Search results for: Buckling load
2485 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources
Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy
Abstract:
This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.Keywords: big bang big crunch, distributed generation, load control, optimization, planning
Procedia PDF Downloads 3422484 Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa
Authors: B. Mavhuru, N. S. Nethengwe
Abstract:
Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley.Keywords: drainage basin, geomorphological processes, gully development, land degradation, riparian land use and sediment load
Procedia PDF Downloads 3062483 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems
Authors: K. Kusakana
Abstract:
A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.Keywords: renewable energies, hybrid systems, optimization, operation control
Procedia PDF Downloads 3772482 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings
Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez
Abstract:
Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.Keywords: life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil
Procedia PDF Downloads 3042481 Determination of Parasitic Load in Different Tissues of Murine Toxoplasmosis after Immunization by Excretory-Secretory Antigens using Real Time QPCR
Authors: Ahmad Daryani, Yousef Dadimoghaddam, Mehdi Sharif, Ehsan Ahmadpour, Shahabeddin Sarvi, Baghar Hashemi
Abstract:
Background: Excretory-secretory antigens (ESAs) of Toxoplasma gondii are one of the candidates for immunization against toxoplasmosis. For evaluation of immunization, we determined the kinetics of the distribution of Toxoplasma and parasite load in different tissues of mice immunized by ESAs. Methods: In this experimental study, 36 mice in case (n= 18) and control (n= 18) groups were immunized with ESAs and PBS, respectively. After 2 weeks, mice were challenged intraperitoneally with Toxoplasma virulent RH strain. Blood and different tissues (brain, spleen, liver, heart, kidney, and muscle) were collected daily after challenge (1, 2, 3 and last day before death). Parasite load was calculated using Real time QPCR targeted at the B1 gene. Results: ESAs as vaccine in different tissues showed various effects. However, infected mice which received the vaccine in comparison with control group, displayed a drastically decreasing in parasite burden, in their blood and tissues (P= 0.000). Conclusion: These results indicated that ESAs with reduction of parasite load in different tissues of host could be evaluable candidate for the development of immunization strategies against toxoplasmosis.Keywords: parasitic load, murine toxoplasmosis, immunization, excretory-secretory antigens, real time QPCR
Procedia PDF Downloads 4442480 An Ergonomic Evaluation of Three Load Carriage Systems for Reducing Muscle Activity of Trunk and Lower Extremities during Giant Puppet Performing Tasks
Authors: Cathy SW. Chow, Kristina Shin, Faming Wang, B. C. L. So
Abstract:
During some dynamic giant puppet performances, an ergonomically designed load carrier system is necessary for the puppeteers to carry a giant puppet body’s heavy load with minimum muscle stress. A load carrier (i.e. prototype) was designed with two small wheels on the foot; and a hybrid spring device on the knee in order to assist the sliding and knee bending movements respectively. Thus, the purpose of this study was to evaluate the effect of three load carriers including two other commercially available load mounting systems, Tepex and SuitX, and the prototype. Ten male participants were recruited for the experiment. Surface electromyography (sEMG) was used to collect the participants’ muscle activities during forward moving and bouncing and with and without load of 11.1 kg that was 60 cm above the shoulder. Five bilateral muscles including the lumbar erector spinae (LES), rectus femoris (RF), bicep femoris (BF), tibialis anterior (TA), and gastrocnemius (GM) were selected for data collection. During forward moving task, the sEMG data showed smallest muscle activities by Tepex harness which exhibited consistently the lowest, compared with the prototype and SuitX which were significantly higher on left LES 68.99% and 64.99%, right LES 26.57% and 82.45%; left RF 87.71% and 47.61%, right RF 143.57% and 24.28%; left BF 80.21% and 22.23%, right BF 96.02% and 21.83%; right TA 6.32% and 4.47%; left GM 5.89% and 12.35% respectively. The result above reflected mobility was highly restricted by tested exoskeleton devices. On the other hand, the sEMG data from bouncing task showed the smallest muscle activities by prototype which exhibited consistently the lowest, compared with the Tepex harness and SuitX which were significantly lower on lLES 6.65% and 104.93, rLES 23.56% and 92.19%; lBF 33.21% and 93.26% and rBF 24.70% and 81.16%; lTA 46.51% and 191.02%; rTA 12.75% and 125.76%; IGM 31.54% and 68.36%; rGM 95.95% and 96.43% respectively.Keywords: exoskeleton, giant puppet performers, load carriage system, surface electromyography
Procedia PDF Downloads 1062479 Allostatic Load as a Predictor of Adolescents’ Executive Function: A Longitudinal Network Analysis
Authors: Sipu Guo, Silin Huang
Abstract:
Background: Most studies investigate the link between executive function and allostatic load (AL) among adults aged 18 years and older. Studies differed regarding the specific biological indicators studied and executive functions accounted for. Specific executive functions may be differentially related to allostatic load. We investigated the comorbidities of executive functions and allostatic load via network analysis. Methods: We included 603 adolescents (49.84% girls; Mean age = 12.38, SD age = 1.79) from junior high school in rural China. Eight biological markers at T1 and four executive function tasks at T2 were used to evaluate networks. Network analysis was used to determine the network structure, core symptoms, and bridge symptoms in the AL-executive function network among rural adolescents. Results: The executive functions were related to 6 AL biological markers, not to cortisol and epinephrine. The most influential symptoms were inhibition control, cognitive flexibility, processing speed, and systolic blood pressure (SBP). SBP, dehydroepiandrosterone, and processing speed were the bridges through which AL was related to executive functions. dehydroepiandrosterone strongly predicted processing speed. The SBP was the biggest influencer in the entire network. Conclusions: We found evidence for differential relations between markers and executive functions. SBP was a driver in the network; dehydroepiandrosterone showed strong relations with executive function.Keywords: allostatic load, executive function, network analysis, rural adolescent
Procedia PDF Downloads 512478 Design and Performance Analysis of Resource Management Algorithms in Response to Emergency and Disaster Situations
Authors: Volkan Uygun, H. Birkan Yilmaz, Tuna Tugcu
Abstract:
This study focuses on the development and use of algorithms that address the issue of resource management in response to emergency and disaster situations. The presented system, named Disaster Management Platform (DMP), takes the data from the data sources of service providers and distributes the incoming requests accordingly both to manage load balancing and minimize service time, which results in improved user satisfaction. Three different resource management algorithms, which give different levels of importance to load balancing and service time, are proposed for the study. The first one is the Minimum Distance algorithm, which assigns the request to the closest resource. The second one is the Minimum Load algorithm, which assigns the request to the resource with the minimum load. Finally, the last one is the Hybrid algorithm, which combines the previous two approaches. The performance of the proposed algorithms is evaluated with respect to waiting time, success ratio, and maximum load ratio. The metrics are monitored from simulations, to find the optimal scheme for different loads. Two different simulations are performed in the study, one is time-based and the other is lambda-based. The results indicate that, the Minimum Load algorithm is generally the best in all metrics whereas the Minimum Distance algorithm is the worst in all cases and in all metrics. The leading position in performance is switched between the Minimum Distance and the Hybrid algorithms, as lambda values change.Keywords: emergency and disaster response, resource management algorithm, disaster situations, disaster management platform
Procedia PDF Downloads 3372477 Hybrid Bee Ant Colony Algorithm for Effective Load Balancing and Job Scheduling in Cloud Computing
Authors: Thomas Yeboah
Abstract:
Cloud Computing is newly paradigm in computing that promises a delivery of computing as a service rather than a product, whereby shared resources, software, and information are provided to computers and other devices as a utility (like the electricity grid) over a network (typically the Internet). As Cloud Computing is a newly style of computing on the internet. It has many merits along with some crucial issues that need to be resolved in order to improve reliability of cloud environment. These issues are related with the load balancing, fault tolerance and different security issues in cloud environment.In this paper the main concern is to develop an effective load balancing algorithm that gives satisfactory performance to both, cloud users and providers. This proposed algorithm (hybrid Bee Ant Colony algorithm) is a combination of two dynamic algorithms: Ant Colony Optimization and Bees Life algorithm. Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues whiles the Bees Life algorithm is used for optimization of job scheduling in cloud environment. The results of the proposed algorithm shows that the hybrid Bee Ant Colony algorithm outperforms the performances of both Ant Colony algorithm and Bees Life algorithm when evaluated the proposed algorithm performances in terms of Waiting time and Response time on a simulator called CloudSim.Keywords: ant colony optimization algorithm, bees life algorithm, scheduling algorithm, performance, cloud computing, load balancing
Procedia PDF Downloads 6272476 Performance Analysis of Domotics System as Real-Time Non-Intrusive Load Monitoring
Authors: Dauda A. Oladosu, Kamorudeen A Olaiya, Abdurahman Bello
Abstract:
The deployment of smart meters by utility providers to gather fine grained spatiotemporal consumption data has grossly influenced the consumers’ emotion and behavior towards energy utilization. The quest for reduction in power consumption is now a subject of concern and one the methods adopted by the consumers to achieve this is Non-intrusive Load (appliance) Monitoring. Hence, this work presents performance Analysis of Domotics System as a tool for load monitoring when integrated with Consumer Control Unit of residential building. The system was developed with basic elements which enhance remote sensing, DTMF (Dual Tone Multi-frequency) recognition and cryptic messaging when specific task was performed. To demonstrate its applicability and suitability, this prototype was used consistently for six months at different load demands and the utilities consumed were documented. The results obtained shows good response when phone dialed, and the packet delivery of feedback SMS was quite satisfactory, making the implemented system to be of good quality with affordable cost and performs the desired functions. Besides, comparative analysis showed notable reduction in energy consumption and invariably lessened electrical bill of the consumer.Keywords: automation, domotics, energy, load, remote, schedule
Procedia PDF Downloads 3172475 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.Keywords: ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation
Procedia PDF Downloads 3432474 Effect of the Soil-Foundation Interface Condition in the Determination of the Resistance Domain of Rigid Shallow Foundations
Authors: Nivine Abbas, Sergio Lagomarsino, Serena Cattari
Abstract:
The resistance domain of a generally loaded rigid shallow foundation is normally represented as an interaction diagram limited by a failure surface in the three dimensional (3D) load space (N, V, M), where N is the vertical centric load component, V is the horizontal load component and M is the bending moment component. Usually, this resistance domain is constructed neglecting the foundation sliding mechanism that take place at the level of soil-foundation interface once the applied horizontal load exceeds the interface frictional resistance of the foundation. This issue is translated in the literature by the fact that the failure limit in the (2D) load space (N, V) is constructed as a parabola having an initial slope, at the center of the coordinate system, that depends, in some works, only of the soil friction angle, and in other works, has an empirical value. However, considering a given geometry of the foundation lying on a given soil type, the initial slope of the failure limit must change, for instance, when varying the roughness of the foundation surface at its interface with the soil. The present study discusses the effect of the soil-foundation interface condition on the construction of the resistance domain, and proposes a correction to be applied to the failure limit in order to overcome this effect.Keywords: soil-foundation interface, sliding mechanism, soil shearing, resistance domain, rigid shallow foundation
Procedia PDF Downloads 4592473 Behavior of Helical Piles as Foundation of Photovoltaic Panels in Tropical Soils
Authors: Andrea J. Alarcón, Maxime Daulat, Raydel Lorenzo, Renato P. Da Cunha, Pierre Breul
Abstract:
Brazil has increased the use of renewable energy during the last years. Due to its sunshine and large surface area, photovoltaic panels founded in helical piles have been used to produce solar energy. Since Brazilian territory is mainly cover by highly porous structured tropical soils, when the helical piles are installed this structure is broken and its soil properties are modified. Considering the special characteristics of these soils, helical foundations behavior must be extensively studied. The first objective of this work is to determine the most suitable method to estimate the tensile capacity of helical piles in tropical soils. The second objective is to simulate the behavior of these piles in tropical soil. To obtain the rupture to assess load-displacement curves and the ultimate load, also a numerical modelling using Plaxis software was conducted. Lastly, the ultimate load and the load-displacements curves are compared with experimental values to validate the implemented model.Keywords: finite element, helical piles, modelling, tropical soil, uplift capacity
Procedia PDF Downloads 1722472 Effect of Size and Soil Characteristic on Contribution of Side and Tip Resistance of the Drilled Shafts Axial Load Carrying Capacity
Authors: Mehrak Zargaryaeghoubi, Masood Hajali
Abstract:
Drilled shafts are the most popular of deep foundations, because they have the capability that one single shaft can easily carry the entire load of a large column from a bridge or tall building. Drilled shaft may be an economical alternative to pile foundations because a pile cap is not needed, which not only reduces that expense, but also provides a rough surface in the border of soil and concrete to carry a more axial load. Due to the larger construction sizes of drilled shafts, they have an excellent axial load carrying capacity. Part of the axial load carrying capacity of the drilled shaft is resisted by the soil below the tip of the shaft which is tip resistance and the other part is resisted by the friction developed around the drilled shaft which is side resistance. The condition at the bottom of the excavation can affect the end bearing capacity of the drilled shaft. Also, type of the soil and size of the drilled shaft can affect the frictional resistance. The main loads applied on the drilled shafts are axial compressive loads. It is important to know how many percent of the maximum applied load will be shed inside friction and how much will be transferred to the base. The axial capacity of the drilled shaft foundation is influenced by the size of the drilled shaft, and soil characteristics. In this study, the effect of the size and soil characteristic will be investigated on the contribution of side resistance and end-bearing capacity. Also, the study presents a three-dimensional finite element modeling of a drilled shaft subjected to axial load using ANSYS. The top displacement and settlement of the drilled shaft are verified with analytical results. The soil profile is considered as Table 1 and for a drilled shaft with 7 ft diameter and 95 ft length the stresses in z-direction are calculated through the length of the shaft. From the stresses in z-direction through the length of the shaft the side resistance can be calculated and with the z-direction stress at the tip, the tip resistance can be calculated. The result of the side and tip resistance for this drilled shaft are compared with the analytical results.Keywords: Drilled Shaft Foundation, size and soil characteristic, axial load capacity, Finite Element
Procedia PDF Downloads 3792471 Seismic Performance of RC Frames Equipped with Friction Panels Under Different Slip Load Distributions
Authors: Neda Nabid, Iman Hajirasouliha, Sanaz Shirinbar
Abstract:
One of the most challenging issues in earthquake engineering is to find effective ways to reduce earthquake forces and damage to structural and non-structural elements under strong earthquakes. While friction dampers are the most efficient systems to improve the seismic performance of substandard structures, their optimum design is a challenging task. This research aims to find more appropriate slip load distribution pattern for efficient design of friction panels. Non-linear dynamic analyses are performed on 3, 5, 10, 15, and 20-story RC frame using Drain-2dx software to find the appropriate range of slip loads and investigate the effects of different distribution patterns (cantilever, uniform, triangle, and reverse triangle) under six different earthquake records. The results indicate that using triangle load distribution can significantly increase the energy dissipation capacity of the frame and reduce the maximum inter-storey drift, and roof displacement.Keywords: friction panels, slip load, distribution patterns, RC frames, energy dissipation
Procedia PDF Downloads 4322470 Features of Annual Junior Men's Kayak Training Loads in China
Authors: Liu Haitao, Wang Hengyong
Abstract:
This paper attempts to kayak, Zhaoqing City, the annual training program for young men, the deconstruction and analysis, describe the characteristics of their training load, Young people to extract the key issues for training kayak, kayak training young people to clarify in Zhaoqing City, and the cause of the bottlenecks. On one hand, scientifically arranging for the coaches to adjust training load and provide the basis for periodic structure, for young people to provide practical reference kayak athletes. On the other hand, through their training load research, enrich the theoretical system kayak training project for junior kayak athletes to provide a theoretical basis.Keywords: juniors, kayak, training programs, full year
Procedia PDF Downloads 5872469 Complementary Mathematical Model for Underwater Vehicles under Load Variation Test Conditions
Authors: Erim Koyun
Abstract:
This paper aim to construct a mathematical model for Underwater vehicles under load variation test conditions. Propeller effects on underwater vehicle are investigated. Body with counter rotating propeller model is analyzed by CFD methods, thus forces and moment are obtained. Propeller effects of vehicle’s hydrodynamic performance under load variation conditions will be investigated. Additionally, pressure contour is examined for differences between different load conditions. Axial force equation is established using hydrodynamic coefficients, which contains resistance, thrust, and additional coefficients occurs due to load variations. Additional coefficients helps to express completely axial force on underwater vehicle. When the vehicle accelerates, additional force occurs besides thrust force increment. This is propeller effect on the body. Hence, mathematical model cover this effect. For CFD analysis, the incompressible, three-dimensional, and unsteady Reynolds Averaged Navier-Stokes equations will be used Numerical results is verified with experimental results for verification. The overall goal of this study is to present complementary mathematical model for body with counter rotating propeller.Keywords: counter rotating propeller, CFD, hydrodynamic mathematic model, hydrodynamics analysis, thrust deduction
Procedia PDF Downloads 1352468 Treatment of Grey Water from Different Restaurants in FUTA Using Fungi
Authors: F. A. Ogundolie, F. Okogue, D. V. Adegunloye
Abstract:
Greywater samples were obtained from three restaurants in the Federal University of Technology; Akure coded SSR, MGR and GGR. Fungi isolates obtained include Rhizopus stolonifer, Aspergillus niger, Mucor mucedo, Aspergillus flavus, Saccharomyces cerevisiae. Of these fungi isolates obtained, R. stolonifer, A. niger and A. flavus showed significant degradation ability on grey water and was used for this research. A simple bioreactor was constructed using biodegradation process in purification of waste water samples. Waste water undergoes primary treatment; secondary treatment involves the introduction of the isolated organisms into the waste water sample and the tertiary treatment which involved the use of filter candle and the sand bed filtration process to achieve the end product without the use of chemicals. A. niger brought about significant reduction in both the bacterial load and the fungi load of the greywater samples of the three respective restaurants with a reduction of (1.29 × 108 to 1.57 × 102 cfu/ml; 1.04 × 108 to 1.12 × 102 cfu/ml and 1.72 × 108 to 1.60 × 102 cfu/ml) for bacterial load in SSR, MGR and GGR respectively. Reduction of 2.01 × 104 to 1.2 × 101; 1.72 × 104 to 1.1 × 101, and 2.50 × 104 to 1.5 × 101 in fungi load from SSR, MGR and GGR respectively. Result of degradation of these selected waste water by the fungi showed that A. niger was probably more potent in the degradation of organic matter and hence, A. niger could be used in the treatment of wastewater.Keywords: Aspergillus niger, greywater, bacterial, fungi, microbial load, bioreactor, biodegradation, purification, organic matter and filtration
Procedia PDF Downloads 3112467 Demand Response from Residential Air Conditioning Load Using a Programmable Communication Thermostat
Authors: Saurabh Chanana, Monika Arora
Abstract:
Demand response is getting increased attention these days due to the increase in electricity demand and introduction of renewable resources in the existing power grid. Traditionally demand response programs involve large industrial consumers but with technological advancement, demand response is being implemented for small residential and commercial consumers also. In this paper, demand response program aims to reduce the peak demand as well as overall energy consumption of the residential customers. Air conditioners are the major reason of peak load in residential sector in summer, so a dynamic model of air conditioning load with thermostat action has been considered for applying demand response programs. A programmable communicating thermostat (PCT) is a device that uses real time pricing (RTP) signals to control the thermostat setting. A new model incorporating PCT in air conditioning load has been proposed in this paper. Results show that introduction of PCT in air conditioner is useful in reducing the electricity payments of customers as well as reducing the peak demand.Keywords: demand response, home energy management, programmable communicating thermostat, thermostatically controlled appliances
Procedia PDF Downloads 6062466 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System
Authors: Dana M. Ragab, Jasim A. Ghaeb
Abstract:
The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.Keywords: three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality
Procedia PDF Downloads 1942465 Hysteretic Behavior of the Precast Concrete Column with Head Splice Sleeve Connection
Authors: Seo Soo-Yeon, Kim Sang-Ku, Noh Sang-Hyun, Lee Ji-Eun, Kim Seol-Ki, Lim Jong-Wook
Abstract:
This paper presents a test result to find the structural capacity of Hollow-Precast Concrete (HPC) column with Head-Splice Sleeve (HSS) for the connection of bars under horizontal cyclic load. Two Half-scaled HPC column specimens were made with the consideration of construction process in site. The difference between the HPC specimens is the location of HSS for bar connection. The location of the first one is on the bottom slab or foundation while the other is above the bottom slab or foundation. Reinforced concrete (RC) column was also made for the comparison. In order to evaluate the hysteretic behavior of the specimens, horizontal cyclic load was applied to the top of specimen under constant axial load. From the test, it is confirmed that the HPC columns with HSS have enough structural capacity that can be emulated to RC column. This means that the HPC column with HSS can be used in the moment resisting frame system.Keywords: structural capacity, hollow-precast concrete column, head-splice sleeve, horizontal cyclic load
Procedia PDF Downloads 3712464 Dynamic Economic Load Dispatch Using Quadratic Programming: Application to Algerian Electrical Network
Authors: A. Graa, I. Ziane, F. Benhamida, S. Souag
Abstract:
This paper presents a comparative analysis study of an efficient and reliable quadratic programming (QP) to solve economic load dispatch (ELD) problem with considering transmission losses in a power system. The proposed QP method takes care of different unit and system constraints to find optimal solution. To validate the effectiveness of the proposed QP solution, simulations have been performed using Algerian test system. Results obtained with the QP method have been compared with other existing relevant approaches available in literatures. Experimental results show a proficiency of the QP method over other existing techniques in terms of robustness and its optimal search.Keywords: economic dispatch, quadratic programming, Algerian network, dynamic load
Procedia PDF Downloads 5642463 Estimation of Sediment Transport into a Reservoir Dam
Authors: Kiyoumars Roushangar, Saeid Sadaghian
Abstract:
Although accurate sediment load prediction is very important in planning, designing, operating and maintenance of water resources structures, the transport mechanism is complex, and the deterministic transport models are based on simplifying assumptions often lead to large prediction errors. In this research, firstly, two intelligent ANN methods, Radial Basis and General Regression Neural Networks, are adopted to model of total sediment load transport into Madani Dam reservoir (north of Iran) using the measured data and then applicability of the sediment transport methods developed by Engelund and Hansen, Ackers and White, Yang, and Toffaleti for predicting of sediment load discharge are evaluated. Based on comparison of the results, it is found that the GRNN model gives better estimates than the sediment rating curve and mentioned classic methods.Keywords: sediment transport, dam reservoir, RBF, GRNN, prediction
Procedia PDF Downloads 4952462 A Rapid Reinforcement Technique for Columns by Carbon Fiber/Epoxy Composite Materials
Authors: Faruk Elaldi
Abstract:
There are lots of concrete columns and beams around in our living cities. Those columns are mostly open to aggressive environmental conditions and earthquakes. Mostly, they are deteriorated by sand, wind, humidity and other external applications at times. After a while, these beams and columns need to be repaired. Within the scope of this study, for reinforcement of concrete columns, samples were designed and fabricated to be strengthened with carbon fiber reinforced composite materials and conventional concrete encapsulation and followed by, and they were put into the axial compression test to determine load-carrying performance before column failure. In the first stage of this study, concrete column design and mold designs were completed for a certain load-carrying capacity. Later, the columns were exposed to environmental deterioration in order to reduce load-carrying capacity. To reinforce these damaged columns, two methods were applied, “concrete encapsulation” and the other one “wrapping with carbon fiber /epoxy” material. In the second stage of the study, the reinforced columns were applied to the axial compression test and the results obtained were analyzed. Cost and load-carrying performance comparisons were made and it was found that even though the carbon fiber/epoxy reinforced method is more expensive, this method enhances higher load-carrying capacity and reduces the reinforcement processing period.Keywords: column reinforcement, composite, earth quake, carbon fiber reinforced
Procedia PDF Downloads 1842461 Pupil Size: A Measure of Identification Memory in Target Present Lineups
Authors: Camilla Elphick, Graham Hole, Samuel Hutton, Graham Pike
Abstract:
Pupil size has been found to change irrespective of luminosity, suggesting that it can be used to make inferences about cognitive processes, such as cognitive load. To see whether identifying a target requires a different cognitive load to rejecting distractors, the effect of viewing a target (compared with viewing distractors) on pupil size was investigated using a sequential video lineup procedure with two lineup sessions. Forty one participants were chosen randomly via the university. Pupil sizes were recorded when viewing pre target distractors and post target distractors and compared to pupil size when viewing the target. Overall, pupil size was significantly larger when viewing the target compared with viewing distractors. In the first session, pupil size changes were significantly different between participants who identified the target (Hits) and those who did not. Specifically, the pupil size of Hits reduced significantly after viewing the target (by 26%), suggesting that cognitive load reduced following identification. The pupil sizes of Misses (who made no identification) and False Alarms (who misidentified a distractor) did not reduce, suggesting that the cognitive load remained high in participants who failed to make the correct identification. In the second session, pupil sizes were smaller overall, suggesting that cognitive load was smaller in this session, and there was no significant difference between Hits, Misses and False Alarms. Furthermore, while the frequency of Hits increased, so did False Alarms. These two findings suggest that the benefits of including a second session remain uncertain, as the second session neither provided greater accuracy nor a reliable way to measure it. It is concluded that pupil size is a measure of face recognition strength in the first session of a target present lineup procedure. However, it is still not known whether cognitive load is an adequate explanation for this, or whether cognitive engagement might describe the effect more appropriately. If cognitive load and cognitive engagement can be teased apart with further investigation, this would have positive implications for understanding eyewitness identification. Nevertheless, this research has the potential to provide a tool for improving the reliability of lineup procedures.Keywords: cognitive load, eyewitness identification, face recognition, pupillometry
Procedia PDF Downloads 4042460 On the Design of Robust Governors of Steam Power Systems Using Polynomial and State-Space Based H∞ Techniques: A Comparative Study
Authors: Rami A. Maher, Ibraheem K. Ibraheem
Abstract:
This work presents a comparison study between the state-space and polynomial methods for the design of the robust governor for load frequency control of steam turbine power systems. The robust governor is synthesized using the two approaches and the comparison is extended to include time and frequency domains performance, controller order, and uncertainty representation, weighting filters, optimality and sub-optimality. The obtained results are represented through tables and curves with reasons of similarities and dissimilarities.Keywords: robust control, load frequency control, steam turbine, H∞-norm, system uncertainty, load disturbance
Procedia PDF Downloads 4062459 Leather Quality of Some Sudan Goats under Range Condition
Authors: Mohammed Alhadi Ebrahiem
Abstract:
This study was designed to investigate the effect of breed and feeding level before slaughter on the skin\leather quality of the three main breeds of Sudan goats. Thirty (30) pieces of fresh skins from the three goat breeds (an average age 1-1.5 years) were chosen for the study purpose. For whole variations between the three breeds in two levels of feeding (poor and rich pastures) Complete Randomized Design (CRD) was used for data analysis. The results revealed that, leather weight (kg), elongation%, tensile strength (kg/cm2), cracking load (kg), thickness (mm), tear load (kg/cm) and chrome% findings were significantly affected (P≥0.05) by breed variation. Flexibility, moisture%, Ash% and fat % were not significantly affected (P ≥ 0.05) by breed. On the other hand, skin weight (kg), Cracking load (kg), Tear load (kg/cm) and Ash% were significantly affected (P≥0.05) by pasture quality. While Leather Elongation%, Tensile strength (kg/cm2), Thickness (mm), Flexibility, Moisture%, Fat % and Chrome% were not statistically (P ≥ 0.05) affected by pastures quality.Keywords: skin\leather quality, goats leather, natural pasture, Sudan
Procedia PDF Downloads 3582458 The Correlation between Nasal Resistance and Obligatory Oronasal Switching Point in Non-Athletic Non-Smoking Healthy Men
Authors: Amir H. Bayat, Mohammad R. Alipour, Saeed Khamneh
Abstract:
As the respiration via nose is important physiologically, many studies have been done about nasal breathing that switches to oronasal breathing during exercise. The aim of this study was to assess the role of anterior nasal resistance as one of the effective factors on this switching. Twelve young, healthy, non-athletic and non-smoker male volunteers with normal BMI were selected after physical examination and participated in exercise protocol, including measurement of the ventilation, work load and oronasal switching point (OSP) during exercise, and anterior rhinomanometry at rest. The protocol was an incremental exercise with 25 watt increase in work load per minute up to OSP occurrence. There was a significant negative correlation between resting total anterior nasal resistance with OSP, work load and ventilation (p<0.05, r= -0.709). Resting total anterior nasal resistance can be considered as an important factor on OSP occurrence. So, the reducing the resistance of nasal passage may increase nasal respiration tolerance for longer time during exercise.Keywords: anterior nasal resistance, exercise, OSP, ventilation, work load
Procedia PDF Downloads 4022457 Study on Shape Coefficient of Large Statue Building Based on CFD
Authors: Wang Guangda, Ma Jun, Zhao Caiqi, Pan Rui
Abstract:
Wind load is the main control load of large statue structures. Due to the irregular plane and elevation and uneven outer contour, statues’ shape coefficient can not pick up from the current code. Currently a common practice is based on wind tunnel test. But this method is time-consuming and high cost. In this paper, based on the fundamental theory of CFD, using fluid dynamics software of Fluent 15.0, a few large statue structure of 40 to 70m high, which are located in china , including large fairy statues and large Buddha statues, are analyzed by numerical wind tunnel. The results are contrasted with the recommended values in load code and the wind tunnel test results respectively. Results show that the shape coefficient has a good reliability by the numerical wind tunnel method of this kind of building. This will has a certain reference value of wind load values for large statues’ structure.Keywords: large statue structure, shape coefficient, irregular structure, wind tunnel test, numerical wind tunnel simulation
Procedia PDF Downloads 3752456 Physical Interaction Mappings: Utilizing Cognitive Load Theory in Order to Enhance Physical Product Interaction
Authors: Bryan Young, Andrew Wodehouse, Marion Sheridan
Abstract:
The availability of working memory has long been identified as a critical aspect of an instructional design. Many conventional instructional procedures impose irrelevant or unrelated cognitive loads on the learner due to the fact that they were created without contemplation, or understanding, of cognitive work load. Learning to physically operate traditional products can be viewed as a learning process akin to any other. As such, many of today's products, such as cars, boats, and planes, which have traditional controls that predate modern user-centered design techniques may be imposing irrelevant or unrelated cognitive loads on their operators. The goal of the research was to investigate the fundamental relationships between physical inputs, resulting actions, and learnability. The results showed that individuals can quickly adapt to input/output reversals across dimensions, however, individuals struggle to cope with the input/output when the dimensions are rotated due to the resulting increase in cognitive load.Keywords: cognitive load theory, instructional design, physical product interactions, usability design
Procedia PDF Downloads 535