Search results for: dairy industries inventory optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5949

Search results for: dairy industries inventory optimization

5679 Experimental Optimization in Diamond Lapping of Plasma Sprayed Ceramic Coatings

Authors: S. Gowri, K. Narayanasamy, R. Krishnamurthy

Abstract:

Plasma spraying, from the point of value engineering, is considered as a cost-effective technique to deposit high performance ceramic coatings on ferrous substrates for use in the aero,automobile,electronics and semiconductor industries. High-performance ceramics such as Alumina, Zirconia, and titania-based ceramics have become a key part of turbine blades,automotive cylinder liners,microelectronic and semiconductor components due to their ability to insulate and distribute heat. However, as the industries continue to advance, improved methods are needed to increase both the flexibility and speed of ceramic processing in these applications. The ceramics mentioned were individually coated on structural steel substrate with NiCr bond coat of 50-70 micron thickness with the final thickness in the range of 150 to 200 microns. Optimal spray parameters were selected based on bond strength and porosity. The 'optimal' processed specimens were super finished by lapping using diamond and green SiC abrasives. Interesting results could be observed as follows: The green SiC could improve the surface finish of lapped surfaces almost as that by diamond in case of alumina and titania based ceramics but the diamond abrasives could improve the surface finish of PSZ better than that by green SiC. The conventional random scratches could be absent in alumina and titania ceramics but in PS those marks were found to be less. However, the flatness accuracy could be improved unto 60 to 85%. The surface finish and geometrical accuracy were measured and modeled. The abrasives in the midrange of their particle size could improve the surface quality faster and better than the particles of size in low and high ranges. From the experimental investigations after lapping process, the optimal lapping time, abrasive size, lapping pressure etc could be evaluated.

Keywords: atmospheric plasma spraying, ceramics, lapping, surface qulaity, optimization

Procedia PDF Downloads 414
5678 Optimization of Black Grass Jelly Formulation to Reduce Leaching and Increase Floating Rate

Authors: M. M. Nor, H. I. Sheikh, M. F. H. Hassan, S. Mokhtar, A. Suganthi, A. Fadhlina

Abstract:

Black grass jelly (BGJ) is a popular black jelly used in preparing various drinks and desserts. Food industries often use preservatives to maintain the physicochemical properties of foods, such as color and texture. These preservatives (e.g., phosphoric acid) are linked with deleterious health effects such as kidney disease. Using gelling agents, carrageenan, and gelatin to make BGJ could improve its physiochemical and textural properties. This study was designed to optimize BGJ-selected physicochemical and textural properties using carrageenan and gelatin. Various black grass jelly formulations (BGJF) were designed using an I-optimal mixture design in Design Expert® software. Data from commercial BGJ were used as a reference during the optimization process. The combination of carrageenan and gelatin added to the formulations was up to 14.38g (~5%), respectively. The results showed that adding 2.5g carrageenan and 2.5g gelatin at approximately 5g (~5%) effectively maintained most of the physiochemical properties with an overall desirability function of 0.81. This formulation was selected as the optimum black grass jelly formulation (OBGJF). The leaching properties and floating duration were measured on the OBGJF and commercial grass jelly for 20 min and 40 min, respectively. The results indicated that OBGJF showed significantly (p<0.0001) lower leaching rate and floating time (p<0.05). Hence, further optimization is needed to increase the floating duration of carrageenan and gelatin-based BGJ.

Keywords: cincau, Mesona chinensis, black grass jelly, carrageenan, gelatin

Procedia PDF Downloads 82
5677 Evaluation of a Surrogate Based Method for Global Optimization

Authors: David Lindström

Abstract:

We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cycling parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.

Keywords: expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon

Procedia PDF Downloads 578
5676 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization

Procedia PDF Downloads 169
5675 A Study on Weight-Reduction of Double Deck High-Speed Train Using Size Optimization Method

Authors: Jong-Yeon Kim, Kwang-Bok Shin, Tae-Hwan Ko

Abstract:

The purpose of this paper is to suggest a weight-reduction design method for the aluminum extrusion carbody structure of a double deck high-speed train using size optimization method. The size optimization method was used to optimize thicknesses of skin and rib of the aluminum extrusion for the carbody structure. Thicknesses of 1st underframe, 2nd underframe, solebar and roof frame were selected by design variables in order to conduct size optimization. The results of the size optimization analysis showed that the weight of the aluminum extrusion could be reduced by 0.61 tons (5.60%) compared to the weight of the original carbody structure.

Keywords: double deck high-speed train, size optimization, weigh-reduction, aluminum extrusion

Procedia PDF Downloads 290
5674 Gender Disparity in Film Industries: A Conceptual Study

Authors: Daniel Edem Adzovie, Jakub Kudlac

Abstract:

The subtle institutionalization of male dominance in the film industry in the 1930s and its rippling effect of gender imbalance especially, regarding female active participation in film industries across the globe in terms of number and influence, is a worrying trend. The main purpose of the study is to explore the role of gender themes, especially patriarchal themes in films, in influencing the disparity experienced in film industries. Partially, we examine the motivations vis-à-vis the demotivating factors that attract and or refract females from enrolling in film schools against their male contemporaries. Employing a qualitative inquiry with a specific focus on document analysis as well as experts’ opinions in order to ascertain the antecedents and consequences of patriarchal themes in films on female participation in film industries, we drew extant literature from reputable databases such as EBSCO, Scopus, Web of Science, ERIH Plus, Google Scholar as well as notable books on gender and film. Secondly, we conceptualized a research model for a future qualitative research design that could take into consideration a study from at least three different film industries and analyze using thematic analysis. This could help validate the proposed conceptual model of the study. The literature review revealed that culture, to a large extent, influences the patriarchal themes conveyed in films, which inhibits active female participation in film industries. Research implications have been discussed.

Keywords: film industry, female, gender, male dominance, patriarchal themes

Procedia PDF Downloads 136
5673 An Optimization Algorithm for Reducing the Liquid Oscillation in the Moving Containers

Authors: Reza Babajanivalashedi, Stefania Lo Feudo, Jean-Luc Dion

Abstract:

Liquid sloshing is a crucial problem for the dynamic of moving containers in the packaging industries. Sloshing issues have been so far mainly modeled within the framework of fluid dynamics or by using equivalent mechanical models with different kinds of movements and shapes of containers. Nevertheless, these approaches do not allow to determinate the shape of the free surface of the liquid in case of the irregular shape of the moving containers, so that experimental measurements may be required. If there is too much slosh in the moving tank, the liquid can be splashed out on the packages. So, the free surface oscillation must be controlled/reduced to eliminate the splashing. The purpose of this research is to propose an optimization algorithm for finding an optimum command law to reduce surface elevation. In the first step, the free surface of the liquid is simulated based on the separation variable and weak formulation models. Then Genetic and Gradient algorithms are developed for finding the optimum command law. The optimum command law is compared with existing command laws, and the results show that there is a significant difference in surface oscillation between optimum and existing command laws. This algorithm is applicable for different varieties of bottles in case of using the camera for detecting the liquid elevation, and it can produce new command laws for different kinds of tanks to reduce the surface oscillation and remove the splashing phenomenon.

Keywords: sloshing phenomenon, separation variables, weak formulation, optimization algorithm, command law

Procedia PDF Downloads 151
5672 Application of Optimization Techniques in Overcurrent Relay Coordination: A Review

Authors: Syed Auon Raza, Tahir Mahmood, Syed Basit Ali Bukhari

Abstract:

In power system properly coordinated protection scheme is designed to make sure that only the faulty part of the system will be isolated when abnormal operating condition of the system will reach. The complexity of the system as well as the increased user demand and the deregulated environment enforce the utilities to improve system reliability by using a properly coordinated protection scheme. This paper presents overview of over current relay coordination techniques. Different techniques such as Deterministic Techniques, Meta Heuristic Optimization techniques, Hybrid Optimization Techniques, and Trial and Error Optimization Techniques have been reviewed in terms of method of their implementation, operation modes, nature of distribution system, and finally their advantages as well as the disadvantages.

Keywords: distribution system, relay coordination, optimization, Plug Setting Multiplier (PSM)

Procedia PDF Downloads 399
5671 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks

Procedia PDF Downloads 282
5670 South Atlantic Architects Validation of the Construction Decision Making Inventory

Authors: Tulio Sulbaran, Sandeep Langar

Abstract:

Architects are an integral part of the construction industry and are continuously incorporating decisions that influence projects during their life cycle. These decisions aim at selecting best alternative from the ones available. Unfortunately, this decision making process is mainly unexplored in the construction industry. No instrument to measure construction decision, based on knowledgebase of decision-makers, has existed. Additionally, limited literature is available on the topic. Recently, an instrument to gain an understanding of the construction decision-making process was developed by Dr. Tulio Sulbaran from the University of Texas, San Antonio. The instrument’s name is 'Construction Decision Making Inventory (CDMI)'. The CDMI is an innovative idea to measure the 'What? When? How? Moreover, Who?' of the construction decision-making process. As an innovative idea, its statistical validity (accuracy of the assessment) is yet to be assessed. Thus, the purpose of this paper is to describe the results of a case study with architects in the south-east of the United States aimed to determine the CDMI validity. The results of the case study are important because they assess the validity of the tool. Furthermore, as the architects evaluated each question within the measurements, this study is also guiding the enhancement of the CDMI.

Keywords: decision, support, inventory, architect

Procedia PDF Downloads 328
5669 Optimization of Syngas Quality for Fischer-Tropsch Synthesis

Authors: Ali Rabah

Abstract:

This research received no grant or financial support from any public, commercial, or none governmental agency. The author conducted this work as part of his normal research activities as a professor of Chemical Engineering at the University of Khartoum, Sudan. Abstract While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match FT synthesis requirements. The optimization model maximizes the thermal efficiency under the constraint of H2/CO≥2.0 and operating conditions of equivalent ratio (0 ≤ ER ≤ 1.0), steam to biomass ratio (0 ≤ SB ≤ 5), and gasification temperature (500 °C ≤ Tg ≤ 1300 °C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of MSW. The optimum operating conditions under which the objective function and the constraint are satisfied are ER=0, SB=0.66-1.22, and Tg=679 - 763°C. Under the optimum operating conditions, the syngas quality is H2=52.38 - 58.67-mole percent, LHV=12.55 - 17.15 MJ/kg, N2=0.38 - 2.33-mole percent, and H2/CO≥2.15. The generalized optimization model reported could be extended to any other type of biomass and coal. Keywords: MSW, Syngas, Optimization, Fischer-Tropsch.

Keywords: syngas, MSW, optimization, Fisher-Tropsh

Procedia PDF Downloads 80
5668 Leveraging Deep Q Networks in Portfolio Optimization

Authors: Peng Liu

Abstract:

Deep Q networks (DQNs) represent a significant advancement in reinforcement learning, utilizing neural networks to approximate the optimal Q-value for guiding sequential decision processes. This paper presents a comprehensive introduction to reinforcement learning principles, delves into the mechanics of DQNs, and explores its application in portfolio optimization. By evaluating the performance of DQNs against traditional benchmark portfolios, we demonstrate its potential to enhance investment strategies. Our results underscore the advantages of DQNs in dynamically adjusting asset allocations, offering a robust portfolio management framework.

Keywords: deep reinforcement learning, deep Q networks, portfolio optimization, multi-period optimization

Procedia PDF Downloads 32
5667 Cloud Monitoring and Performance Optimization Ensuring High Availability and Security

Authors: Inayat Ur Rehman, Georgia Sakellari

Abstract:

Cloud computing has evolved into a vital technology for businesses, offering scalability, flexibility, and cost-effectiveness. However, maintaining high availability and optimal performance in the cloud is crucial for reliable services. This paper explores the significance of cloud monitoring and performance optimization in sustaining the high availability of cloud-based systems. It discusses diverse monitoring tools, techniques, and best practices for continually assessing the health and performance of cloud resources. The paper also delves into performance optimization strategies, including resource allocation, load balancing, and auto-scaling, to ensure efficient resource utilization and responsiveness. Addressing potential challenges in cloud monitoring and optimization, the paper offers insights into data security and privacy considerations. Through this thorough analysis, the paper aims to underscore the importance of cloud monitoring and performance optimization for ensuring a seamless and highly available cloud computing environment.

Keywords: cloud computing, cloud monitoring, performance optimization, high availability

Procedia PDF Downloads 65
5666 The Evaluation of Superiority of Foot Local Anesthesia Method in Dairy Cows

Authors: Samaneh Yavari, Christiane Pferrer, Elisabeth Engelke, Alexander Starke, Juergen Rehage

Abstract:

Background: Nowadays, bovine limb interventions, especially any claw surgeries, raises selection of the most qualified and appropriate local anesthesia technique applicable for any superficial or deep interventions of the limbs. Currently, two local anesthesia methods of Intravenous Regional Anesthesia (IVRA), as well as Nerve Blocks, have been routine to apply. However, the lack of studies investigating the quality and duration as well as quantity and onset of full (complete) local anesthesia, is noticeable. Therefore, the aim of our study was comparing the onset and quality of both IVRA and our modified NBA at the hind limb of dairy cows. For this abstract, only the onset of full local anesthesia would be consider. Materials and Methods: For that reason, we used six healthy non pregnant non lactating Holestein Frisian cows in a cross-over study design. Those cows divided into two groups to receive IVRA and our modified four-point NBA. For IVRA, 20 ml procaine without epinephrine was injected into the vein digitalis dorsalis communis III and for our modified four-point NBA, 10-15 ml procaine without epinephrine preneurally to the nerves, superficial and deep peroneal as well as lateral and medial branches of metatarsal nerves. For pain stimulation, electrical stimulator Grass S48 was applied. Results: The results of electrical stimuli revealed the faster onset of full local anesthesia (p < 0.05) by application of our modified NBA in comparison to IVRA about 10 minutes. Conclusion and discussion: Despite of available references showing faster onset of foot local anesthesia of IVRA, our study demonstrated that our modified four point NBA not only can be well known as a standard foot local anesthesia method applicable to desensitize the hind limb of dairy cows, but also, selection of this modified validated local anesthesia method can lead to have a faster start of complete desensitization of distal hind limb that is remarkable in any bovine limb interventions under time constraint.

Keywords: IVRA, four point NBA, dairy cow, hind limb, full onset

Procedia PDF Downloads 150
5665 The Association between Masculinity and Anxiety in Canadian Men

Authors: Nikk Leavitt, Peter Kellett, Cheryl Currie, Richard Larouche

Abstract:

Background: Masculinity has been associated with poor mental health outcomes in adult men and is colloquially referred to as toxic. Masculinity is traditionally measured using the Male Role Norms Inventory, which examines behaviors that may be common in men but that are themselves associated with poor mental health regardless of gender (e.g., aggressiveness). The purpose of this study was to examine if masculinity is associated with generalized anxiety among men using this inventory vs. a man’s personal definition of it. Method: An online survey collected data from 1,200 men aged 18-65 across Canada in July 2022. Masculinity was measured using: 1) the Male Role Norms Inventory Short Form and 2) by asking men to self-define what being masculine means. Men were then asked to rate the extent they perceived themselves to be masculine on a scale of 1 to 10 based on their definition of the construct. Generalized anxiety disorder was measured using the GAD-7. Multiple linear regression was used to examine associations between each masculinity score and anxiety score, adjusting for confounders. Results: The masculinity score measured using the inventory was positively associated with increased anxiety scores among men (β = 0.02, p < 0.01). Masculinity subscales most strongly correlated with higher anxiety were restrictive emotionality (β = 0.29, p < 0.01) and dominance (β = 0.30, p < 0.01). When traditional masculinity was replaced by a man’s self-rated masculinity score in the model, the reverse association was found, with increasing masculinity resulting in a significantly reduced anxiety score (β = -0.13, p = 0.04). Discussion: These findings highlight the need to revisit the ways in which masculinity is defined and operationalized in research to better understand its impacts on men’s mental health. The findings also highlight the importance of allowing participants to self-define gender-based constructs, given they are fluid and socially constructed.

Keywords: masculinity, generalized anxiety disorder, race, intersectionality

Procedia PDF Downloads 71
5664 Modeling and Optimization of Micro-Grid Using Genetic Algorithm

Authors: Mehrdad Rezaei, Reza Haghmaram, Nima Amjadi

Abstract:

This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation.

Keywords: micro-grid, optimization, genetic algorithm, MG

Procedia PDF Downloads 511
5663 Production of Buttermilk as a Bio-Active Functional Food by Utilizing Dairy Waste

Authors: Hafsa Tahir, Sanaullah Iqbal

Abstract:

Glactooligosaccharide (GOS) is a type of prebiotic which is mainly found in human milk. GOS belongs to those bacteria which stimulates the growth of beneficial bacteria in human intestines. The aim of the present study was to develop a value-added product by producing prebiotic (GOS) in buttermilk through trans galactosylation. Buttermilk is considered as an industrial waste which is discarded after the production of butter and cream. It contains protein, minerals, vitamins and a smaller amount of fat. Raw milk was pasteurized at 100º C for butter production and then trans galactosylation process was induced in the butter milk thus obtained to produce prebiotic GOS. Results showed that the enzyme (which was obtained from bacterial strain of Esecrshia coli and has a gene of Lactobacillus reuteri L103) concentration between 400-600µl/5ml can produce GOS in 30 minutes. Chemical analysis and sensory evaluation of plain and GOS containing buttermilk showed no remarkable difference in their composition. Furthermore, the shelf-life study showed that there was non-significant (P>0.05) difference in glass and pouch packaging of buttermilk. Buttermilk in pouch packaging maintained its stability for 6 days without the addition of preservatives. Therefore it is recommended that GOS enriched buttermilk which is generally considered as a processing waste in dairy manufacturing can be turned into a cost-effective nutritional functional food product. This will not only enhance the production efficiency of butter processing but also will create a new market opportunity for dairy manufacturers all over the world.

Keywords: buttermilk, galactooligosaccharide, shelf Life, transgalactosylation

Procedia PDF Downloads 292
5662 Applying (1, T) Ordering Policy in a Multi-Vendor-Single-Buyer Inventory System with Lost Sales and Poisson Demand

Authors: Adel Nikfarjam, Hamed Tayebi, Sadoullah Ebrahimnejad

Abstract:

This paper considers a two-echelon inventory system with a number of warehouses and a single retailer. The retailer replenishes its required items from warehouses, and assembles them into a single final product. We assume that each warehouse supplies only one kind of the raw material for the retailer. The demand process of the final product is assumed to be Poissson, and unsatisfied demand of the final product will be lost. The retailer applies one-for-one-period ordering policy which is also known as (1, T) ordering policy. In this policy the retailer orders to each warehouse a fixed quantity of each item at fixed time intervals, which the fixed quantity is equal to the utilization of the item in the final product. Since, this policy eliminates all demand uncertainties at the upstream echelon, the standard lot sizing model can be applied at all warehouses. In this paper, we calculate the total cost function of the inventory system. Then, based on this function, we present a procedure to obtain the optimal time interval between two consecutive order placements from retailer to the warehouses, and the optimal order quantities of warehouses (assuming that there are positive ordering costs at warehouses). Finally, we present some numerical examples, and conduct numerical sensitivity analysis for cost parameters.

Keywords: two-echelon supply chain, multi-vendor-single-buyer inventory system, lost sales, Poisson demand, one-for-one-period policy, lot sizing model

Procedia PDF Downloads 312
5661 An Inventory Management Model to Manage the Stock Level for Irregular Demand Items

Authors: Riccardo Patriarca, Giulio Di Gravio, Francesco Costantino, Massimo Tronci

Abstract:

An accurate inventory management policy acquires a crucial role in the several high-availability sectors. In these sectors, due to the high-cost of spares and backorders, an (S-1, S) replenishment policy is necessary for high-availability items. The policy enables the shipment of a substitute efficient item anytime the inventory size decreases by one. This policy can be modelled following the Multi-Echelon Technique for Recoverable Item Control (METRIC). The METRIC is a system-based technique that allows defining the optimum stock level in a multi-echelon network, adopting measures in line with the decision-maker’s perspective. The METRIC defines an availability-cost function with inventory costs and required service levels, using as inputs data about the demand trend, the supplying and maintenance characteristics of the network and the budget/availability constraints. The traditional METRIC relies on the hypothesis that a Poisson distribution well represents the demand distribution in case of items with a low failure rate. However, in this research, we will explore the effects of using a Poisson distribution to model the demand of low failure rate items characterized by an irregular demand trend. This characteristic of a demand is not included in the traditional METRIC formulation leading to the need of revising its traditional formulation. Using the CV (Coefficient of Variation) and ADI (Average inter-Demand Interval) classification, we will define the inherent flaws of Poisson-based METRIC for irregular demand items, defining an innovative ad hoc distribution which can better fit the irregular demands. This distribution will allow defining proper stock levels to reduce stocking and backorder costs due to the high irregularities in the demand trend. A case study in the aviation domain will clarify the benefits of this innovative METRIC approach.

Keywords: METRIC, inventory management, irregular demand, spare parts

Procedia PDF Downloads 347
5660 A Hybrid Particle Swarm Optimization-Nelder- Mead Algorithm (PSO-NM) for Nelson-Siegel- Svensson Calibration

Authors: Sofia Ayouche, Rachid Ellaia, Rajae Aboulaich

Abstract:

Today, insurers may use the yield curve as an indicator evaluation of the profit or the performance of their portfolios; therefore, they modeled it by one class of model that has the ability to fit and forecast the future term structure of interest rates. This class of model is the Nelson-Siegel-Svensson model. Unfortunately, many authors have reported a lot of difficulties when they want to calibrate the model because the optimization problem is not convex and has multiple local optima. In this context, we implement a hybrid Particle Swarm optimization and Nelder Mead algorithm in order to minimize by least squares method, the difference between the zero-coupon curve and the NSS curve.

Keywords: optimization, zero-coupon curve, Nelson-Siegel-Svensson, particle swarm optimization, Nelder-Mead algorithm

Procedia PDF Downloads 430
5659 Targeted Effects of Subsidies on Prices of Selected Commodities in Iran Market

Authors: Sayedramin Hashemianesfehani, Seyed Hossein Hosseinilargani

Abstract:

In this study, we attempt to realize that to what extent the increase in selected commodities in Iran Market is originated from the implementation of the targeted subsidies law. Hence, an econometric model based on existing theories of increasing and transferring prices in order to transferring inflation is developed. In other words, world price index and virtual variables defined for targeted subsidies has significant and positive impact on the producer price index. The obtained results indicated that the targeted subsidies act in Iran has influential long and short-term impacts on producer price indexes. Finally, world prices of dairy products and dairy price with respect to major parameters is carried out to obtain some managerial ‎results.

Keywords: econometric models, targeted subsidies, consumer price index (CPI), producer price index (PPI)

Procedia PDF Downloads 359
5658 An Embedded System for Early Detection of Gas Leakage in Hospitals and Industries

Authors: Sehreen Moorat, Hiba, Maham Mahnoor, Faryal Soomro

Abstract:

Leakage of gases in a system makes infrastructures and users vulnerable; it can occur due to its environmental conditions or old groundwork. In hospitals and industries, it is very important to detect any small level of gas leakage because of their sensitivity. In this research, a portable detection system for the small leakage of gases has been developed, gas sensor (MQ-2) is used to find leakage when it’s at its initial phase. The sensor and transmitting module senses the change in level of gas by using a sensing circuit. When a concentration of gas reach at a specified threshold level, it will activate an alarm and send the alarming situation notification to receiver through GSM module. The proposed system works well in hospitals, home, and industries.

Keywords: gases, detection, Arduino, MQ-2, alarm

Procedia PDF Downloads 205
5657 Reinforcement Learning Optimization: Unraveling Trends and Advancements in Metaheuristic Algorithms

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The field of machine learning (ML) is experiencing rapid development, resulting in a multitude of theoretical advancements and extensive practical implementations across various disciplines. The objective of ML is to facilitate the ability of machines to perform cognitive tasks by leveraging knowledge gained from prior experiences and effectively addressing complex problems, even in situations that deviate from previously encountered instances. Reinforcement Learning (RL) has emerged as a prominent subfield within ML and has gained considerable attention in recent times from researchers. This surge in interest can be attributed to the practical applications of RL, the increasing availability of data, and the rapid advancements in computing power. At the same time, optimization algorithms play a pivotal role in the field of ML and have attracted considerable interest from researchers. A multitude of proposals have been put forth to address optimization problems or improve optimization techniques within the domain of ML. The necessity of a thorough examination and implementation of optimization algorithms within the context of ML is of utmost importance in order to provide guidance for the advancement of research in both optimization and ML. This article provides a comprehensive overview of the application of metaheuristic evolutionary optimization algorithms in conjunction with RL to address a diverse range of scientific challenges. Furthermore, this article delves into the various challenges and unresolved issues pertaining to the optimization of RL models.

Keywords: machine learning, reinforcement learning, loss function, evolutionary optimization techniques

Procedia PDF Downloads 74
5656 Body Image Dissatifaction with and Personal Behavioral Control in Obese Patients Who are Attending to Treatment

Authors: Mariela Gonzalez, Zoraide Lugli, Eleonora Vivas, Rosana Guzmán

Abstract:

The objective was to determine the predictive capacity of self-efficacy perceived for weight control, locus of weight control and skills of weight self-management in the dissatisfaction of the body image in obese people who attend treatment. Sectional study conducted in the city of Maracay, Venezuela, with 243 obese who attend to treatment, 173 of the feminine gender and 70 of the male, with ages ranging between 18 and 57 years old. The sample body mass index ranged between 29.39 and 44.14. The following instruments were used: The Body Shape Questionnaire (BSQ), the inventory of body weight self-regulation, The Inventory of self-efficacy in the regulation of body weight and the Inventory of the Locus of weight control. Calculating the descriptive statistics and of central tendency, coefficients of correlation and multiple regression; it was found that a low ‘perceived Self-efficacy in the weight control’ and a high ‘Locus of external control’, predict the dissatisfaction with body image in obese who attend treatment. The findings are a first approximation to give an account of the importance of the personal control variables in the study of the psychological grief on the overweight individual.

Keywords: dissatisfaction with body image, obese people, personal control, psychological variables

Procedia PDF Downloads 432
5655 Software Architecture Optimization Using Swarm Intelligence Techniques

Authors: Arslan Ellahi, Syed Amjad Hussain, Fawaz Saleem Bokhari

Abstract:

Optimization of software architecture can be done with respect to a quality attributes (QA). In this paper, there is an analysis of multiple research papers from different dimensions that have been used to classify those attributes. We have proposed a technique of swarm intelligence Meta heuristic ant colony optimization algorithm as a contribution to solve this critical optimization problem of software architecture. We have ranked quality attributes and run our algorithm on every QA, and then we will rank those on the basis of accuracy. At the end, we have selected the most accurate quality attributes. Ant colony algorithm is an effective algorithm and will perform best in optimizing the QA’s and ranking them.

Keywords: complexity, rapid evolution, swarm intelligence, dimensions

Procedia PDF Downloads 261
5654 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of CSC modeling accommodates conceptual or process models which discuss general management frameworks and do not relate to acknowledged soft OR methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, mathematical formulation, structure, objectives, solution approach, software used and decision level. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop robust mathematical optimization models for the CSC. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without the consequential reform of generic concepts to match the unique characteristics of the construction industry.

Keywords: construction supply chain management, modeling, operations research, optimization, simulation

Procedia PDF Downloads 503
5653 Optimization of FGM Sandwich Beams Using Imperialist Competitive Algorithm

Authors: Saeed Kamarian, Mahmoud Shakeri

Abstract:

Sandwich structures are used in a variety of engineering applications including aircraft, construction and transportation where strong, stiff and light structures are required. In this paper, frequency maximization of Functionally Graded Sandwich (FGS) beams resting on Pasternak foundations is investigated. A generalized power-law distribution with four parameters is considered for material distribution through the thicknesses of face layers. Since the search space is large, the optimization processes becomes so complicated and too much time consuming. Thus a novel meta–heuristic called Imperialist Competitive Algorithm (ICA) which is a socio-politically motivated global search strategy is implemented to improve the speed of optimization process. Results show the success of applying ICA for engineering problems especially for design optimization of FGM sandwich beams.

Keywords: sandwich beam, functionally graded materials, optimization, imperialist competitive algorithm

Procedia PDF Downloads 568
5652 Chemical Reaction Algorithm for Expectation Maximization Clustering

Authors: Li Ni, Pen ManMan, Li KenLi

Abstract:

Clustering is an intensive research for some years because of its multifaceted applications, such as biology, information retrieval, medicine, business and so on. The expectation maximization (EM) is a kind of algorithm framework in clustering methods, one of the ten algorithms of machine learning. Traditionally, optimization of objective function has been the standard approach in EM. Hence, research has investigated the utility of evolutionary computing and related techniques in the regard. Chemical Reaction Optimization (CRO) is a recently established method. So the property embedded in CRO is used to solve optimization problems. This paper presents an algorithm framework (EM-CRO) with modified CRO operators based on EM cluster problems. The hybrid algorithm is mainly to solve the problem of initial value sensitivity of the objective function optimization clustering algorithm. Our experiments mainly take the EM classic algorithm:k-means and fuzzy k-means as an example, through the CRO algorithm to optimize its initial value, get K-means-CRO and FKM-CRO algorithm. The experimental results of them show that there is improved efficiency for solving objective function optimization clustering problems.

Keywords: chemical reaction optimization, expection maimization, initia, objective function clustering

Procedia PDF Downloads 713
5651 Laser Additive Manufacturing of Carbon Nanotube-Reinforced Polyamide 12 Composites

Authors: Kun Zhou

Abstract:

Additive manufacturing has emerged as a disruptive technology that is capable of manufacturing products with complex geometries through an accumulation of material feedstock in a layer-by-layer fashion. Laser additive manufacturing such as selective laser sintering has excellent printing resolution, high printing speed and robust part strength, and has led to a widespread adoption in the aerospace, automotive and biomedical industries. This talk highlights and discusses the recent work we have undertaken in the development of carbon nanotube-reinforced polyamide 12 (CNT/PA12) composites printed using laser additive manufacturing. Numerical modelling studies have been conducted to simulate various processes within laser additive manufacturing of CNT/PA12 composites, and extensive experimental work has been carried out to investigate the mechanical and functional properties of the printed parts. The results from these studies grant a deeper understanding of the intricate mechanisms occurring within each process and enables an accurate optimization of process parameters for the CNT/PA12 and other polymer composites.

Keywords: CNT/PA12 composites, laser additive manufacturing, process parameter optimization, numerical modeling

Procedia PDF Downloads 153
5650 Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm

Authors: Tomasz Robert Kuczerski

Abstract:

The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method.

Keywords: algorithm analysis, autonomous system, quantum optimization, tandem detonator

Procedia PDF Downloads 92