increase was calculated as 66% as compared with the straight channel results. The lowest increase in the friction factor was also obtained as 173% according to the straight channel results. It is seen that the increase in heat sink height and flow velocity increased the level of turbulence in the channel, leading to higher Nusselt number and friction factor values.Keywords: forced convection, heat transfer enhancement, lattice geometric heat sinks, pressure drop
Procedia PDF Downloads 1902197 Turbulent Boundary Layer over 3D Sinusoidal Roughness
Authors: Misarah Abdelaziz, L Djenidi, Mergen H. Ghayesh, Rey Chin
Abstract:
Measurements of a turbulent boundary layer over 3D sinusoidal roughness are performed for friction Reynolds numbers ranging from 650 < Reτ < 2700. This surface was fabricated by a Multicam CNC Router machine of an acrylic sheet to have an amplitude of k/2 = 0.8 mm and an equal wavelength of 8k in both streamwise and spanwise directions, a 0.6 mm stepover and 12 mm ball nose cutter was used. Single hotwire anemometry measurements are done at one location x=1.5 m downstream at different freestream velocities under zero-pressure gradient conditions. As expected, the roughness causes a downward shift on the wall-unit normalised streamwise mean velocity profile when compared to the smooth wall profile. The shift is increasing with increasing Reτ, 1.8 < ∆U+ < 6.2. The coefficient of friction is almost constant at all cases Cf = 0.0042 ± 0.0002. The results show a gradual reduction in the inner peak of profiles with increasing Reτ until fully destruction at Reτ of 2700.Keywords: hotwire, roughness, TBL, ZPG
Procedia PDF Downloads 2212196 Finite Element Modeling of Friction Stir Welding of Dissimilar Alloys
Authors: Fadi Al-Badour, Nesar Merah, Abdelrahman Shuaib, Abdelaziz Bazoune
Abstract:
In the current work, a Coupled Eulerian Lagrangian (CEL) model is developed to simulate the friction stir welding (FSW) process of dissimilar Aluminum alloys (Al 6061-T6 with Al 5083-O). The model predicts volumetric defects, material flow, developed temperatures, and stresses in addition to tool reaction loads. Simulation of welding phase is performed by employing a control volume approach, whereas the welding speed is defined as inflow and outflow over Eulerian domain boundaries. Only material softening due to inelastic heat generation is considered and material behavior is assumed to obey Johnson-Cook’s Model. The model was validated using published experimentally measured temperatures, at similar welding conditions, and by qualitative comparison of dissimilar weld microstructure. The FE results showed that most of developed temperatures were below melting and that the bulk of the deformed material in solid state. The temperature gradient on AL6061-T6 side was found to be less than that of Al 5083-O. Changing the position Al 6061-T6 from retreating (Ret.) side to advancing (Adv.) side led to a decrease in maximum process temperature and strain rate. This could be due to the higher resistance of Al 6061-T6 to flow as compared to Al 5083-O.Keywords: friction stir welding, dissimilar metals, finite element modeling, coupled Eulerian Lagrangian Analysis
Procedia PDF Downloads 3312195 Contact-Impact Analysis of Continuum Compliant Athletic Systems
Authors: Theddeus Tochukwu Akano, Omotayo Abayomi Fakinlede
Abstract:
Proper understanding of the behavior of compliant mechanisms use by athletes is important in order to avoid catastrophic failure. Such compliant mechanisms like the flex-run require the knowledge of their dynamic response and deformation behavior under quickly varying loads. The modeling of finite deformations of the compliant athletic system is described by Neo-Hookean model under contact-impact conditions. The dynamic impact-contact governing equations for both the target and impactor are derived based on the updated Lagrangian approach. A method where contactor and target are considered as a united body is applied in the formulation of the principle of virtual work for the bodies. In this paper, methods of continuum mechanics and nonlinear finite element method were deployed to develop a model that could capture the behavior of the compliant athletic system under quickly varying loads. A hybrid system of symbolic algebra (AceGEN) and a compiled back end (AceFEM) were employed, leveraging both ease of use and computational efficiency. The simulated results reveal the effect of the various contact-impact conditions on the deformation behavior of the impacting compliant mechanism.Keywords: eigenvalue problems, finite element method, robin boundary condition, sturm-liouville problem
Procedia PDF Downloads 4722194 Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material
Authors: M. Amara, M. Tahar Abbes, A. Dokkiche, M. Benbrike
Abstract:
Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance.Keywords: EHD lubricated contacts, friction, properties of materials, tribological performance
Procedia PDF Downloads 2722193 Dissimilar Cu/Al Friction Stir Welding: Sensitivity of the Tool Offset
Authors: Tran Hung Tra, Hao Dinh Duong, Masakazu Okazaki
Abstract:
Copper 1100 and aluminum 1050 plates with a thickness of 5.0 mm are butt-joint using friction stir welding. The tool offset is linearly varied along the welding path. Two welding regimes, using the same linear tool offset but in opposite directions, are applied for fabricating two Cu/Al plates. The material flow is dominated by both tool offset and offset history. The intermetallic compounds layer and interface morphology in each welded plate are formed in a different manner. As a result, the bonding strength and fracture behavior between two welded plates are significantly distinct. The role of interface morphology on fracture behavior is analyzed by the finite element method.Keywords: Cu/Al dissimilar welding, offset history, interface morphology, intermetallic compounds, strength and fracture
Procedia PDF Downloads 762192 Friction Stir Processing of the AA7075T7352 Aluminum Alloy Microstructures Mechanical Properties and Texture Characteristics
Authors: Roopchand Tandon, Zaheer Khan Yusufzai, R. Manna, R. K. Mandal
Abstract:
Present work describes microstructures, mechanical properties, and texture characteristics of the friction stir processed AA7075T7352 aluminum alloy. Phases were analyzed with the help of x-ray diffractometre (XRD), transmission electron microscope (TEM) along with the differential scanning calorimeter (DSC). Depth-wise microstructures and dislocation characteristics from the nugget-zone of the friction stir processed specimens were studied using the bright field (BF) and weak beam dark-field (WBDF) TEM micrographs, and variation in the microstructures as well as dislocation characteristics were the noteworthy features found. XRD analysis display changes in the chemistry as well as size of the phases in the nugget and heat affected zones (Nugget and HAZ). Whereas the base metal (BM) microstructures remain un-affected. High density dislocations were noticed in the nugget regions of the processed specimen, along with the formation of dislocation contours and tangles. .The ɳ’ and ɳ phases, along with the GP-Zones were completely dissolved and trapped by the dislocations. Such an observations got corroborated to the improved mechanical as well as stress corrosion cracking (SCC) performances. Bulk texture and residual stress measurements were done by the Panalytical Empyrean MRD system with Co- kα radiation. Nugget zone (NZ) display compressive residual stress as compared to thermo-mechanically(TM) and heat affected zones (HAZ). Typical f.c.c. deformation texture components (e.g. Copper, Brass, and Goss) were seen. Such a phenomenon is attributed to the enhanced hardening as well as other mechanical performance of the alloy. Mechanical characterizations were done using the tensile test and Anton Paar Instrumented Micro Hardness tester. Enhancement in the yield strength value is reported from the 89MPa to the 170MPa; on the other hand, highest hardness value was reported in the nugget-zone of the processed specimens.Keywords: aluminum alloy, mechanical characterization, texture characterstics, friction stir processing
Procedia PDF Downloads 1072191 Effect of Annealing Temperature on the Photoelectric Work Function of Silver-Zinc Oxide Contact Materials
Authors: Bouchou Aïssa, Mohamed Akbi
Abstract:
Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermo dynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver-metal oxide (Ag-MeO) electrical contacts (Ag-ZnO (92/8), before and after surface heat treatments at 296 K 813 K, under UHV conditions (residual gas pressure of 1.4 x 10-7 mbar). The electron work function (EWF) of silver zinc oxide materials was measured photoelectrically, using both Fowler’s method of isothermal curves and linearized Fowler plots. In this paper, we present the development of a method for measuring photoelectric work function of contact materials. Also reported in this manuscript are the results of experimental work whose purpose has been the buildup of a reliable photoelectric system and associated monochromatic ultra-violet radiations source, and the photoelectric measurement of the electron work functions (EWF) of contact materials. In order to study the influence of annealing temperature on the EWF, a vacuum furnace was used for heating the metallic samples up to 800 K. The EWF of the silver – zinc oxide materials were investigated to study the influence of annealing temperature on the EWF. In the present study, the photoelectric measurements about Ag-ZnO(92/8) contacts have shown a linear decrease of the EWF with increasing temperature, i.e. the temperature coefficient is constant and negative: for the first annealing # 1, in the temperature range [299 K 823 K]. On the contrary, a linear increase was observed with increasing temperature (i.e. , being constant and positive), for the next annealing # 2, in the temperature range [296 K 813 K]. The EWFs obtained for silver-zinc oxide Ag-ZnO(92/8) show an obvious dependence on the annealing temperature which is strongly associated with the evolution of the arrangement on ZnO nano particles on the Ag-ZnO contact surface as well as surface charge distribution.Keywords: Photoemission, Electron work function, Fowler methods, Ag-ZnO contact materials, Vacuum heat treatment
Procedia PDF Downloads 4162190 Surface Characteristics of Bacillus megaterium and Its Adsorption Behavior onto Dolomite
Authors: Mohsen Farahat, Tsuyoshi Hirajima
Abstract:
Surface characteristics of Bacillus megaterium strain were investigated; zeta potential, FTIR and contact angle were measured. Surface energy components including Lifshitz-van der Waals, Hamaker constant, and acid/base components (Lewis acid/Lewis base) were calculated from the contact angle data. The results showed that the microbial cells were negatively charged over all pH regions with high values at alkaline region. A hydrophilic nature for the strain was confirmed by contact angle and free energy of adhesion between microbial cells. Adsorption affinity of the strain toward dolomite was studied at different pH values. The results showed that the cells had a high affinity to dolomite at acid pH comparing to neutral and alkaline pH. Extended DLVO theory was applied to calculate interaction energy between B. megaterium cells and dolomite particles. The adsorption results were in agreement with the results of Extended DLVO approach. Surface changes occurred on dolomite surface after the bio-treatment were monitored; contact angle decreased from 69° to 38° and the mineral’s floatability decreased from 95% to 25% after the treatment.Keywords: Bacillus megaterium, surface modification, flotation, dolomite, adhesion energy
Procedia PDF Downloads 244