Search results for: customer friendly washing machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5519

Search results for: customer friendly washing machine

5249 Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter

Authors: Yi Huang, Clemens Guehmann

Abstract:

In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system.

Keywords: asynchronous machine, extended Kalman filter, resistance, simulation, temperature estimation, thermal model

Procedia PDF Downloads 285
5248 Optimization of Machine Learning Regression Results: An Application on Health Expenditures

Authors: Songul Cinaroglu

Abstract:

Machine learning regression methods are recommended as an alternative to classical regression methods in the existence of variables which are difficult to model. Data for health expenditure is typically non-normal and have a heavily skewed distribution. This study aims to compare machine learning regression methods by hyperparameter tuning to predict health expenditure per capita. A multiple regression model was conducted and performance results of Lasso Regression, Random Forest Regression and Support Vector Machine Regression recorded when different hyperparameters are assigned. Lambda (λ) value for Lasso Regression, number of trees for Random Forest Regression, epsilon (ε) value for Support Vector Regression was determined as hyperparameters. Study results performed by using 'k' fold cross validation changed from 5 to 50, indicate the difference between machine learning regression results in terms of R², RMSE and MAE values that are statistically significant (p < 0.001). Study results reveal that Random Forest Regression (R² ˃ 0.7500, RMSE ≤ 0.6000 ve MAE ≤ 0.4000) outperforms other machine learning regression methods. It is highly advisable to use machine learning regression methods for modelling health expenditures.

Keywords: machine learning, lasso regression, random forest regression, support vector regression, hyperparameter tuning, health expenditure

Procedia PDF Downloads 226
5247 Application Quality Function Deployment (QFD) Tool in Design of Aero Pumps Based on System Engineering

Authors: Z. Soleymani, M. Amirzadeh

Abstract:

Quality Function Deployment (QFD) was developed in 1960 in Japan and introduced in 1983 in America and Europe. The paper presents a real application of this technique in a way that the method of applying QFD in design and production aero fuel pumps has been considered. While designing a product and in order to apply system engineering process, the first step is identification customer needs then its transition to engineering parameters. Since each change in deign after production process leads to extra human costs and also increase in products quality risk, QFD can make benefits in sale by meeting customer expectations. Since the needs identified as well, the use of QFD tool can lead to increase in communications and less deviation in design and production phases, finally it leads to produce the products with defined technical attributes.

Keywords: customer voice, engineering parameters, gear pump, QFD

Procedia PDF Downloads 249
5246 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 71
5245 An Approach to Make Low-Cost Self-Compacting Geo-Polymer Concrete

Authors: Ankit Chakraborty, Raj Shah, Prayas Variya

Abstract:

Self-compacting geo-polymer concrete is a blended version of self-compacting concrete developed in Japan by Okamura. H. in 1986 and geo-polymer concrete proposed by Davidovits in 1999. This method is eco-friendly as there is low CO₂ emission and reduces labor cost due to its self-compacting property and zero percent cement content. We are making an approach to reduce concreting cost and make concreting eco-friendly by replacing cement fully and sand by a certain amount of industrial waste. It will reduce overall concreting cost due to its self-compatibility and replacement of materials, forms eco-friendly concreting technique and gives better fresh property and hardened property results compared to self-compacting concrete and geo-polymer concrete.

Keywords: geopolymer concrete, low cost concreting, low carbon emission, self compactability

Procedia PDF Downloads 232
5244 A Comparative Study of Series-Connected Two-Motor Drive Fed by a Single Inverter

Authors: A. Djahbar, E. Bounadja, A. Zegaoui, H. Allouache

Abstract:

In this paper, vector control of a series-connected two-machine drive system fed by a single inverter (CSI/VSI) is presented. The two stator windings of both machines are connected in series while the rotors may be connected to different loads, are called series-connected two-machine drive. Appropriate phase transposition is introduced while connecting the series stator winding to obtain decoupled control the two-machines. The dynamic decoupling of each machine from the group is obtained using the vector control algorithm. The independent control is demonstrated by analyzing the characteristics of torque and speed of each machine obtained via simulation under vector control scheme. The viability of the control techniques is proved using analytically and simulation approach.

Keywords: drives, inverter, multi-phase induction machine, vector control

Procedia PDF Downloads 481
5243 Short Term Tests on Performance Evaluation of Water-Washed and Dry-Washed Biodiesel from Used Cooking Oil

Authors: Shumani Ramuhaheli, Christopher C. Enweremadu, Hilary L. Rutto

Abstract:

In this study, biodiesel from used cooking oil was produced as purified by washing with water (water wash) and amberlite (dry wash). The work presents the results of short term tests on performance characteristics of diesel engine using both biodiesel-fuel samples. In this investigation, the water wash biodiesel and dry wash biodiesel and diesel were compared for performance using a four-cylinder diesel engine. The torque, brake power, specific fuel consumption and brake thermal efficiency were analyzed. The tests showed that in all cases, dry wash biodiesel performed marginally poorer compared to water wash biodiesel. Except for brake thermal efficiency, diesel fuel had better engine performance characteristics compared to the biodiesel-fuel samples. According to these results, dry washing of biodiesel has a marginal effect on engine performance.

Keywords: biodiesel, engine performance, used cooking oil, water wash, dry wash

Procedia PDF Downloads 364
5242 Supply Chain Control and Inventory Management in Garment Industry

Authors: Nisa Nur Duman, Sümeyya Kiliç

Abstract:

In global competition conditions, survival of the plants by obtaining competitive advantage relies on the effective usage of existing sources. By this way, the plants can minimize their costs without losing their quality. They also take advantage took advantage on their competitors and enlarge customer portfolio by increasing profit margins. Changing structure of market and customer demands also change the structure of the competition between companies. Furthermore, competition is not only between the companies. By this manner, supply chain and supply chain management get importance by considering company performances. Companies that want to survive, search the ways of decreasing costs and the ways of meeting customer expectations. One of the important tools for reaching these goals is inventory managemet. The best inventory management system is meeting the demands by considering plant goals.

Keywords: Supply chain, inventory management, apparel sector, garment industry

Procedia PDF Downloads 370
5241 The Effect of Electronic Platform Service Usage on Customer Satisfaction and WOM

Authors: Shui Lien Chen, Yi-Fen Tsai, Jim Shih-Chiao Chin

Abstract:

—In this study, using Chunghwa Telecom as a case. The company accounted for the highest proportion of the telecommunications company in Taiwan. First, this paper would like to understand the effect of convenience performance on perceived ease of use and perceived usefulness. Further, the perceived ease of use and perceived usefulness of Technology Acceptance Model (TAM) are adopted as the factors on the company's brand perception. Afterward, the brand perception influence on customer satisfaction, and finally whether producing a good reputation and recommendation are tested. The study participants are people who have used electronic platform service of Chunghwa Telecom. A total of 478 valid questionnaires were used and AMOS 20.0 statistical software programs were adopted to analyze.

Keywords: technology acceptance model, brand association, brand awareness, brand attachment, customer satisfaction, word-of-mouth (WOM)

Procedia PDF Downloads 277
5240 An Echo of Eco: Investigating the Effectiveness of Eco-Friendly Advertising Media of Fashion Brand Communication

Authors: Vaishali Joshi

Abstract:

In the past, companies and buyers operated as if there was infinite availability of natural resources for usage, which has resulted in the loss of our globe's natural ecosystem. People's consciousness of ecological concerns had increased, which showed the way for the evolution of the green revolution with the objective of discontinuing the use of products that are harmful to the ecosystem of the earth. This green revolution has made the consumers head toward those companies which are providing eco-friendly products s/service s through less eco-harmful ways. Studies show that companies started gaining a reputation in the market through their eco-friendly activities in their business. Hence companies should be alert to understand the consumer's environmentally friendly consumption behavior to survive and be in the game of the competition. Green marketing efforts guarantee beneficial exchanges without harmful consequences for current and /or upcoming generations. This hits the green policies of those companies which are claiming environmental concern. This means that these companies not only focus on the impact of their production and products on the ecosystem but also on every small activity in their value chain. One of the most ignored parts of the value chain is the medium through which the marketing of products/services is done. These companies should also take into account to what degree their selection of advertising media affects the ecosystem of the earth. In this study, a hypothetical fashion apparel brand known as "Dolphin" will be studied. In particular, the following objectives are framed: i) to study the brand attitude of the given fashion brand due to its selection of eco-friendly advertising medium ii) to study the advertisement attitude of the given fashion brand due to its selection of eco-friendly advertising medium and iii) to study the purchase intention of the given fashion brand due to its selection of eco-friendly advertising medium. An online experiment will be conducted. Respondents between the ages of 20-and 64 years will be selected randomly from the online consumer panel database. The findings of this study will have a great impact on the companies that are claiming environmental concerns by understanding how the advertising media is affecting the company’s brand image in the long run.

Keywords: eco-friendly advertising media, fashion, attitude, purchase intention

Procedia PDF Downloads 100
5239 Illuminating Shades: Exploring the Symbiosis of Eco-friendly Practices and Digital Photography in the Kumasi Metropolis

Authors: Ebenezer Kofi Enninful, Abraham Boakye-Amponsah, Collins Kwesi Fordjour

Abstract:

In the last decade, there have been calls to replace carbon emissions with green technology globally to save the planet. There is a rising need to evaluate industry players' understanding of and use of eco-friendly practices due to the growing shrewdness of environmental challenges worldwide. The key aim of this research was to assess the symbiotic relationship between eco-conscious initiatives and digital photography practices within the Kumasi Metropolis. The study used a multidisciplinary approach to investigate the complex dynamics, opportunities, and problems that result from the blend of digital image technologies and environmentally conscious concepts. For research design both the qualitative and quantitative approaches were employed. The data collections instruments included interviews, questionnaires, and observations. A total of 58 digital photography professionals were contacted via quantitative survey while qualitative perceptions were gathered via interviews of 8 studio technicians and 6 key photography studio directors on an observation approach. The study assessed the awareness levels as regards environmental concerns and scrutinized the extent to which eco-friendly practices are incorporated into various stages of the digital photography production. The results showed how environmentally conscious industry participants currently are, underscoring the opportunities and teething troubles in implementing eco-friendly practices within the Kumasi metropolis.

Keywords: eco-friendly, practices, sustainability, environment

Procedia PDF Downloads 9
5238 Synchronous Generator in Case Voltage Sags for Different Loads

Authors: Benalia Nadia, Bensiali Nadia, Zezouri Noura

Abstract:

This paper studies the effects of voltage sags, both symmetrical and unsymmetrical, on the three-phase Synchronous Machine (SM) when powering an isolate load or infinite bus bar. The vast majority of the electrical power generation systems in the world is consist of synchronous generators coupled to the electrical network though a transformer. Voltage sags on SM cause speed variations, current and torque peaks and hence may cause tripping and equipment damage. The consequences of voltage sags in the machine behavior depends on different factors such as its magnitude (or depth), duration , the parameters of the machine and also the size of load. In this study, we consider the machine feeds an infinite bus bar in the first and the isolate load using symmetric and asymmetric defaults to see the behavior of the machine in both case the simulation have been used on SIMULINK MATLAB.

Keywords: power quality, voltage sag, synchronous generator, infinite system

Procedia PDF Downloads 679
5237 The Web Site Development for E-Commerce Trading in Thailand Customers View

Authors: Ladaporn Pithuk

Abstract:

The purposes of the study were to ascertain the customer requirement, to identify the factors related to online business in Thailand. The sample of this study consisted of 400 customers who are purchasing product and service on E-commerce. To get primary sources, a questionnaire consisting of 31 questions was designed and adapted from previous studies. The data from the questionnaires were collected and analyzed in descriptive forms and (ONE-WAY ANOVA) was conducted. The majority of the respondents showed customer requirement by stating “moderately agree” for questions asking them about customization, connection, content, commerce, context, communication and community, however, they also displayed negative attitudes by identifying “moderately disagree” for security concerns and after-sales services. These important issues need to be improved immediately since it can encourage customers to buy goods and services through the Internet or discourage them, and businesses should offer more channels of payment methods for customers for instance, e-payment.

Keywords: customer requirement, customization, connection, online business

Procedia PDF Downloads 201
5236 A Strategy of Direct Power Control for PWM Rectifier Reducing Ripple in Instantaneous Power

Authors: T. Mohammed Chikouche, K. Hartani

Abstract:

Based on the analysis of basic direct torque control, a parallel master slave for four in-wheel permanent magnet synchronous motors (PMSM) fed by two three phase inverters used in electric vehicle is proposed in this paper. A conventional system with multi-inverter and multi-machine comprises a three phase inverter for each machine to be controlled. Another approach consists in using only one three-phase inverter to supply several permanent magnet synchronous machines. A modified direct torque control (DTC) algorithm is used for the control of the bi-machine traction system. Simulation results show that the proposed control strategy is well adapted for the synchronism of this system and provide good speed tracking performance.

Keywords: electric vehicle, multi-machine single-inverter system, multi-machine multi-inverter control, in-wheel motor, master-slave control

Procedia PDF Downloads 221
5235 Mobile Phone Banking Applies and Customer Intention: A Case Study in Libya

Authors: Iman E. Bouthahab, Badea B. Geador

Abstract:

Aim of this paper is to explore the prospect of a new approach of mobile phone banking in Libya. This study evaluates customer knowledge on commercial mobile banking in Libya. To examine the relationship between age, occupation and intention for using mobile banking for commercial purpose, a survey was conducted to gather information from one hundred Libyan bank clients. The results indicate that Libyan customers have accepted the new technology and they are ready to use it. There is no significant joint relationship between age and occupation found in intention to use mobile banking in Libya. On the other hand, the customers’ knowledge about mobile banking has a greater relationship with the intention. This study has implications for demographic researches and consumer behaviour disciplines. It also has profitable implications for banks and managers in Libya, as it will assist in better understanding of the Libyan consumers and their activities, when they develop their market strategies and new service.

Keywords: mobile banking, intention, customer knowledge, banks in Libya

Procedia PDF Downloads 433
5234 Driving Innovation by Enhancing Employee Roles: The Balancing Act of Employee-Driven Innovation

Authors: L. Tirabeni, K. E. Soderquist, P. Pisano

Abstract:

Our purpose is to investigate how the relationship between employees and innovation management processes can drive organizations to successful innovations. This research is deeply related to a new way of thinking about human resources management practices. It’s not simply about improving the employees’ engagement, but rather about a different and more radical commitment: the employee can take on the role traditionally played by the customer, namely to become the first tester of an innovative product or service, the first user/customer and eventually the first investor in the innovation. This new perception of employees could create the basis of a novelty in the innovation process where innovation is taken to a next level when the problems with customer driven innovation on the one hand, and employees driven innovation on the other can be balanced. This research identifies an effective approach to innovation where the employees will participate throughout the whole innovation process, not only in the idea creation but also in the idea definition and development by giving feedback in parallel to that provided by customers and lead-users.

Keywords: employee-driven innovation, engagement, human resource management, innovative companies

Procedia PDF Downloads 414
5233 The Guideline of Overall Competitive Advantage Promotion with Key Success Paths

Authors: M. F. Wu, F. T. Cheng, C. S. Wu, M. C. Tan

Abstract:

It is a critical time to upgrade technology and increase value added with manufacturing skills developing and management strategies that will highly satisfy the customers need in the precision machinery global market. In recent years, the supply side, each precision machinery manufacturers in each country are facing the pressures of price reducing from the demand side voices that pushes the high-end precision machinery manufacturers adopts low-cost and high-quality strategy to retrieve the market. Because of the trend of the global market, the manufacturers must take price reducing strategies and upgrade technology of low-end machinery for differentiations to consolidate the market. By using six key success factors (KSFs), customer perceived value, customer satisfaction, customer service, product design, product effectiveness and machine structure quality are causal conditions to explore the impact of competitive advantage of the enterprise, such as overall profitability and product pricing power. This research uses key success paths (KSPs) approach and f/s QCA software to explore various combinations of causal relationships, so as to fully understand the performance level of KSFs and business objectives in order to achieve competitive advantage. In this study, the combination of a causal relationships, are called Key Success Paths (KSPs). The key success paths guide the enterprise to achieve the specific outcomes of business. The findings of this study indicate that there are thirteen KSPs to achieve the overall profitability, sixteen KSPs to achieve the product pricing power and seventeen KSPs to achieve both overall profitability and pricing power of the enterprise. The KSPs provide the directions of resources integration and allocation, improve utilization efficiency of limited resources to realize the continuous vision of the enterprise.

Keywords: precision machinery industry, key success factors (KSFs), key success paths (KSPs), overall profitability, product pricing power, competitive advantages

Procedia PDF Downloads 268
5232 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: fake news detection, natural language processing, machine learning, classification techniques.

Procedia PDF Downloads 168
5231 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 94
5230 The Experimental Measurement of the LiBr Concentration of a Solar Absorption Machine

Authors: N. Hatraf, L. Merabti, Z. Neffah, W. Taane

Abstract:

The excessive consumption of fossil energies (electrical energy) during summer caused by the technological development involves more and more climate warming. In order to reduce the worst impact of gas emissions produced from classical air conditioning, heat driven solar absorption chiller is pretty promising; it consists on using solar as motive energy which is clean and environmentally friendly to provide cold. Solar absorption machine is composed by four components using Lithium Bromide /water as a refrigerating couple. LiBr- water is the most promising in chiller applications due to high safety, high volatility ratio, high affinity, high stability and its high latent heat. The lithium bromide solution is constitute by the salt lithium bromide which absorbs water under certain conditions of pressure and temperature however if the concentration of the solution is high in the absorption chillers; which exceed 70%, the solution will crystallize. The main aim of this article is to study the phenomena of the crystallization and to evaluate how the dependence between the electric conductivity and the concentration which should be controlled.

Keywords: absorption, crystallization, experimental results, lithium bromide solution

Procedia PDF Downloads 310
5229 Feasibility of Washing/Extraction Treatment for the Remediation of Deep-Sea Mining Trailings

Authors: Kyoungrean Kim

Abstract:

Importance of deep-sea mineral resources is dramatically increasing due to the depletion of land mineral resources corresponding to increasing human’s economic activities. Korea has acquired exclusive exploration licenses at four areas which are the Clarion-Clipperton Fracture Zone in the Pacific Ocean (2002), Tonga (2008), Fiji (2011) and Indian Ocean (2014). The preparation for commercial mining of Nautilus minerals (Canada) and Lockheed martin minerals (USA) is expected by 2020. The London Protocol 1996 (LP) under International Maritime Organization (IMO) and International Seabed Authority (ISA) will set environmental guidelines for deep-sea mining until 2020, to protect marine environment. In this research, the applicability of washing/extraction treatment for the remediation of deep-sea mining tailings was mainly evaluated in order to present preliminary data to develop practical remediation technology in near future. Polymetallic nodule samples were collected at the Clarion-Clipperton Fracture Zone in the Pacific Ocean, then stored at room temperature. Samples were pulverized by using jaw crusher and ball mill then, classified into 3 particle sizes (> 63 µm, 63-20 µm, < 20 µm) by using vibratory sieve shakers (Analysette 3 Pro, Fritsch, Germany) with 63 µm and 20 µm sieve. Only the particle size 63-20 µm was used as the samples for investigation considering the lower limit of ore dressing process which is tens to 100 µm. Rhamnolipid and sodium alginate as biosurfactant and aluminum sulfate which are mainly used as flocculant were used as environmentally friendly additives. Samples were adjusted to 2% liquid with deionized water then mixed with various concentrations of additives. The mixture was stirred with a magnetic bar during specific reaction times and then the liquid phase was separated by a centrifugal separator (Thermo Fisher Scientific, USA) under 4,000 rpm for 1 h. The separated liquid was filtered with a syringe and acrylic-based filter (0.45 µm). The extracted heavy metals in the filtered liquid were then determined using a UV-Vis spectrometer (DR-5000, Hach, USA) and a heat block (DBR 200, Hach, USA) followed by US EPA methods (8506, 8009, 10217 and 10220). Polymetallic nodule was mainly composed of manganese (27%), iron (8%), nickel (1.4%), cupper (1.3 %), cobalt (1.3%) and molybdenum (0.04%). Based on remediation standards of various countries, Nickel (Ni), Copper (Cu), Cadmium (Cd) and Zinc (Zn) were selected as primary target materials. Throughout this research, the use of rhamnolipid was shown to be an effective approach for removing heavy metals in samples originated from manganese nodules. Sodium alginate might also be one of the effective additives for the remediation of deep-sea mining tailings such as polymetallic nodules. Compare to the use of rhamnolipid and sodium alginate, aluminum sulfate was more effective additive at short reaction time within 4 h. Based on these results, sequencing particle separation, selective extraction/washing, advanced filtration of liquid phase, water treatment without dewatering and solidification/stabilization may be considered as candidate technologies for the remediation of deep-sea mining tailings.

Keywords: deep-sea mining tailings, heavy metals, remediation, extraction, additives

Procedia PDF Downloads 157
5228 Nanostructure Formation and Characterization of Eco-Friendly Banana Peels Nanosorbent

Authors: Opeyemi Atiba-Oyewo, Maurice S. Onya, Christian Wolkersdorfer

Abstract:

Nanostructure formation and characterization of eco-friendly banana peels nanosorbent are thoroughly described in this paper. The transformation of material during mechanical milling to enhance certain properties such as changes in microstructure and surface area to solve the current problems involving water pollution and water quality were studied. The mechanical milling was employed using planetary continuous milling machine and ethanol as process control agent, the sample were taken at time interval between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed that the three typical structures with different grain-size, lattice strain and shapes were observed, and the deformation mechanisms in these structures were found to be different, further particles fracturing results to surface area increment which was confirmed by Brunauer Emmett and teller (BET) analysis. X-ray diffraction (XRD) shows high densities of dislocations in large crystallites, implying that dislocation slip is the dominant deformation mechanism. Scanning electron microscopy revealed the morphological properties of the materials at different milling time, nanostructure of the particles and fibres were confirmed by Transmission electron microscopy and FT-IR identified the functional groups responsible for its capacity to coordinate and remove metal ions, such as the carboxylic and amine groups at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption of any contaminants will depend on the composition of the effluent to be treated.

Keywords: banana peels, eco-friendly, mechanical milling, nanosorbent, nanostructure water quality

Procedia PDF Downloads 256
5227 Dyeability of Silk Fabric with Dactylopius coccus Costa and Quercus infectoria Olivier

Authors: Burcu Yilmaz Şahinbaşkan, Recep Karadağ, Emine Torgan

Abstract:

Nowadays, many natural dyes are used for colouration of textile materials. The natural dyes are friendly to human health and environment. Cochineal (Dactylopius coccus Costa) can be used with other natural dye plants for colouration of silk and wool fabrics. Almost never research works on the dyeing of silk fabric with Dactylopius coccus Costa and Quercus infectoria Olivier together. In this study, dyeability of 100 % silk fabric with Dactylopius coccus Costa and Quercus infectoria Olivier was studied. Optimum dyeing parameters were determined by using different concentration of Dactylopius coccus Costa (10%), Quercus infectoria Olivier (0,1,5 and 10%) and mordant salt (0 and 3%). The dyed silk fabrics were examined for their colorimetric and fastness properties. The fabrics were dyed succesfully dark colours with 10 % Dactylopius coccus Costa, 10 % Quercus infectoria Olivier and presence of mordanting after dyeing process (3% mordant salt). The washing and light colour fastness of the dyed fabrics were investigated and adequate results were obtained.

Keywords: Dactylopius coccus Costa, Quercus infectoria Olivier, natural dye, dyeing, silk fabric

Procedia PDF Downloads 598
5226 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 86
5225 Research on Strategies of Building a Child Friendly City in Wuhan

Authors: Tianyue Wan

Abstract:

Building a child-friendly city (CFC) contributes to improving the quality of urbanization. It also forms a local system committed to fulfilling children's rights and development. Yet, the work related to CFC is still at the initial stage in China. Therefore, taking Wuhan, the most populous city in central China, as the pilot city would offer some reference for other cities. Based on the analysis of theories and practice examples, this study puts forward the challenges of building a child-friendly city under the particularity of China's national conditions. To handle these challenges, this study uses four methods to collect status data: literature research, site observation, research inquiry, and semantic differential (SD). And it adopts three data analysis methods: case analysis, geographic information system (GIS) analysis, and analytic hierarchy process (AHP) method. Through data analysis, this study identifies the evaluation system and appraises the current situation of Wuhan. According to the status of Wuhan's child-friendly city, this study proposes three strategies: 1) construct the evaluation system; 2) establish a child-friendly space system integrating 'point-line-surface'; 3) build a digitalized service platform. At the same time, this study suggests building a long-term mechanism for children's participation and multi-subject supervision from laws, medical treatment, education, safety protection, social welfare, and other aspects. Finally, some conclusions of strategies about CFC are tried to be drawn to promote the highest quality of life for all citizens in Wuhan.

Keywords: action plan, child friendly city, construction strategy, urban space

Procedia PDF Downloads 93
5224 Pre-Exsisting Attitude, Service Failure, and Recovery: Effect, Attributes, and Process in an Islamic Country

Authors: Niloofar Mobasem, Kambiz Heidarzadeh Hanzaee

Abstract:

Purpose: The study aimed to measure the customer satisfaction with service recovery through the conflict management framework, especially assessing the role of pre-existing attitudes for measuring the customer response to the service failure. Design/ methodology/ approach: The study is based on the experimental research method. The factorial designs are used in the research that measures the variables in two separate studies. In the first study, the factorial design is 3 conflict management style: cooperative, competitive, avoiding; - 3 service performance: exceed expectation, meet expectation, fail to meet expectation; and in the second study includes: - 3 conflict management style: cooperative, competitive, avoiding; - 2 service performance: exceed expectation, fail to meet expectation; - 2 pre-existing attitude: positive, negative. Finding: The results of study based on a scenario indicate that the conflict management style affected on customer satisfaction by service recovery efforts as well as the pre-existing attitudes affected the customer interpretation for service providers (conflict management style) and those who have positive pre-existing attitudes are interested to response to the cooperative approach in dealing with service failure. Research limitation/ implication: According to all researches, the study has several limitations. The nature of scenario in this study may cause to hit the reality of life. Although, the similar scenario approaches commonly are used for such researches, but the approaches are not without criticism. Practical implications: Given the importance of service recovery, companies can understand the importance of creating customer satisfaction achieved by the positive results due to the service recovery during the shortness or service failure by the mentioned companies. Originality/ value: The study highlights the importance of service failure and providing the education in relation to the service recovery.

Keywords: service recovery, pre-existing attitude, service failure, customer satisfaction

Procedia PDF Downloads 541
5223 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 58
5222 The Use of Sustainability Criteria on Infrastructure Design to Encourage Sustainable Engineering Solutions on Infrastructure Projects

Authors: Shian Saroop, Dhiren Allopi

Abstract:

In order to stay competitive and to meet upcoming stricter environmental regulations and customer requirements, designers have a key role in designing civil infrastructure so that it is environmentally sustainable. There is an urgent need for engineers to apply technologies and methods that deliver better and more sustainable performance of civil infrastructure as well as a need to establish a standard of measurement for greener infrastructure, rather than merely use tradition solutions. However, there are no systems in place at the design stage that assesses the environmental impact of design decisions on township infrastructure projects. This paper identifies alternative eco-efficient civil infrastructure design solutions and developed sustainability criteria and a toolkit to analyse the eco efficiency of infrastructure projects. The proposed toolkit is aimed at promoting high-performance, eco-efficient, economical and environmentally friendly design decisions on stormwater, roads, water and sanitation related to township infrastructure projects. These green solutions would bring a whole new class of eco-friendly solutions to current infrastructure problems, while at the same time adding a fresh perspective to the traditional infrastructure design process. A variety of projects were evaluated using the green infrastructure toolkit and their results are compared to each other, to assess the results of using greener infrastructure verses the traditional method of designing infrastructure. The application of ‘green technology’ would ensure a sustainable design of township infrastructure services assisting the design to consider alternative resources, the environmental impacts of design decisions, ecological sensitivity issues, innovation, maintenance and materials, at the design stage of a project.

Keywords: eco-efficiency, green infrastructure, infrastructure design, sustainable development

Procedia PDF Downloads 228
5221 Predicting Daily Patient Hospital Visits Using Machine Learning

Authors: Shreya Goyal

Abstract:

The study aims to build user-friendly software to understand patient arrival patterns and compute the number of potential patients who will visit a particular health facility for a given period by using a machine learning algorithm. The underlying machine learning algorithm used in this study is the Support Vector Machine (SVM). Accurate prediction of patient arrival allows hospitals to operate more effectively, providing timely and efficient care while optimizing resources and improving patient experience. It allows for better allocation of staff, equipment, and other resources. If there's a projected surge in patients, additional staff or resources can be allocated to handle the influx, preventing bottlenecks or delays in care. Understanding patient arrival patterns can also help streamline processes to minimize waiting times for patients and ensure timely access to care for patients in need. Another big advantage of using this software is adhering to strict data protection regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States as the hospital will not have to share the data with any third party or upload it to the cloud because the software can read data locally from the machine. The data needs to be arranged in. a particular format and the software will be able to read the data and provide meaningful output. Using software that operates locally can facilitate compliance with these regulations by minimizing data exposure. Keeping patient data within the hospital's local systems reduces the risk of unauthorized access or breaches associated with transmitting data over networks or storing it in external servers. This can help maintain the confidentiality and integrity of sensitive patient information. Historical patient data is used in this study. The input variables used to train the model include patient age, time of day, day of the week, seasonal variations, and local events. The algorithm uses a Supervised learning method to optimize the objective function and find the global minima. The algorithm stores the values of the local minima after each iteration and at the end compares all the local minima to find the global minima. The strength of this study is the transfer function used to calculate the number of patients. The model has an output accuracy of >95%. The method proposed in this study could be used for better management planning of personnel and medical resources.

Keywords: machine learning, SVM, HIPAA, data

Procedia PDF Downloads 66
5220 On Control of Asynchronous Sequential Machines with Switching Capability

Authors: Jung-Min Yang

Abstract:

Corrective control enables us to change the stable state behavior of an asynchronous sequential machine without modifying inner logic of the machine. This paper addresses corrective control for asynchronous machines with switching capability. The considered asynchronous machine consists of a set of different submachines and switches to each machine according to a constant switching sequence. The control goal is to design a corrective controller such that the closed-loop system can match the behavior of a reference model. The reachability of the switched asynchronous machine is described by a logic calculation of the reachability of submachines. The design procedure of the proposed corrective controller is outlined, and the applicability of the proposed scheme is validated in an example.

Keywords: switched asynchronous sequential machines, corrective control, state feedback, switching sequences

Procedia PDF Downloads 457