Search results for: bridge rectifier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 858

Search results for: bridge rectifier

588 SCR-Stacking Structure with High Holding Voltage for IO and Power Clamp

Authors: Hyun Young Kim, Chung Kwang Lee, Han Hee Cho, Sang Woon Cho, Yong Seo Koo

Abstract:

In this paper, we proposed a novel SCR (Silicon Controlled Rectifier) - based ESD (Electrostatic Discharge) protection device for I/O and power clamp. The proposed device has a higher holding voltage characteristic than conventional SCR. These characteristics enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. The proposed device was analyzed to figure out electrical characteristics and tolerance robustness in term of individual design parameters (D1, D2, D3). They are investigated by using the Synopsys TCAD simulator. As a result of simulation, holding voltage increased with different design parameters. The holding voltage of the proposed device changes from 3.3V to 7.9V. Also, N-Stack structure ESD device with the high holding voltage is proposed. In the simulation results, 2-stack has holding voltage of 6.8V and 3-stack has holding voltage of 10.5V. The simulation results show that holding voltage of stacking structure can be larger than the operation voltage of high-voltage application.

Keywords: ESD, SCR, holding voltage, stack, power clamp

Procedia PDF Downloads 534
587 Plastic Deformation Behavior of a Pre-Bored Pile Filler Material Due to Lateral Cyclic Loading in Sandy Soil

Authors: A. Y. Purnama, N. Yasufuku

Abstract:

The bridge structure is a building that has to be maintained, especially for the elastomeric bearing. The girder of the bridge needs to be lifted upward to maintain this elastomeric bearing, that needs high cost. Nowadays, integral abutment bridges are becoming popular. The integral abutment bridge is less costly because the elastomeric bearings are eliminated, which reduces the construction cost and maintenance costs. However, when this elastomeric bearing removed, the girder movement due to environmental thermal forces directly support by pile foundation, and it needs to be considered in the design. In case of pile foundation in a stiff soil, in the top area of the pile cannot move freely due to the fixed condition by soil stiffness. Pre-bored pile system can be used to increase the flexibility of pile foundation using a pre-bored hole that filled with elastic materials, but the behavior of soil-pile interaction and soil response due to this system is still rarely explained. In this paper, an experimental study using small-scale laboratory model test conducted in a half size model. Single flexible pile model embedded in sandy soil with the pre-bored ring, which filled with the filler material. The testing box made from an acrylic glass panel as observation area of the pile shaft to monitor the displacement of the pile during the lateral loading. The failure behavior of the soil inside the pre-bored ring and around the pile shaft was investigated to determine the point of pile rotation and the movement of this point due to the pre-bored ring system along the pile shaft. Digital images were used to capture the deformations of the soil and pile foundation during the loading from the acrylic glass on the side of the testing box. The results were presented in the form of lateral load resistance charts against the pile shaft displacement. The failure pattern result also established due to the cyclic lateral loading. The movement of the rotational point was measured due to the pre-bored system filled with appropriate filler material. Based on the findings, design considerations for pre-bored pile system due to cyclic lateral loading can be introduced.

Keywords: failure behavior, pre-bored pile system, cyclic lateral loading, sandy soil

Procedia PDF Downloads 212
586 The Effectiveness of Prefabricated Vertical Drains for Accelerating Consolidation of Tunis Soft Soil

Authors: Marwa Ben Khalifa, Zeineb Ben Salem, Wissem Frikha

Abstract:

The purpose of the present work is to study the consolidation behavior of highly compressible Tunis soft soil “TSS” by means of prefabricated vertical drains (PVD’s) associated to preloading based on laboratory and field investigations. In the first hand, the field performance of PVD’s on the layer of Tunis soft soil was analysed based on the case study of the construction of embankments of “Radès la Goulette” bridge project. PVD’s Geosynthetics drains types were installed with triangular grid pattern until 10 m depth associated with step-by-step surcharge. The monitoring of the soil settlement during preloading stage for Radès La Goulette Bridge project was provided by an instrumentation composed by various type of tassometer installed in the soil. The distribution of water pressure was monitored through piezocone penetration. In the second hand, a laboratory reduced tests are performed on TSS subjected also to preloading and improved with PVD's Mebradrain 88 (Mb88) type. A specific test apparatus was designed and manufactured to study the consolidation. Two series of consolidation tests were performed on TSS specimens. The first series included consolidation tests for soil improved by one central drain. In thesecond series, a triangular mesh of three geodrains was used. The evolution of degree of consolidation and measured settlements versus time derived from laboratory tests and field data were presented and discussed. The obtained results have shown that PVD’s have considerably accelerated the consolidation of Tunis soft soil by shortening the drainage path. The model with mesh of three drains gives results more comparative to field one. A longer consolidation time is observed for the cell improved by a single central drain. A comparison with theoretical analysis, basically that of Barron (1948) and Carillo (1942), was presented. It’s found that these theories overestimate the degree of consolidation in the presence of PVD.

Keywords: tunis soft soil, prefabricated vertical drains, acceleration of consolidation, dissipation of excess pore water pressures, radès bridge project, barron and carillo’s theories

Procedia PDF Downloads 108
585 Morphological Characteristics and Development of the Estuary Area of Lam River, Vietnam

Authors: Hai Nguyen Tien

Abstract:

On the basis of the structure of alluvial sediments explained by echo sounding data and remote sensing images, the following results can be given: The estuary of Lam river (from Ben Thuy bridge to Cua Hoi) is divided into 3 channel (location is calculated according to the river bank on the Nghe An province) : i) channel I (from Ben Thuy bridge to Hung Hoa) is the branching river; ii) channel II (from Hung Hoa to Nghi Thai is a channel develops in a meandering direction with a concave side toward Ha Tinh province; iii) channel III, from Nghi Thai to Cua Hoi is a channel develops in a meandering direction with a concave side toward Nghe An province. This estuary area is formed in the period from after the sea level dropped below 0m (current water level) to the present: i) Chanel II developed moving towards Ha Tinh provnce; ii) Chanel III developed moving towards Nghe An province; iii) In chanel I, a second river branch is formed because the flow of river cuts through the Hong Lam- Hong Nhat mudflat, at the same time creating an island. Morphological characteristics of the estuary area of Lam River are the main result of erosion and deposition activities corresponding to two water levels: low water level below 0 m and water level 0 m (current water level). Characteristics of the sediment layers on the riverbed in the estuary can be used to determine the sea levels in Late Holocene–Present.

Keywords: Lam River, development, Cua Hoi, river morphology

Procedia PDF Downloads 108
584 A Micro-Scale of Electromechanical System Micro-Sensor Resonator Based on UNO-Microcontroller for Low Magnetic Field Detection

Authors: Waddah Abdelbagi Talha, Mohammed Abdullah Elmaleeh, John Ojur Dennis

Abstract:

This paper focuses on the simulation and implementation of a resonator micro-sensor for low magnetic field sensing based on a U-shaped cantilever and piezoresistive configuration, which works based on Lorentz force physical phenomena. The resonance frequency is an important parameter that depends upon the highest response and sensitivity through the frequency domain (frequency response) of any vibrated micro-scale of an electromechanical system (MEMS) device. And it is important to determine the direction of the detected magnetic field. The deflection of the cantilever is considered for vibrated mode with different frequencies in the range of (0 Hz to 7000 Hz); for the purpose of observing the frequency response. A simple electronic circuit-based polysilicon piezoresistors in Wheatstone's bridge configuration are used to transduce the response of the cantilever to electrical measurements at various voltages. Microcontroller-based Arduino program and PROTEUS electronic software are used to analyze the output signals from the sensor. The highest output voltage amplitude of about 4.7 mV is spotted at about 3 kHz of the frequency domain, indicating the highest sensitivity, which can be called resonant sensitivity. Based on the resonant frequency value, the mode of vibration is determined (up-down vibration), and based on that, the vector of the magnetic field is also determined.

Keywords: resonant frequency, sensitivity, Wheatstone bridge, UNO-microcontroller

Procedia PDF Downloads 100
583 Nonlinear Finite Element Analysis of Concrete Filled Steel I-Girder Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura

Abstract:

Concrete filled steel I-girder (CFIG) bridge was proposed and the bending and shear strength was confirmed by experiments. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used to the intermediate support of a continuous girder. Three-dimensional finite element models were established to simulate the bending and shear behaviors of CFIG and to clarify the load transfer mechanism. Steel plates and filled concrete were modeled as a three-dimensional 8-node solid element and steel reinforcement bars as a three-dimensional 2-node truss element. The elements were mostly divided into the 50 x 50 mm mesh size. The non-linear stress-strain relation is assumed for concrete in compression including the softening effect after the peak, and the stress increases linearly for concrete in tension until concrete cracking but then decreases due to tension stiffening effect. The stress-strain relation for steel plates was tri-linear and that for reinforcements was bi-linear. The concrete and the steel plates were rigidly connected. The developed FEM model was applied to simulate and analysis the bending behaviors of the CFIG specimens. The vertical displacements and the strains of steel plates and the filled concrete obtained by FEM agreed very well with the test results until the yield load. The specimens collapsed when the upper flange buckled or the concrete spalled off. These phenomena cannot be properly analyzed by FEM, which produces a small discrepancy at the ultimate states. The FEM model was also applied to simulate and analysis the shear tests of the CFIG specimens. The vertical displacements and strains of steel and concrete calculated by FEM model agreed well with the test results. A truss action was confirmed by the FEM and the experiment, clarifying that shear forces were mainly resisted by the tension strut of the steel plate and the compression strut of the filled concrete acting in the diagonal direction. A trail design with the CFIG was carried out for a four-span continuous highway bridge and the design method was established. Construction cost was estimated about 12% lower than that of a conventional steel I-section girder.

Keywords: concrete filled steel I-girder, bending strength, FEM, limit states design, steel I-girder, shear strength

Procedia PDF Downloads 197
582 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications

Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana

Abstract:

A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.

Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons

Procedia PDF Downloads 224
581 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece

Authors: Panagiotis Karadimos, Leonidas Anthopoulos

Abstract:

Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.

Keywords: actual cost and duration, attribute selection, bridge construction, neural networks, predicting models, FANN TOOL, WEKA

Procedia PDF Downloads 116
580 Influence of Existing Foundations on Soil-Structure Interaction of New Foundations in a Reconstruction Project

Authors: Kanagarajah Ravishankar

Abstract:

This paper describes a study performed for a project featuring an elevated steel bridge structure supported by various types of foundation systems. This project focused on rehabilitation or redesign of a portion of the bridge substructures founded on caisson foundations. The study that this paper focuses on is the evaluation of foundation and soil stiffnesses and interactions between the existing caissons and proposed foundations. The caisson foundations were founded on top of rock, where the depth to the top of rock varies from approximately 50 to 140 feet below ground surface. Based on a comprehensive investigation of the existing piers and caissons, the presence of ASR was suspected from observed whitish deposits on cracked surfaces as well as internal damages sustained through the entire depth of foundation structures. Reuse of existing piers and caissons was precluded and deemed unsuitable under the earthquake condition because of these defects on the structures. The proposed design of new foundations and substructures which was selected ultimately neglected the contribution from the existing caisson and pier columns. Due to the complicated configuration between the existing caisson and the proposed foundation system, three-dimensional finite element method (FEM) was employed to evaluate soil-structure interaction (SSI), to evaluate the effect of the existing caissons on the proposed foundations, and to compare the results with conventional group analysis. The FEM models include separate models for existing caissons, proposed foundations, and combining both.

Keywords: soil-structure interaction, foundation stiffness, finite element, seismic design

Procedia PDF Downloads 113
579 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education

Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly

Abstract:

Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learning

Keywords: bridging gap, medical education, teaching and learning, model of learning

Procedia PDF Downloads 35
578 The Construction of the Bridge between Mrs Dalloway and to the Lighthouse: The Combination of Codes and Metaphors in the Structuring of the Plot in the Work of Virginia Woolf

Authors: María Rosa Mucci

Abstract:

Tzvetan Todorov (1971) designs a model of narrative transformation where the plot is constituted by difference and resemblance. This binary opposition is a synthesis of a central figure within narrative discourse: metaphor. Narrative operates as a metaphor since it combines different actions through similarities within a common plot. However, it sounds paradoxical that metonymy and not metaphor should be the key figure within the narrative. It is a metonymy that keeps the movement of actions within the story through syntagmatic relations. By the same token, this articulation of verbs makes it possible for the reader to engage in a dynamic interaction with the text, responding to the plot and mediating meanings with the contradictory external world. As Roland Barthes (1957) points out, there are two codes that are irreversible within the process: the codes of actions and the codes of enigmas. Virginia Woolf constructs her plots through a process of symbolism; a scene is always enduring, not only because it stands for something else but also because it connotes it. The reader is forced to elaborate the meaning at a mythological level beyond the lines. In this research, we follow a qualitative content analysis to code language through the proairetic (actions) and hermeneutic (enigmas) codes in terms of Barthes. There are two novels in particular that engage the reader in this process of construction: Mrs Dalloway (1925) and To the Lighthouse (1927). The bridge from the first to the second brings memories of childhood, allowing for the discovery of these enigmas hidden between the lines. What survives? Who survives? It is the reader's task to unravel these codes and rethink this dialogue between plot and reader to contribute to the predominance of texts and the textuality of narratives.

Keywords: metonymy, code, metaphor, myth, textuality

Procedia PDF Downloads 27
577 Maryland Restoration of Anterior Tooth Loss as a Minimal Invasive Dentistry: An Alternative Treatment

Authors: B. Oral, C. Bal, M. S. Kar, A. Akgürbüz

Abstract:

Loss of maxillary central incisors occurs in many patients, and the treatment of young adults with this problem is a challenge for both prosthodontists and orthodontists. Common treatment alternatives are distalization of adjacent teeth and fabrication of a conventional 3-unit fixed partial denture, a single implant supported crown restoration or a resin-bonded fixed partial denture. This case report describes the indication of a resin-bonded fixed partial denture, preparation of the abutment teeth and the prosthetic procedures. The technique described here represents a conservative, esthetically pleasing and rapid solution for the missing maxillary central incisor when implant placement and/or guided bone regeneration techniques are not feasible because of financial, social or time restrictions. In this case a 16 year-old female patient who lost her maxillary left central incisor six years ago in a bicycle accident applied to our clinic with a major complaint of her unaesthetic appearance associated with the loss of her maxillary left central incisor. Although there was an indication for orthodontic treatment because of the limited space at the traumatized area, the patient did not accept to receive any orthodontic procedure. That is why an implant supported restoration could not be an option for the narrow area. Therefore maryland bridge as a minimal invasive dental therapy was preferred as a retention appliance so the patient's aesthetic appearance was restored.

Keywords: Maryland bridge, single tooth restoration, aesthetics, maxillary central incisors

Procedia PDF Downloads 340
576 Early Evaluation of Long-Span Suspension Bridges Using Smartphone Accelerometers

Authors: Ekin Ozer, Maria Q. Feng, Rupa Purasinghe

Abstract:

Structural deterioration of bridge systems possesses an ongoing threat to the transportation networks. Besides, landmark bridges’ integrity and safety are more than sole functionality, since they provide a strong presence for the society and nations. Therefore, an innovative and sustainable method to inspect landmark bridges is essential to ensure their resiliency in the long run. In this paper, a recently introduced concept, smartphone-based modal frequency estimation is addressed, and this paper targets to authenticate the fidelity of smartphone-based vibration measurements gathered from three landmark suspension bridges. Firstly, smartphones located at the bridge mid-span are adopted as portable and standalone vibration measurement devices. Then, their embedded accelerometers are utilized to gather vibration response under operational loads, and eventually frequency domain characteristics are deduced. The preliminary analysis results are compared with the reference publications and high-quality monitoring data to validate the usability of smartphones on long-span landmark suspension bridges. If the technical challenges such as high period of vibration, low amplitude excitation, embedded smartphone sensor features, sampling, and citizen engagement are tackled, smartphones can provide a novel and cost-free crowdsourcing tool for maintenance of these landmark structures. This study presents the early phase findings from three signature structures located in the United States.

Keywords: smart and mobile sensing, structural health monitoring, suspension bridges, vibration analysis

Procedia PDF Downloads 267
575 Reliability Based Analysis of Multi-Lane Reinforced Concrete Slab Bridges

Authors: Ali Mahmoud, Shadi Najjar, Mounir Mabsout, Kassim Tarhini

Abstract:

Empirical expressions for estimating the wheel load distribution and live-load bending moment are typically specified in highway bridge codes such as the AASHTO procedures. The purpose of this paper is to analyze the reliability levels that are inherent in reinforced concrete slab bridges that are designed based on the simplified empirical live load equations in the AASHTO LRFD procedures. To achieve this objective, bridges with multi-lanes (three and four lanes) and different spans are modeled using finite-element analysis (FEA) subjected to HS20 truck loading, tandem loading, and standard lane loading per AASHTO LRFD procedures. The FEA results are compared with the AASHTO LRFD moments in order to quantify the biases that might result from the simplifying assumptions adopted in AASHTO. A reliability analysis is conducted to quantify the reliability index for bridges designed using AASHTO procedures. To reach a consistent level of safety for three- and four-lane bridges, following a previous study restricted to one- and two-lane bridges, the live load factor in the design equation proposed by AASHTO LRFD will be assessed and revised if needed by alternating the live load factor for these lanes. The results will provide structural engineers with more consistent provisions to design concrete slab bridges or evaluate the load-carrying capacity of existing bridges.

Keywords: reliability analysis of concrete bridges, finite element modeling, reliability analysis, reinforced concrete bridge design, load carrying capacity

Procedia PDF Downloads 317
574 Cultural Works Interacting with the Generational Aesthetic Gap between Gen X and Gen Z in China: A Qualitative Study

Authors: Qianyu Zhang

Abstract:

The spread of digital technology in China has worsened the generation gap and intergenerational competition for cultural and aesthetic discourse. Meanwhile, the increased accessibility of cultural works has encouraged the sharing and inheritance of collective cultural memories between generations. However, not each cultural work can engage positively with efforts to bridge intergenerational aesthetic differences. This study argues that in contemporary China, where new media and the Internet are widely available, featured cultural works have more potential to help enhance the cultural aesthetic consensus among different generations, thus becoming an effective countermeasure to narrow the intergenerational aesthetic rift and cultural discontinuity. Specifically, the generational aesthetic gap is expected to be bridged or improved through the shared appreciation or consumption of cultural works that meet certain conditions by several generations. In-depth interviews of Gen X and Gen Z (N=15, respectively) in China uncovered their preferences and commonalities for cultural works and shared experiences in appreciating them. Results demonstrate that both generations’ shared appreciation of cultural work is a necessary but insufficient condition for its effective response to the generational aesthetic gap. Coding analysis rendered six dimensions that cultural works with the potential to bridge the intergenerational aesthetic divide should satisfy simultaneously: genre, theme, content, elements, quality, and accessibility. Cultural works that engage multiple senses/ compound realistic, domestic and contemporary cultural memories/ contain the narrative of family life and nationalism/ include more elements familiar to the previous generation/ are superb-produced and unaffected/ are more accessible better promote intergenerational aesthetic exchange and value recognition. Moreover, compared to the dilemma of the previous generation facing the aesthetic gap, the later generation plays a crucial role in bridging the generational aesthetic divide.

Keywords: cultural works, generation gap, generation X, generation Z, cultural memory

Procedia PDF Downloads 116
573 Can Zirconia Wings of Resin Retained Cantilever Bridges Be Effectively Bonded To Tooth Tissue When Compared With Metal Wings In The Anterior Dentition in vivo? - A Systematic Review.

Authors: Ariyan S. Araghi, Guy C. Jackson, Stephen J. Bonsor

Abstract:

Materials & Methods: A systematic literature search was undertaken using pre-determined inclusion and exclusion criteria. This review followed the Preferred Reporting Items for Systemic Reviews and Meta-Analysis (PRISMA) statement. Several databases were used to search for randomised control trials and longitudinal cohort studies, which were published less than thirty years ago. A total of 54 studies met the predefined inclusion criteria. Four studies reviewed the success, survival, and failure characteristics of zirconia framework resin retained bridges, whilst two reviewed non-precious metal resin retained bridges. Results: The analysis of the studies revealed an overall survival rate of 95.9% for zirconia-based restorations compared to 90.7% for non-precious metal frameworks. Non-precious metal resin retained bridges displayed a higher overall failure rate of 11.9% compared to 4.6% for zirconia-based restorations in the analysed papers. The most frequent complications were wing debonding for the non-precious metal wing group, whereas substructure fracture and veneering ceramic fracture were more prevalent for the zirconia arm of the study. Conclusion: Both types of resin retained bridges provide effective medium to long-term survival. Zirconia-based frameworks will provide marginally increased success and survival and greatly improved aesthetics. However, catastrophic failure is more likely with zirconia-based restorations. Non-precious metal is time tested but performs worse than its zirconia counterpart with regards to longevity; it does not exhibit the same framework fractures as zirconia. Cement choice and attention to the adhesive bonding systems used appear to be paramount to restoration longevity with both restoration subtypes. Furthermore, improved longevity can be seen when air particle abrasion is incorporated into the adhesive protocol. Within the limitations of this study, it has been determined that zirconia-based resin retained bridges can be effectively used in anterior cantilever bridges. Clinical Significance: Zirconia-based resin retained bridges have been demonstrating promising results in terms of improved success and survival characteristics, together with improved aesthetics when compared to non-precious metal winged resin retained bridges. Their popularity is increasing in the age of digital dentistry as many restorations are manufactured using such technology. It is essential that clinicians understand the limitations of each material type and principles of adhesion to ensure restoration longevity.

Keywords: resin retained bridge, fixed partial denture, zirconia bridge, adhesive bridge

Procedia PDF Downloads 68
572 Signature Bridge Design for the Port of Montreal

Authors: Juan Manuel Macia

Abstract:

The Montreal Port Authority (MPA) wanted to build a new road link via Souligny Avenue to increase the fluidity of goods transported by truck in the Viau Street area of Montreal and to mitigate the current traffic problems on Notre-Dame Street. With the purpose of having a better integration and acceptance of this project with the neighboring residential surroundings, this project needed to include an architectural integration, bringing some artistic components to the bridge design along with some landscaping components. The MPA is required primarily to provide direct truck access to Port of Montreal with a direct connection to the future Assomption Boulevard planned by the City of Montreal and, thus, direct access to Souligny Avenue. The MPA also required other key aspects to be considered for the proposal and development of the project, such as the layout of road and rail configurations, the reconstruction of underground structures, the relocation of power lines, the installation of lighting systems, the traffic signage and communication systems improvement, the construction of new access ramps, the pavement reconstruction and a summary assessment of the structural capacity of an existing service tunnel. The identification of the various possible scenarios began by identifying all the constraints related to the numerous infrastructures located in the area of the future link between the port and the future extension of Souligny Avenue, involving interaction with several disciplines and technical specialties. Several viaduct- and tunnel-type geometries were studied to link the port road to the right-of-way north of Notre-Dame Street and to improve traffic flow at the railway corridor. The proposed design took into account the existing access points to Port of Montreal, the built environment of the MPA site, the provincial and municipal rights-of-way, and the future Notre-Dame Street layout planned by the City of Montreal. These considerations required the installation of an engineering structure with a span of over 60 m to free up a corridor for the future urban fabric of Notre-Dame Street. The best option for crossing this span length was identified by the design and construction of a curved bridge over Notre-Dame Street, which is essentially a structure with a deck formed by a reinforced concrete slab on steel box girders with a single span of 63.5m. The foundation units were defined as pier-cap type abutments on drilled shafts to bedrock with rock sockets, with MSE-type walls at the approaches. The configuration of a single-span curved structure posed significant design and construction challenges, considering the major constraints of the project site, a design for durability approach, and the need to guarantee optimum performance over a 75-year service life in accordance with the client's needs and the recommendations and requirements defined by the standards used for the project. These aspects and the need to include architectural and artistic components in this project made it possible to design, build, and integrate a signature infrastructure project with a sustainable approach, from which the MPA, the commuters, and the city of Montreal and its residents will benefit.

Keywords: curved bridge, steel box girder, medium span, simply supported, industrial and urban environment, architectural integration, design for durability

Procedia PDF Downloads 36
571 Single Pole-To-Earth Fault Detection and Location on the Tehran Railway System Using ICA and PSO Trained Neural Network

Authors: Masoud Safarishaal

Abstract:

Detecting the location of pole-to-earth faults is essential for the safe operation of the electrical system of the railroad. This paper aims to use a combination of evolutionary algorithms and neural networks to increase the accuracy of single pole-to-earth fault detection and location on the Tehran railroad power supply system. As a result, the Imperialist Competitive Algorithm (ICA) and Particle Swarm Optimization (PSO) are used to train the neural network to improve the accuracy and convergence of the learning process. Due to the system's nonlinearity, fault detection is an ideal application for the proposed method, where the 600 Hz harmonic ripple method is used in this paper for fault detection. The substations were simulated by considering various situations in feeding the circuit, the transformer, and typical Tehran metro parameters that have developed the silicon rectifier. Required data for the network learning process has been gathered from simulation results. The 600Hz component value will change with the change of the location of a single pole to the earth's fault. Therefore, 600Hz components are used as inputs of the neural network when fault location is the output of the network system. The simulation results show that the proposed methods can accurately predict the fault location.

Keywords: single pole-to-pole fault, Tehran railway, ICA, PSO, artificial neural network

Procedia PDF Downloads 93
570 Private Universities and Socio-Economic Development of Host Communities: The Case of Fountain University, Nigeria

Authors: Ganiyu Rasaq Omokeji

Abstract:

The growing recognition of the pivotal role of universities in promoting socio-economic development has led to a focus upon the expansion of the sector around the world. As the economy and society become more ‘knowledge intensive’, the role of universities in development is more onerous than just teaching, research, and service. It is to help create the open society upon which the progress of ideas depends on. Driven to fulfill this role, universities are likely to become even more important in building regional networks of their host communities. Currently, there are about 129 universities in Nigeria, with a total number of 37 federal, 36 state, and 56 privately owned universities. Fountain University is among the private universities in Nigeria located in Osogbo, Osun State. The university is committed to the total development of men and women in an enabling environment, through appropriate teaching, research, and service to humanity, influenced by Islamic ethics and culture. The university focuses on educational development and growth that are relevant to the nation’s manpower needs and global competitiveness through a gradual but steady process. This paper examines the role of Private University in the socio-economic development of host community using Fountain University as a case study. The research methodology design for this paper has a total of 200 respondents. The research instrument of data collection was a questionnaire and in-depth interview (IDI). The finding reveals that Fountain University plays an important role in socio-economic and cultural development through their Islamic culture. The paper recommend that universities must bridge the gaps between creative individual with innovative ideas and the application of technology for economic progress and social betterment of their host communities. University also must serve as a bridge that carries the traffic of social and economic development.

Keywords: private university, socio-economic development, host communities, role of universities and community development

Procedia PDF Downloads 260
569 Teaching English to Rural Students: A Case Study of a Select Batch at SSN College of Engineering, Chennai

Authors: Martha Karunakar

Abstract:

There exists a wide divide between the urban and the rural students in a vast country like India. This dichotomy is seen in the resources available to them, like the learning facilities, the infra-structure, the learning ambience and meeting of their basic needs of food, clothing and shelter. This paper discusses the effect of English language teaching as a Bridge course on a select batch of rural students at an Engineering college in Chennai, one of the four Metros of India. The study aims to understand how the teacher input and the teacher- peer-student interaction facilitates the acquisition of the basic structures of the English language to a group that is minimally exposed to the language. The objective in conducting the Bridge Course is to integrate these rural students into the mainstream and empower them in terms of English speaking ability; to enable them to comprehend their respective engineering classes where the medium of instruction is English and also to be able to interact with their urban peers. This program is conducted prior to the start of a regular academic session to equip them face the rigors of engineering education. The study is placed within the framework of Interaction theory in second language acquisition. The study evaluates the impact of linking theory and practice by implementing meaningful interaction not only within classrooms but also in the common areas. By providing intensive comprehensible input, it is anticipated that participant’s level of English language improves. The teaching methods and classroom activities included individual and group participation, encompassing all the four skills of listening, speaking, reading and writing (LSRW). The diagnostic tests that were administered before the commencement of the course and the exit test after the completion were used to record the impact of the training.

Keywords: comprehensible input, interaction, rural students, teaching English

Procedia PDF Downloads 358
568 A Low Cost Education Proposal Using Strain Gauges and Arduino to Develop a Balance

Authors: Thais Cavalheri Santos, Pedro Jose Gabriel Ferreira, Alexandre Daliberto Frugoli, Lucio Leonardo, Pedro Americo Frugoli

Abstract:

This paper presents a low cost education proposal to be used in engineering courses. The engineering education in universities of a developing country that is in need of an increasing number of engineers carried out with quality and affordably, pose a difficult problem to solve. In Brazil, the political and economic scenario requires academic managers able to reduce costs without compromising the quality of education. Within this context, the elaboration of a physics principles teaching method with the construction of an electronic balance is proposed. First, a method to develop and construct a load cell through which the students can understand the physical principle of strain gauges and bridge circuit will be proposed. The load cell structure was made with aluminum 6351T6, in dimensions of 80 mm x 13 mm x 13 mm and for its instrumentation, a complete Wheatstone Bridge was assembled with strain gauges of 350 ohms. Additionally, the process involves the use of a software tool to document the prototypes (design circuits), the conditioning of the signal, a microcontroller, C language programming as well as the development of the prototype. The project also intends to use an open-source I/O board (Arduino Microcontroller). To design the circuit, the Fritizing software will be used and, to program the controller, an open-source software named IDE®. A load cell was chosen because strain gauges have accuracy and their use has several applications in the industry. A prototype was developed for this study, and it confirmed the affordability of this educational idea. Furthermore, the goal of this proposal is to motivate the students to understand the several possible applications in high technology of the use of load cells and microcontroller.

Keywords: Arduino, load cell, low-cost education, strain gauge

Procedia PDF Downloads 281
567 Influence of Footing Offset over Stability of Geosynthetic Reinforced Soil Abutments with Variable Facing under Lateral Excitation

Authors: Ashutosh Verma, Satyendra MIttal

Abstract:

The loss of strength at the facing-reinforcement interface brought on by the seasonal thermal expansion/contraction of the bridge deck has been responsible for several geosynthetic reinforced soil abutment failures over the years. This results in excessive settlement below the bridge seat, which results in bridge bumps along the approach road and shortens abutment's design life. There are surely a wide variety of facing configurations available to designers when choosing the sort of facade. These layouts can generally be categorised into three groups: continuous, full height rigid (FHR) and modular (panels/block). The current work aims to experimentally explore the behavior of these three facing categories using 1g physical model testing under serviceable cyclic lateral displacements. With configurable facing arrangements to represent these three facing categories, a field instrumented GRS abutment prototype was modelled into a N scaled down 1g physical model (N = 5) to reproduce field behavior. Peak earth pressure coefficient (K) on the facing and vertical settlement of the footing (s/B) for footing offset (x/H) as 0.1, 0.2, 0.3, 0.4 and 0.5 at 100 cycles have been measured for cyclic lateral displacement of top of facing at loading rate of 1mm/min. Three types of cyclic displacements have been carried out to replicate active condition (CA), passive condition (CP), and active-passive condition (CAP) for each footing offset. The results demonstrated that a significant decrease in the earth pressure over the facing occurs when footing offset increases. It is worth noticing that the highest rate of increment in earth pressure and footing settlement were observed for each facing configuration at the nearest footing offset. Interestingly, for the farthest footing offset, similar responses of each facing type were observed, which indicates that the upon reaching a critical offset point presumably beyond the active region in the backfill, the lateral responses become independent of the stresses from the external footing load. Evidently, the footing load complements the stresses developed due to lateral excitation resulting in significant footing settlements for nearer footing offsets. The modular facing proved inefficient in resisting footing settlement due to significant buckling along the depth of facing. Instead of relative displacement along the depth of facing, continuous facing rotates around the base when it fails, especially for nearer footing offset causing significant depressions in the backfill area surrounding the footing. FHR facing, on the other hand, have been successful in confining the stresses in the soil domain itself reducing the footing settlement. It may be suitably concluded that increasing the footing offset may render stability to the GRS abutment with any facing configuration even for higher cycles of excitation.

Keywords: GRS abutments, 1g physical model, footing offset, cyclic lateral displacement

Procedia PDF Downloads 63
566 Assessing Two Protocols for Positive Reinforcement Training in Captive Olive Baboons (Papio anubis)

Authors: H. Cano, P. Ferrer, N. Garcia, M. Popovic, J. Zapata

Abstract:

Positive Reinforcement Training is a well-known methodology which has been reported frequently to be used in captive non-human primates. As a matter of fact, it is an invaluable tool for different purposes related with animal welfare, such as primate husbandry and environmental enrichment. It is also essential to perform some cognitive experiments. The main propose of this pilot study was to establish an efficient protocol to train captive olive baboons (Papio anubis). This protocol seems to be vital in the context of a larger research program in which it will be necessary to train a complete population of around 40 baboons. Baboons were studied at the Veterinary Research Farm of the University of Murcia. Temporally isolated animals were trained to perform three basic tasks. Firstly, they were required to take food prices directly from the researchers’ hands. Then a clicker sound or bridge stimulus was added each time the animal acceded to the reinforcement. Finally, they were trained to touch a target, consisted of a whip with a red ball in its end, with their hands or their nose. When the subject completed correctly this task, it was also exposed to the bridge stimulus and awarded with a food price, such as a portion of banana, orange, apple, peach or a raisin. Two protocols were tested during this experiment. In both of them, there were 6 series of 2min training periods each day. However, in the first protocol, the series consisted in 3 trials, whereas in the second one, in each series there were 5 trials. A reliable performance was obtained with only 6 days of training in the case of the 5-trials protocol. However, with the 3-trials one, 26 days of training were needed. As a result, the 5-trials protocol seems to be more effective than the 3-trials one, in order to teach these three basic tasks to olive baboons. In consequence, it will be used to train the rest of the colony.

Keywords: captive primates, olive baboon, positive reinforcement training, Papio anubis, training

Procedia PDF Downloads 101
565 Design of Bidirectional PFC Totem Pole for OBC

Authors: Dihia Sidi Ahmed, Hiba Mili

Abstract:

In the current context of European and global energy transition and the accelerated integration of renewable energies, the transition to electric vehicles with V2X (Vehicle-to-anything) charging options is favored to enhance the power grid and to serve as an energy supply in peak demand periods. Regarding the fast development of EV charging infrastructures, a cost-effective and efficient solution is required to meet OEM's (Original Equipment Manufacturers) needs. In this context, a single-phase 7.4 kW bidirectional on-board charger with G2V, V2G and V2L capabilities has been developed to support faster charging. The proposed architecture consists of two power stages. A Totem Pole PFC stage works as a rectifier in G2V with a unity power factor and as an inverter in V2G and V2L. The second stage is a CLLLC resonant converter selected to achieve higher energy efficiency, ZVS and ZCS and cost-effectiveness. SiC technology is used for switching devices to maximize power efficiency by lowering switching losses and to improve power density by minimizing the size of filters and passive components. Pulse frequency modulation (PWM) control is used for the Totem Pole PFC and pulse frequency modulation (PFM) control is used for the CLLC stage to control the stage gain in both energy transfer directions. In the context of validating the topology, this paper elaborates the simulation and the performance evaluation of the first power stage in the Matlab/Simulink environment.

Keywords: V2G, V2X, OBC, CLLC.

Procedia PDF Downloads 27
564 Diagnostics and Explanation of the Current Status of the 40- Year Railway Viaduct

Authors: Jakub Zembrzuski, Bartosz Sobczyk, Mikołaj MIśkiewicz

Abstract:

Besides designing new constructions, engineers all over the world must face another problem – maintenance, repairs, and assessment of the technical condition of existing bridges. To solve more complex issues, it is necessary to be familiar with the theory of finite element method and to have access to the software that provides sufficient tools which to enable create of sometimes significantly advanced numerical models. The paper includes a brief assessment of the technical condition, a description of the in situ non-destructive testing carried out and the FEM models created for global and local analysis. In situ testing was performed using strain gauges and displacement sensors. Numerical models were created using various software and numerical modeling techniques. Particularly noteworthy is the method of modeling riveted joints of the crossbeam of the viaduct. It is a simplified method that consists of the use of only basic numerical tools such as beam and shell finite elements, constraints, and simplified boundary conditions (fixed support and symmetry). The results of the numerical analyses were presented and discussed. It is clearly explained why the structure did not fail, despite the fact that the weld of the deck plate completely failed. A further research problem that was solved was to determine the cause of the rapid increase in values on the stress diagram in the cross-section of the transverse section. The problems were solved using the solely mentioned, simplified method of modeling riveted joints, which demonstrates that it is possible to solve such problems without access to sophisticated software that enables to performance of the advanced nonlinear analysis. Moreover, the obtained results are of great importance in the field of assessing the operation of bridge structures with an orthotropic plate.

Keywords: bridge, diagnostics, FEM simulations, failure, NDT, in situ testing

Procedia PDF Downloads 53
563 Analysis of an High Voltage Direct Current (HVDC) Connection Using a Real-Time Simulator Under Various Disturbances

Authors: Mankour Mohamed, Miloudi Mohamed

Abstract:

A thorough and accurate simulation is necessary for the study of a High Voltage Direct Current (HVDC) link system during various types of disturbances, including internal faults on both converters, either on the rectifier or on the inverter, as well as external faults, such as AC or DC faults on both converter sides inside the DC link party. In this study, we examine how an HVDC inverter responds to three different types of failures, including faults at the inverter valve, system control faults, and single-phase-to-ground AC faults at the sending end of the inverter side. As this phenomenon represents the most frequent problem that may affect inverter valves, particularly those based on thyristor valves (LCC (line-Commutated converter)), it is more precise to explore which circumstance generates and raises the commutation failure on inverter valves. Because of the techniques used to accelerate the simulation, digital real-time simulators are now the most potent tools that provide simulation results. The real-time-lab RT-LAB platform HYPERSIM OP-5600 is used to implement the Simulation in the Loop (SIL) technique, which is used to validate the results. It is demonstrated how to recover from both the internal faults and the AC problem. The simulation findings show how crucial a role the control system plays in fault recovery.

Keywords: hypersim simulator, HVDC systems, mono-polar link, AC faults, misfiring faults

Procedia PDF Downloads 71
562 Fundamental Research on Factors Affecting the Under-Film Corrosion Behavior of Coated Steel Members

Authors: T. Sakamoto, S. Kainuma

Abstract:

Firstly, in order to examine the influence of the remaining amount of the rust on the coating film durability, the accelerated deterioration tests were carried out. In order to prepare test specimens, uncoated steel plates were corroded by the Salt Spray Test (SST) prior to the accelerated deterioration tests, and then the prepared test specimens were coated by epoxy resin and phthalic acid resin each of which has different gas-barrier performance. As the result, it was confirmed that the under-film corrosion occurred in the area and the adjacency to great quantities of salt exists in the rust, and did not occurred in the specimen which was applied the epoxy resin paint after the surface preparation by the power tool. Secondly, in order to clarify the influence of the corrosive factors on the coating film durability, outdoor exposure tests were conducted for one year on actual steel bridge located at a coastal area. The tests specimens consist of coated corroded plates and the uncoated steel plates, and they were installed on the different structural members of the bridge for one year. From the test results, the uncoated steel plates which were installed on the underside of the member are easily corrosive and had highly correlation with the amount of salt in the rust. On the other hand, the most corrosive under-film steel was the vertical surface of the web plate. Thus, it was confirmed that under-film corrosion rate was not match with corrosion rate of the uncoated steel. Consequently, it is estimated that the main factors of under-film corrosion are gas-barrier property of coating film and corrosive factors such as water vapor and temperature. The salt which significantly corrodes the uncoated steel plate is not directly related to the under-film corrosion.

Keywords: accelerated deterioration test, coating durability, environmental factor, under-film corrosion

Procedia PDF Downloads 341
561 A Comparative Study on Electrical Characteristics of Au/n-SiC structure, with and Without Zn-Doped PVA Interfacial Layer at Room Temperature

Authors: M. H. Aldahrob, A. Kokce, S. Altindal, H. E. Lapa

Abstract:

In order to obtain the detailed information about the effect of (Zn-doped PVA) interfacial layer, surface states (Nss) and series resistance (Rs) on electrical characteristics, both Au/n- type 4H-SiC (MS) with and without (Zn doped PVA) interfacial layer were fabricated to compare. The main electrical parameters of them were investigated using forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance –voltage (G/W –V) measurements were performed at room temperature. Experimental results show that the value of ideality factor (n), zero –bias barrier height (ΦBo), Rs, rectifier rate (RR=IF/IR) and the density of Nss are strong functions interfacial layer and applied bias voltage. The energy distribution profile of Nss was obtained from forward bias I-V data by taking into account voltage dependent effective BH (ΦBo) and ideality factor (n(V)). Voltage dependent profile of Rs was also obtained both by using Ohm’s law and Nicollian and Brew methods. The other main diode parameters such as the concentration of doping donor atom (ND), Fermi energy level (EF).BH (ΦBo), depletion layer with (WD) were obtained by using the intercept and slope of the reverse bias C-2 vs V plots. It was found that (Zn-doped PVA) interfacial layer lead to a quite decrease in the values Nss, Rs and leakage current and increase in shunt resistance (Rsh) and RR. Therefore, we can say that the use of thin (Zn-doped PVA) interfacial layer can quite improved the performance of MS structure.

Keywords: interfacial polymer layer, thickness dependence, electric and dielectric properties, series resistance, interface state

Procedia PDF Downloads 233
560 Gymnastics-Oriented Training Program: Impact of 6 weeks Training on the Fitness and Performance of Basketball Players

Authors: Syed Ibrahim, Syed Muneer Ahmed

Abstract:

It is a global phenomenon that fitness is a pre-requisite to the desired end of optimum efficiency in elite class basketballers achieved through appropriate conditioning program. This study was undertaken to find out the effect of gymnastic oriented training program on the physical fitness and the level of technical performance of basketball players. Method: 27 basketballers were divided into 12 experimental and 15 control groups aged between 19 to 25 years. Physical fitness tests comprising of vertical jump, push-ups, chin ups, sit ups, back strength, 30 m sprint, boomerangs test, 600 m run, sit and reach, bridge up and shoulder rotation and technical skill tests like dribbling, layup shots and rebound collection were used for the study. A pre- and post-test was conducted before and after the training program of 6 weeks. Results: The results indicated no significant difference in the anthropometric measurements of age, height and weight between the experimental and control group as the ‘t’ values observed were 0.28, 1.63 and 1.60 respectively . There were significant improvements in vertical jump, push-ups, sit-ups, modified boomerang test, bridge test and shoulder rotation index with the ‘t’ values being 2.60, 3.41, 3.91, 4.02, 3.55 and 2.33 respectively. However, no significant differences existed in chin-ups, back strength, 30 m sprint and 6000 m run with the ‘t’ values being 2.08, 1.77, 1.28 and 0.80 respectively. There was significant improvement in the post-test for the technical skills tests in the experimental group with ‘t’ values being 3.65, 2.57, and 3.62 for the dribble, layup shots and rebound collection respectively. There was no significant difference in the values of the control group except in the rebound collection which showed significant difference. Conclusion: It was found that both the physical fitness and skill proficiency of the basketballers increased through the participation in the gymnastics oriented program.

Keywords: gymnastic, technical, pre-requisite, elite class

Procedia PDF Downloads 380
559 Investigation of the Corroded Steel Beam

Authors: Hesamaddin Khoshnoodi, Ahmad Rahbar Ranji

Abstract:

Corrosion in steel structures is one of the most important issues that should be considered in designing and constructing. Corrosion reduces the cross section and load capacity of element and leads to costly damage of structures. In this paper, the corrosion has been modeled for moment stresses. Moreover, the steel beam has been modeled using ABAQUS advanced finite element software. The conclusions of this study demonstrated that the displacement of the analyzed composite steel girder bridge might increase.

Keywords: Abaqus, Corrosion, deformation, Steel Beam

Procedia PDF Downloads 328