Search results for: entertainment computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1254

Search results for: entertainment computing

984 Cloud Shield: Model to Secure User Data While Using Content Delivery Network Services

Authors: Rachna Jain, Sushila Madan, Bindu Garg

Abstract:

Cloud computing is the key powerhouse in numerous organizations due to shifting of their data to the cloud environment. In recent years it has been observed that cloud-based-services are being used on large scale for content storage, distribution and processing. Various issues have been observed in cloud computing environment that need to be addressed. Security and privacy are found topmost concern area. In this paper, a novel security model is proposed to secure data by utilizing CDN services like image to icon conversion. CDN Service is a content delivery service which converts an image to icon, word to pdf & Latex to pdf etc. Presented model is used to convert an image into icon by keeping image secret. Here security of image is imparted so that image should be encrypted and decrypted by data owners only. It is also discussed in the paper that how server performs multiplication and selection on encrypted data without decryption. The data can be image file, word file, audio or video file. Moreover, the proposed model is capable enough to multiply images, encrypt them and send to a server application for conversion. Eventually, the prime objective is to encrypt an image and convert the encrypted image to image Icon by utilizing homomorphic encryption.

Keywords: cloud computing, user data security, homomorphic encryption, image multiplication, CDN service

Procedia PDF Downloads 334
983 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves

Authors: Dmytro Zubov, Francesco Volponi

Abstract:

In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.

Keywords: heat wave, D-wave, forecast, Ising model, quantum computing

Procedia PDF Downloads 497
982 Audio Information Retrieval in Mobile Environment with Fast Audio Classifier

Authors: Bruno T. Gomes, José A. Menezes, Giordano Cabral

Abstract:

With the popularity of smartphones, mobile apps emerge to meet the diverse needs, however the resources at the disposal are limited, either by the hardware, due to the low computing power, or the software, that does not have the same robustness of desktop environment. For example, in automatic audio classification (AC) tasks, musical information retrieval (MIR) subarea, is required a fast processing and a good success rate. However the mobile platform has limited computing power and the best AC tools are only available for desktop. To solve these problems the fast classifier suits, to mobile environments, the most widespread MIR technologies, seeking a balance in terms of speed and robustness. At the end we found that it is possible to enjoy the best of MIR for mobile environments. This paper presents the results obtained and the difficulties encountered.

Keywords: audio classification, audio extraction, environment mobile, musical information retrieval

Procedia PDF Downloads 544
981 A Novel Approach to Design and Implement Context Aware Mobile Phone

Authors: G. S. Thyagaraju, U. P. Kulkarni

Abstract:

Context-aware computing refers to a general class of computing systems that can sense their physical environment, and adapt their behaviour accordingly. Context aware computing makes systems aware of situations of interest, enhances services to users, automates systems and personalizes applications. Context-aware services have been introduced into mobile devices, such as PDA and mobile phones. In this paper we are presenting a novel approaches used to realize the context aware mobile. The context aware mobile phone (CAMP) proposed in this paper senses the users situation automatically and provides user context required services. The proposed system is developed by using artificial intelligence techniques like Bayesian Network, fuzzy logic and rough sets theory based decision table. Bayesian Network to classify the incoming call (high priority call, low priority call and unknown calls), fuzzy linguistic variables and membership degrees to define the context situations, the decision table based rules for service recommendation. To exemplify and demonstrate the effectiveness of the proposed methods, the context aware mobile phone is tested for college campus scenario including different locations like library, class room, meeting room, administrative building and college canteen.

Keywords: context aware mobile, fuzzy logic, decision table, Bayesian probability

Procedia PDF Downloads 365
980 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach

Authors: Jerry Q. Cheng

Abstract:

Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.

Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing

Procedia PDF Downloads 165
979 Methodologies, Findings, Discussion, and Limitations in Global, Multi-Lingual Research: We Are All Alone - Chinese Internet Drama

Authors: Patricia Portugal Marques de Carvalho Lourenco

Abstract:

A three-phase methodological multi-lingual path was designed, constructed and carried out using the 2020 Chinese Internet Drama Series We Are All Alone as a case study. Phase one, the backbone of the research, comprised of secondary data analysis, providing the structure on which the next two phases would be built on. Phase one incorporated a Google Scholar and a Baidu Index analysis, Star Network Influence Index and Mydramalist.com top two drama reviews, along with an article written about the drama and scrutiny of Chinese related blogs and websites. Phase two was field research elaborated across Latin Europe, and phase three was social media focused, having into account that perceptions are going to be memory conditioned based on past ideas recall. Overall, research has shown the poor cultural expression of Chinese entertainment in Latin Europe and demonstrated the inexistence of Chinese content in French, Italian, Portuguese and Spanish Business to Consumer retailers; a reflection of their low significance in Latin European markets and the short-life cycle of entertainment products in general, bubble-gum, disposable goods without a mid to long-term effect in consumers lives. The process of conducting comprehensive international research was complex and time-consuming, with data not always available in Mandarin, the researcher’s linguistic deficiency, limited Chinese Cultural Knowledge and cultural equivalence. Despite steps being taken to minimize the international proposed research, theoretical limitations concurrent to Latin Europe and China still occurred. Data accuracy was disputable; sampling, data collection/analysis methods are heterogeneous; ascertaining data requirements and the method of analysis to achieve a construct equivalence was challenging and morose to operationalize. Secondary data was also not often readily available in Mandarin; yet, in spite of the array of limitations, research was done, and results were produced.

Keywords: research methodologies, international research, primary data, secondary data, research limitations, online dramas, china, latin europe

Procedia PDF Downloads 68
978 Towards a Resources Provisioning for Dynamic Workflows in the Cloud

Authors: Fairouz Fakhfakh, Hatem Hadj Kacem, Ahmed Hadj Kacem

Abstract:

Cloud computing offers a new model of service provisioning for workflow applications, thanks to its elasticity and its paying model. However, it presents various challenges that need to be addressed in order to be efficiently utilized. The resources provisioning problem for workflow applications has been widely studied. Nevertheless, the existing works did not consider the change in workflow instances while they are being executed. This functionality has become a major requirement to deal with unusual situations and evolution. This paper presents a first step towards the resources provisioning for a dynamic workflow. In fact, we propose a provisioning algorithm which minimizes the overall workflow execution cost, while meeting a deadline constraint. Then, we extend it to support the dynamic adding of tasks. Experimental results show that our proposed heuristic demonstrates a significant reduction in resources cost by using a consolidation process.

Keywords: cloud computing, resources provisioning, dynamic workflow, workflow applications

Procedia PDF Downloads 295
977 Inclusion and Changes of a Research Criterion in the Institute for Quality and Accreditation of Computing, Engineering and Technology Accreditation Model

Authors: J. Daniel Sanchez Ruiz

Abstract:

The paper explains why and how a research criterion was included within an accreditation system for undergraduate engineering programs, in spite of not being a common practice of accreditation agencies at a global level. This paper is divided into three parts. The first presents the context and the motivations that led the Institute for Quality and Accreditation of Computing, Engineering and Technology Programs (ICACIT) to add a research criterion. The second describes the criterion adopted and the feedback received during 2017 accreditation cycle. The third, the author proposes changes to the accreditation criteria that respond in a pertinent way to the results-based accreditation model and the national context. The author seeks to reconcile an outcome based accreditation model, aligned with the established by the International Engineering Alliance, with the particular context of higher education in Peru.

Keywords: accreditation, engineering education, quality assurance, research

Procedia PDF Downloads 281
976 Optimization of Topology-Aware Job Allocation on a High-Performance Computing Cluster by Neural Simulated Annealing

Authors: Zekang Lan, Yan Xu, Yingkun Huang, Dian Huang, Shengzhong Feng

Abstract:

Jobs on high-performance computing (HPC) clusters can suffer significant performance degradation due to inter-job network interference. Topology-aware job allocation problem (TJAP) is such a problem that decides how to dedicate nodes to specific applications to mitigate inter-job network interference. In this paper, we study the window-based TJAP on a fat-tree network aiming at minimizing the cost of communication hop, a defined inter-job interference metric. The window-based approach for scheduling repeats periodically, taking the jobs in the queue and solving an assignment problem that maps jobs to the available nodes. Two special allocation strategies are considered, i.e., static continuity assignment strategy (SCAS) and dynamic continuity assignment strategy (DCAS). For the SCAS, a 0-1 integer programming is developed. For the DCAS, an approach called neural simulated algorithm (NSA), which is an extension to simulated algorithm (SA) that learns a repair operator and employs them in a guided heuristic search, is proposed. The efficacy of NSA is demonstrated with a computational study against SA and SCIP. The results of numerical experiments indicate that both the model and algorithm proposed in this paper are effective.

Keywords: high-performance computing, job allocation, neural simulated annealing, topology-aware

Procedia PDF Downloads 116
975 Enabling UDP Multicast in Cloud IaaS: An Enterprise Use Case

Authors: Patrick J. Kerpan, Ryan C. Koop, Margaret M. Walker, Chris P. Swan

Abstract:

The User Datagram Protocol (UDP) multicast is a vital part of data center networking that is being left out of major cloud computing providers' network infrastructure. Enterprise users rely on multicast, and particularly UDP multicast to create and connect vital business operations. For example, UPD makes a variety of business functions possible from simultaneous content media updates, High-Performance Computing (HPC) grids, and video call routing for massive open online courses (MOOCs). Essentially, UDP multicast's technological slight is causing a huge effect on whether companies choose to use (or not to use) public cloud infrastructure as a service (IaaS). Allowing the ‘chatty’ UDP multicast protocol inside a cloud network could have a serious impact on the performance of the cloud as a whole. Cloud IaaS providers solve the issue by disallowing all UDP multicast. But what about enterprise use cases for multicast applications in organizations that want to move to the cloud? To re-allow multicast traffic, enterprises can build a layer 3 - 7 network over the top of a data center, private cloud, or public cloud. An overlay network simply creates a private, sealed network on top of the existing network. Overlays give complete control of the network back to enterprise cloud users the freedom to manage their network beyond the control of the cloud provider’s firewall conditions. The same logic applies if for users who wish to use IPsec or BGP network protocols inside or connected into an overlay network in cloud IaaS.

Keywords: cloud computing, protocols, UDP multicast, virtualization

Procedia PDF Downloads 590
974 Representation of Emotions and Characters in Turkish and Indian Series

Authors: Lienjang Zeite

Abstract:

Over the past few years, Turkish and Indian series have been distributed worldwide to countless households and have found ardent followers across different age group. The series have captured numerous hearts. Turkish and Indian series have become not only one of the best means of entertainment and relaxation but also a platform to learn and appreciate shared emotions and social messages. The popularity of the series has created a kind of interest in representing human emotions and stories like never before. The demands for such series have totally shifted the entertainment industry at a new level. The interest and vibe created by the series have had impacts on various departments spanning from technology to the fashion industry and it has also become the bridge to connect viewers across the globe. The series have amassed avid admirers who find solace in the beautiful visual representations of human relationships whether it is of lovers, family or friendship. The influence of Turkish and Indian series in many parts of the world has created a cultural phenomenon that has taken viewers beyond cultural and language differences. From China to Latin America, Arab countries and the Caucasus region, the series have been accepted and loved by millions of viewers. It has captivated audiences ranging from grandmothers to teenagers. Issues like language barrier are easily solved by means of translation or dubbing making it easier to understand and enjoy the series. Turkey and India are two different countries with their own unique culture and traditions. Both the countries are exporters of series in large scale. The series function as a platform to reveal the plots and shed lights on characters of all kinds. Both the countries produce series that are more or less similar in nature. However, there are also certain issues that are shown in different ways and light. The paper will discuss how emotions are represented in Turkish and Indian series. It will also discuss the ways the series have impacted the art of representing emotions and characters in the digital era. The representation of culture through Turkish and Indian series will be explored as well. The paper will also locate the issue of gender roles and how relationships are forged or abandoned in the series. The issue of character formation and importance of moral factors will be discussed. It will also examine the formula and ingredients of turning human emotions and characters into a much loved series.

Keywords: characters, cultural phenomenon, emotions, Turkish and Indian series

Procedia PDF Downloads 136
973 A Review of Fractal Dimension Computing Methods Applied to Wear Particles

Authors: Manish Kumar Thakur, Subrata Kumar Ghosh

Abstract:

Various types of particles found in lubricant may be characterized by their fractal dimension. Some of the available methods are: yard-stick method or structured walk method, box-counting method. This paper presents a review of the developments and progress in fractal dimension computing methods as applied to characteristics the surface of wear particles. An overview of these methods, their implementation, their advantages and their limits is also present here. It has been accepted that wear particles contain major information about wear and friction of materials. Morphological analysis of wear particles from a lubricant is a very effective way for machine condition monitoring. Fractal dimension methods are used to characterize the morphology of the found particles. It is very useful in the analysis of complexity of irregular substance. The aim of this review is to bring together the fractal methods applicable for wear particles.

Keywords: fractal dimension, morphological analysis, wear, wear particles

Procedia PDF Downloads 490
972 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing

Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi

Abstract:

This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.

Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning

Procedia PDF Downloads 31
971 Performance Evaluation of Routing Protocols in Vehicular Adhoc Networks

Authors: Salman Naseer, Usman Zafar, Iqra Zafar

Abstract:

This study explores the implication of Vehicular Adhoc Network (VANET) - in the rural and urban scenarios that is one domain of Mobile Adhoc Network (MANET). VANET provides wireless communication between vehicle to vehicle and also roadside units. The Federal Commission Committee of United States of American has been allocated 75 MHz of the spectrum band in the 5.9 GHz frequency range for dedicated short-range communications (DSRC) that are specifically designed to enhance any road safety applications and entertainment/information applications. There are several vehicular related projects viz; California path, car 2 car communication consortium, the ETSI, and IEEE 1609 working group that have already been conducted to improve the overall road safety or traffic management. After the critical literature review, the selection of routing protocols is determined, and its performance was well thought-out in the urban and rural scenarios. Numerous routing protocols for VANET are applied to carry out current research. Its evaluation was conceded with the help of selected protocols through simulation via performance metric i.e. throughput and packet drop. Excel and Google graph API tools are used for plotting the graphs after the simulation results in order to compare the selected routing protocols which result with each other. In addition, the sum of the output from each scenario was computed to undoubtedly present the divergence in results. The findings of the current study present that DSR gives enhanced performance for low packet drop and high throughput as compared to AODV and DSDV in an urban congested area and in rural environments. On the other hand, in low-density area, VANET AODV gives better results as compared to DSR. The worth of the current study may be judged as the information exchanged between vehicles is useful for comfort, safety, and entertainment. Furthermore, the communication system performance depends on the way routing is done in the network and moreover, the routing of the data based on protocols implement in the network. The above-presented results lead to policy implication and develop our understanding of the broader spectrum of VANET.

Keywords: AODV, DSDV, DSR, Adhoc network

Procedia PDF Downloads 286
970 Web Service Architectural Style Selection in Multi-Criteria Requirements

Authors: Ahmad Mohsin, Syda Fatima, Falak Nawaz, Aman Ullah Khan

Abstract:

Selection of an appropriate architectural style is vital to the success of target web service under development. The nature of architecture design and selection for service-oriented computing applications is quite different as compared to traditional software. Web Services have complex and rigorous architectural styles to choose. Due to this, selection for accurate architectural style for web services development has become a more complex decision to be made by architects. Architectural style selection is a multi-criteria decision and demands lots of experience in service oriented computing. Decision support systems are good solutions to simplify the selection process of a particular architectural style. Our research suggests a new approach using DSS for selection of architectural styles while developing a web service to cater FRs and NFRs. Our proposed DSS helps architects to select right web service architectural pattern according to the domain and non-functional requirements. In this paper, a rule base DSS has been developed using CLIPS (C Language Integrated Production System) to support decisions using multi-criteria requirements. This DSS takes architectural characteristics, domain requirements and software architect preferences for NFRs as input for different architectural styles in use today in service-oriented computing. Weighted sum model has been applied to prioritize quality attributes and domain requirements. Scores are calculated using multiple criterions to choose the final architecture style.

Keywords: software architecture, web-service, rule-based, DSS, multi-criteria requirements, quality attributes

Procedia PDF Downloads 364
969 Artificial Intelligent-Based Approaches for Task ‎Offloading, ‎Resource ‎Allocation and Service ‎Placement of ‎Internet of Things ‎Applications: State of the Art

Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib‎

Abstract:

In order to support the continued growth, critical latency of ‎IoT ‎applications, and ‎various obstacles of traditional data centers, ‎mobile edge ‎computing (MEC) has ‎emerged as a promising solution that extends cloud data-processing and decision-making to edge devices. ‎By adopting a MEC structure, IoT applications could be executed ‎locally, on ‎an edge server, different fog nodes, or distant cloud ‎data centers. However, we are ‎often ‎faced with wanting to optimize conflicting criteria such as ‎minimizing energy ‎consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge ‎devices and trying to ‎keep ‎high performance (reducing ‎response time, increasing throughput and service availability) ‎at the same ‎time‎. Achieving one goal may affect the other, making task offloading (TO), ‎resource allocation (RA), and service placement (SP) complex ‎processes. ‎It is a nontrivial multi-objective optimization ‎problem ‎to study the trade-off between conflicting criteria. ‎The paper provides a survey on different TO, SP, and RA recent multi-‎objective optimization (MOO) approaches used in edge computing environments, particularly artificial intelligent (AI) ones, to satisfy various objectives, constraints, and dynamic conditions related to IoT applications‎.

Keywords: mobile edge computing, multi-objective optimization, artificial ‎intelligence ‎approaches, task offloading, resource allocation, ‎ service placement

Procedia PDF Downloads 115
968 Parallel Random Number Generation for the Modern Supercomputer Architectures

Authors: Roman Snytsar

Abstract:

Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations.

Keywords: pseudo-random numbers, quantum optimization, SIMD, parallel computing

Procedia PDF Downloads 120
967 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study

Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker

Abstract:

In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.

Keywords: admissions, algorithms, cloud computing, differentiation, fog computing, levelling, machine learning

Procedia PDF Downloads 142
966 Using Motives of Sports Consumption to Explain Team Identity: A Comparison between Football Fans across the Pond

Authors: G. Scremin, I. Y. Suh, S. Doukas

Abstract:

Spectators follow their favorite sports teams for different reasons. While some attend a sporting event simply for its entertainment value, others do so because of the personal sense of achievement and accomplishment their connection with a sports team creates. Moreover, the level of identity spectators feel toward their favorite sports team falls in a broad continuum. Some are mere spectators. For those spectators, their association to a sports team has little impact on their self-image. Others are die-hard fans who are proud of their association with their team and whose connection with that team is an important reflection of who they are. Several motives for sports consumption can be used to explain the level of spectator support in a variety of sports. Those motives can also be used to explain the variance in the identification, attachment, and loyalty spectators feel toward their favorite sports team. Motives for sports consumption can be used to discriminate the degree of identification spectators have with their favorite sports team. In this study, motives for sports consumption was used to discriminate the level of identity spectators feel toward their sports team. It was hypothesized that spectators with a strong level of team identity would report higher rates of interest in player, interest in sports, and interest in team than spectators with a low level of team identity. And spectators with a low level of team identity would report higher rates for entertainment value, bonding with friends or family, and wholesome environment. Football spectators in the United States and England were surveyed about their motives for football consumption and their level of identification with their favorite football team. To assess if the motives of sports fans differed by level of team identity and allegiance to an American or English football team, a Multivariate Analysis of Variance (MANOVA) under the General Linear Model (GLM) procedure found in SPSS was performed. The independent variables were level of team identity and allegiance to an American or English football team, and the dependent variables were the sport fan motives. A tripartite split (low, moderate, high) was used on a composite measure for team identity. Preliminary results show that effect of team identity is statistically significant (p < .001) for at least nine of the 17 motives for sports consumption assessed in this investigation. These results indicate that the motives of spectators with a strong level of team identity differ significantly from spectators with a low level of team identity. Those differences can be used to discriminate the degree of identification spectators have with their favorite sports team. Sports marketers can use these methods and results to develop identity profiles of spectators and create marketing strategies specifically designed to attract those spectators based on their unique motives for consumption and their level of team identification.

Keywords: fan identification, market segmentation of sports fans, motives for sports consumption, team identity

Procedia PDF Downloads 167
965 A Study on the Relationship Between Adult Videogaming and Wellbeing, Health, and Labor Supply

Authors: William Marquis, Fang Dong

Abstract:

There has been a growing concern in recent years over the economic and social effects of adult video gaming. It has been estimated that the number of people who played video games during the COVID-19 pandemic is close to three billion, and there is evidence that this form of entertainment is here to stay. Many people are concerned that this growing use of time could crowd out time that could be spent on alternative forms of entertainment with family, friends, sports, and other social activities that build community. For example, recent studies of children suggest that playing videogames crowds out time that could be spent on homework, watching TV, or in other social activities. Similar studies of adults have shown that video gaming is negatively associated with earnings, time spent at work, and socializing with others. The primary objective of this paper is to examine how time adults spend on video gaming could displace time they could spend working and on activities that enhance their health and well-being. We use data from the American Time Use Survey (ATUS), maintained by the Bureau of Labor Statistics, to analyze the effects of time-use decisions on three measures of well-being. We pool the ATUS Well-being Module for multiple years, 2010, 2012, 2013, and 2021, along with the ATUS Activity and Who files for these years. This pooled data set provides three broad measures of well-being, e.g., health, life satisfaction, and emotional well-being. Seven variants of each are used as a dependent variable in different multivariate regressions. We add to the existing literature in the following ways. First, we investigate whether the time adults spend in video gaming crowds out time spent working or in social activities that promote health and life satisfaction. Second, we investigate the relationship between adult gaming and their emotional well-being, also known as negative or positive affect, a factor that is related to depression, health, and labor market productivity. The results of this study suggest that the time adult gamers spend on video gaming has no effect on their supply of labor, a negligible effect on their time spent socializing and studying, and mixed effects on their emotional well-being, such as increasing feelings of pain and reducing feelings of happiness and stress.

Keywords: online gaming, health, social capital, emotional wellbeing

Procedia PDF Downloads 45
964 Theme Park Investments: How to Beat the Average: A Case Study from the Netherlands

Authors: Pieter C. M. Cornelis

Abstract:

European theme parks invest approximately 10 percent of their yearly turnover into new rides and park improvements. Without these investments these parks assume not to be a very competitive and appealing daytrip for their target audiences. However, the impact of investments in attracting new visitors is not well-known and seems to differ dramatically between parks. This paper presents a case study from the Netherlands in which a small amusement park applied a suggested, not yet proven, investment method. The results of the investment are discussed in (a) the form of return on investment and (b) the success of the predictions with regard to this investment. Suggestions for future research are presented.

Keywords: entertainment industry, innovation, investments, theme parks

Procedia PDF Downloads 499
963 Factors Drive Consumers to Purchase Digital Music: An Empirical Study

Authors: Chechen Liao, Yi-Jen Huang, Yu-Ting Lu

Abstract:

This study explores and complements digital aspects. In this study, we construct a research model based on the theory of reasoned action and extend it with the advantages and disadvantages of intangibility (convenience, perceived risk), some characteristics of digital products (price, variety, trialability), and factors related to entertainment (perceived playfulness) to predict what consumers really consider when they buy digital music. Eight hypotheses were tested and supported. Finally, we prove that the theory of reasoned action is still valid in the field of digital products.

Keywords: digital music, digital product, theory of reasoned action

Procedia PDF Downloads 441
962 Designing Effective Serious Games for Learning and Conceptualization Their Structure

Authors: Zahara Abdulhussan Al-Awadai

Abstract:

Currently, serious games play a significant role in education, sparking an increasing interest in using games for purposes beyond mere entertainment. In this research, we investigate the main requirements and aspects of designing and developing effective serious games for learning and developing a conceptual model to describe the structure of serious games with a focus on both aspects of serious games. The main contributions of this approach are to facilitate the design and development of serious games in a flexible and easy-to-use way and also to support the cooperative work between the multidisciplinary developer team.

Keywords: game development, game design, requirements, serious games, serious game model.

Procedia PDF Downloads 62
961 A Knowledge-As-A-Service Support Framework for Ambient Learning in Kenya

Authors: Lucy W. Mburu, Richard Karanja, Simon N. Mwendia

Abstract:

Over recent years, learners have experienced a constant need to access on demand knowledge that is fully aligned with the paradigm of cloud computing. As motivated by the global sustainable development goal to ensure inclusive and equitable learning opportunities, this research has developed a framework hinged on the knowledge-as-a-service architecture that utilizes knowledge from ambient learning systems. Through statistical analysis and decision tree modeling, the study discovers influential variables for ambient learning among university students. The main aim is to generate a platform for disseminating and exploiting the available knowledge to aid the learning process and, thus, to improve educational support on the ambient learning system. The research further explores how collaborative effort can be used to form a knowledge network that allows access to heterogeneous sources of knowledge, which benefits knowledge consumers, such as the developers of ambient learning systems.

Keywords: actionable knowledge, ambient learning, cloud computing, decision trees, knowledge as a service

Procedia PDF Downloads 159
960 Computing Customer Lifetime Value in E-Commerce Websites with Regard to Returned Orders and Payment Method

Authors: Morteza Giti

Abstract:

As online shopping is becoming increasingly popular, computing customer lifetime value for better knowing the customers is also gaining more importance. Two distinct factors that can affect the value of a customer in the context of online shopping is the number of returned orders and payment method. Returned orders are those which have been shipped but not collected by the customer and are returned to the store. Payment method refers to the way that customers choose to pay for the price of the order which are usually two: Pre-pay and Cash-on-delivery. In this paper, a novel model called RFMSP is presented to calculated the customer lifetime value, taking these two parameters into account. The RFMSP model is based on the common RFM model while adding two extra parameter. The S represents the order status and the P indicates the payment method. As a case study for this model, the purchase history of customers in an online shop is used to compute the customer lifetime value over a period of twenty months.

Keywords: RFMSP model, AHP, customer lifetime value, k-means clustering, e-commerce

Procedia PDF Downloads 318
959 Big Data Analysis with Rhipe

Authors: Byung Ho Jung, Ji Eun Shin, Dong Hoon Lim

Abstract:

Rhipe that integrates R and Hadoop environment made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data. Experimental results for comparing the performance of our Rhipe with stats and biglm packages available on bigmemory, showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases. We also compared the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster. The results showed that fully-distributed mode was faster than pseudo-distributed mode, and computing speeds of fully-distributed mode were faster as the number of data nodes increases.

Keywords: big data, Hadoop, Parallel regression analysis, R, Rhipe

Procedia PDF Downloads 497
958 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 125
957 Parallel Version of Reinhard’s Color Transfer Algorithm

Authors: Abhishek Bhardwaj, Manish Kumar Bajpai

Abstract:

An image with its content and schema of colors presents an effective mode of information sharing and processing. By changing its color schema different visions and prospect are discovered by the users. This phenomenon of color transfer is being used by Social media and other channel of entertainment. Reinhard et al’s algorithm was the first one to solve this problem of color transfer. In this paper, we make this algorithm efficient by introducing domain parallelism among different processors. We also comment on the factors that affect the speedup of this problem. In the end by analyzing the experimental data we claim to propose a novel and efficient parallel Reinhard’s algorithm.

Keywords: Reinhard et al’s algorithm, color transferring, parallelism, speedup

Procedia PDF Downloads 614
956 Distributed Actor System for Traffic Simulation

Authors: Han Wang, Zhuoxian Dai, Zhe Zhu, Hui Zhang, Zhenyu Zeng

Abstract:

In traditional microscopic traffic simulation, various approaches have been suggested to implement the single-agent behaviors about lane changing and intelligent driver model. However, when it comes to very large metropolitan areas, microscopic traffic simulation requires more resources and become time-consuming, then macroscopic traffic simulation aggregate trends of interests rather than individual vehicle traces. In this paper, we describe the architecture and implementation of the actor system of microscopic traffic simulation, which exploits the distributed architecture of modern-day cloud computing. The results demonstrate that our architecture achieves high-performance and outperforms all the other traditional microscopic software in all tasks. To the best of our knowledge, this the first system that enables single-agent behavior in macroscopic traffic simulation. We thus believe it contributes to a new type of system for traffic simulation, which could provide individual vehicle behaviors in microscopic traffic simulation.

Keywords: actor system, cloud computing, distributed system, traffic simulation

Procedia PDF Downloads 192
955 Performance Evaluation of Parallel Surface Modeling and Generation on Actual and Virtual Multicore Systems

Authors: Nyeng P. Gyang

Abstract:

Even though past, current and future trends suggest that multicore and cloud computing systems are increasingly prevalent/ubiquitous, this class of parallel systems is nonetheless underutilized, in general, and barely used for research on employing parallel Delaunay triangulation for parallel surface modeling and generation, in particular. The performances, of actual/physical and virtual/cloud multicore systems/machines, at executing various algorithms, which implement various parallelization strategies of the incremental insertion technique of the Delaunay triangulation algorithm, were evaluated. T-tests were run on the data collected, in order to determine whether various performance metrics differences (including execution time, speedup and efficiency) were statistically significant. Results show that the actual machine is approximately twice faster than the virtual machine at executing the same programs for the various parallelization strategies. Results, which furnish the scalability behaviors of the various parallelization strategies, also show that some of the differences between the performances of these systems, during different runs of the algorithms on the systems, were statistically significant. A few pseudo superlinear speedup results, which were computed from the raw data collected, are not true superlinear speedup values. These pseudo superlinear speedup values, which arise as a result of one way of computing speedups, disappear and give way to asymmetric speedups, which are the accurate kind of speedups that occur in the experiments performed.

Keywords: cloud computing systems, multicore systems, parallel Delaunay triangulation, parallel surface modeling and generation

Procedia PDF Downloads 206