Search results for: Bernoulli schedule server vacations
571 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted
Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova
Abstract:
The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.Keywords: communication protocol, transmission optimization, data acquisition, system architecture
Procedia PDF Downloads 520570 QoS-CBMG: A Model for e-Commerce Customer Behavior
Authors: Hoda Ghavamipoor, S. Alireza Hashemi Golpayegani
Abstract:
An approach to model the customer interaction with e-commerce websites is presented. Considering the service quality level as a predictive feature, we offer an improved method based on the Customer Behavior Model Graph (CBMG), a state-transition graph model. To derive the Quality of Service sensitive-CBMG (QoS-CBMG) model, process-mining techniques is applied to pre-processed website server logs which are categorized as ‘buy’ or ‘visit’. Experimental results on an e-commerce website data confirmed that the proposed method outperforms CBMG based method.Keywords: customer behavior model, electronic commerce, quality of service, customer behavior model graph, process mining
Procedia PDF Downloads 416569 Effects of Bedside Rehabilitation of Stroke Patients in Activities and Daily Living Function
Authors: Chiung-Hua Chan, Fang-Yuan Chang, Li-Chi Huang
Abstract:
Stroke patients received regular rehabilitation therapy have measurable advancement in muscle strength, balance, control upper and lower physical activity, walking speed and endurance. This study aimed to investigate the relationship between increases in bedside rehabilitation time and the function of activities and daily living (ADL) in stroke patients. The study was quasi-experimental research design and randomized sampling. The researcher collected 12 stroke patients of stroke patients transferred to rehabilitation ward unit of a medical center during 1 January to 31 March 2017. All participants then were assigned to case group and control group. Data collection was through direct observation of assessment ADL of stroke patients by researchers on Day 1. Case group received regular rehabilitation, exercises in increase of bedside rehabilitation schedules exercise programs by ward nurses. Bedside rehabilitation exercise content with physical, functional and linguistic frequency and time, Control group only give routine rehabilitation schedule care. This was a randomized study performed in 12 patients who were stroke patients and transferred to rehabilitation ward unit of a medical center during 1 January to 31 March 2017. First, the researcher explained the purpose and method of the study to the patients or the family members. All participants completed a consent informed before participation. Patients were randomly assigned to a ‘bedside rehabilitation program’ (BRP) group and a control (C) group. The BRP group received bedside rehabilitation schedules exercise programs by ward nurses. while the C group did not. Both groups received routine rehabilitation schedule. The Functional Independence Measure was used to measure outcome at the first, 14th and the 28th day of rehabilitation ward admitted. Data were analyzed using SPSS 22.0. After implementation of standardized ‘‘bedside rehabilitation program’, the results were: (1) the increasing of bedside rehabilitation had significant difference (p<.05) in promotion ADL function of stroke patients (2) the extend time of the bedside rehabilitation has significant difference (p<.05) in promotion ADL function of stroke patients compared with the control group. This study demonstrated that the ‘bedside rehabilitation program’ enhanced the ADL function in stroke patients. The nurses and rehabilitation ward managers need to understand that the extend time and frequency of rehabilitation provide a chance to enhanced the ADL function of stroke patients.Keywords: stroke, bedside rehabilitation, functional activity, ADL
Procedia PDF Downloads 136568 Daily Probability Model of Storm Events in Peninsular Malaysia
Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain
Abstract:
Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.Keywords: daily probability model, monsoon seasons, regions, storm events
Procedia PDF Downloads 345567 Secure Image Retrieval Based on Orthogonal Decomposition under Cloud Environment
Authors: Y. Xu, L. Xiong, Z. Xu
Abstract:
In order to protect data privacy, image with sensitive or private information needs to be encrypted before being outsourced to the cloud. However, this causes difficulties in image retrieval and data management. A secure image retrieval method based on orthogonal decomposition is proposed in the paper. The image is divided into two different components, for which encryption and feature extraction are executed separately. As a result, cloud server can extract features from an encrypted image directly and compare them with the features of the queried images, so that the user can thus obtain the image. Different from other methods, the proposed method has no special requirements to encryption algorithms. Experimental results prove that the proposed method can achieve better security and better retrieval precision.Keywords: secure image retrieval, secure search, orthogonal decomposition, secure cloud computing
Procedia PDF Downloads 487566 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring
Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra
Abstract:
Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application
Procedia PDF Downloads 100565 Validation and Interpretation about Precedence Diagram for Start to Finish Relationship by Graph Theory
Authors: Naoki Ohshima, Ken Kaminishi
Abstract:
Four types of dependencies, which are 'Finish-to-start', 'Finish-to-finish', 'Start-to-start' and 'Start-to-finish (S-F)' as logical relationship are modeled based on the definition by 'the predecessor activity is defined as an activity to come before a dependent activity in a schedule' in PMBOK. However, it is found a self-contradiction in the precedence diagram for S-F relationship by PMBOK. In this paper, author would like to validate logical relationship of S-F by Graph Theory and propose a new interpretation of the precedence diagram for S-F relationship.Keywords: project time management, sequence activity, start-to-finish relationship, precedence diagram, PMBOK
Procedia PDF Downloads 271564 Crowdsensing Project in the Brazilian Municipality of Florianópolis for the Number of Visitors Measurement
Authors: Carlos Roberto De Rolt, Julio da Silva Dias, Rafael Tezza, Luca Foschini, Matteo Mura
Abstract:
The seasonal population fluctuation presents a challenge to touristic cities since the number of inhabitants can double according to the season. The aim of this work is to develop a model that correlates the waste collected with the population of the city and also allow cooperation between the inhabitants and the local government. The model allows public managers to evaluate the impact of the seasonal population fluctuation on waste generation and also to improve planning resource utilization throughout the year. The study uses data from the company that collects the garbage in Florianópolis, a Brazilian city that presents the profile of a city that attracts tourists due to numerous beaches and warm weather. The fluctuations are caused by the number of people that come to the city throughout the year for holidays, summer time vacations or business events. Crowdsensing will be accomplished through smartphones with access to an app for data collection, with voluntary participation of the population. Crowdsensing participants can access information collected in waves for this portal. Crowdsensing represents an innovative and participatory approach which involves the population in gathering information to improve the quality of life. The management of crowdsensing solutions plays an essential role given the complexity to foster collaboration, establish available sensors and collect and process the collected data. Practical implications of this tool described in this paper refer, for example, to the management of seasonal tourism in a large municipality, whose public services are impacted by the floating of the population. Crowdsensing and big data support managers in predicting the arrival, permanence, and movement of people in a given urban area. Also, by linking crowdsourced data to databases from other public service providers - e.g., water, garbage collection, electricity, public transport, telecommunications - it is possible to estimate the floating of the population of an urban area affected by seasonal tourism. This approach supports the municipality in increasing the effectiveness of resource allocation while, at the same time, increasing the quality of the service as perceived by citizens and tourists.Keywords: big data, dashboards, floating population, smart city, urban management solutions
Procedia PDF Downloads 290563 The Comparative Study of Binary Artifact Repository Managers
Authors: Evgeny Chugunnyy, Alena Gerasimova, Kirill Chernyavskiy, Alexander Krasnov
Abstract:
One of the primary component of Continuous deployment (CD) is a binary artifact repository — the place where artifacts are stored with metadata in a structured way. The binary artifact repository manager (BARM) is a software, which implements this repository logic and exposes a public application programming interface (API) for managing these artifacts. Almost every programming language ecosystem has its own artifact repository kind. During creating Artipie — BARM constructor and server, we analyzed and implemented a lot of different artifact repositories. In this paper we present criterias for comparing artifact repositories, and analyze the most popular repositories using these metrics. We also describe some of the notable features of different repositories. This paper aimed to help people who are creating, maintaining or optimizing software repository and CI tools.Keywords: artifact, repository, continuous deployment, build automation, artifacts management
Procedia PDF Downloads 151562 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 60561 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 40560 A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities
Authors: J. Kaabi, Y. Harrath
Abstract:
This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm.Keywords: flow shop scheduling, genetic algorithm, maintenance, priority rules
Procedia PDF Downloads 471559 A Wireless Sensor Network Protocol for a Car Parking Space Monitoring System
Authors: Jung-Ho Moon, Myung-Gon Yoon, Tae Kwon Ha
Abstract:
This paper presents a wireless sensor network protocol for a car parking monitoring system. A wireless sensor network for the purpose is composed of multiple sensor nodes, a sink node, a gateway, and a server. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. The sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The operations of the sink and sensor nodes are described in detail along with flow diagrams. The protocol allows a low-duty cycle operation of the sensor nodes and a flexible adjustment of the threshold value used by the sensor nodes.Keywords: car parking monitoring, sensor node, wireless sensor network, network protocol
Procedia PDF Downloads 538558 Parallelization of Random Accessible Progressive Streaming of Compressed 3D Models over Web
Authors: Aayushi Somani, Siba P. Samal
Abstract:
Three-dimensional (3D) meshes are data structures, which store geometric information of an object or scene, generally in the form of vertices and edges. Current technology in laser scanning and other geometric data acquisition technologies acquire high resolution sampling which leads to high resolution meshes. While high resolution meshes give better quality rendering and hence is used often, the processing, as well as storage of 3D meshes, is currently resource-intensive. At the same time, web applications for data processing have become ubiquitous owing to their accessibility. For 3D meshes, the advancement of 3D web technologies, such as WebGL, WebVR, has enabled high fidelity rendering of huge meshes. However, there exists a gap in ability to stream huge meshes to a native client and browser application due to high network latency. Also, there is an inherent delay of loading WebGL pages due to large and complex models. The focus of our work is to identify the challenges faced when such meshes are streamed into and processed on hand-held devices, owing to its limited resources. One of the solutions that are conventionally used in the graphics community to alleviate resource limitations is mesh compression. Our approach deals with a two-step approach for random accessible progressive compression and its parallel implementation. The first step includes partition of the original mesh to multiple sub-meshes, and then we invoke data parallelism on these sub-meshes for its compression. Subsequent threaded decompression logic is implemented inside the Web Browser Engine with modification of WebGL implementation in Chromium open source engine. This concept can be used to completely revolutionize the way e-commerce and Virtual Reality technology works for consumer electronic devices. These objects can be compressed in the server and can be transmitted over the network. The progressive decompression can be performed on the client device and rendered. Multiple views currently used in e-commerce sites for viewing the same product from different angles can be replaced by a single progressive model for better UX and smoother user experience. Can also be used in WebVR for commonly and most widely used activities like virtual reality shopping, watching movies and playing games. Our experiments and comparison with existing techniques show encouraging results in terms of latency (compressed size is ~10-15% of the original mesh), processing time (20-22% increase over serial implementation) and quality of user experience in web browser.Keywords: 3D compression, 3D mesh, 3D web, chromium, client-server architecture, e-commerce, level of details, parallelization, progressive compression, WebGL, WebVR
Procedia PDF Downloads 170557 Customer Satisfaction on Reliability Dimension of Service Quality in Indian Higher Education
Authors: Rajasekhar Mamilla, G. Janardhana, G. Anjan Babu
Abstract:
The present research studies analyses the students’ satisfaction with university performance regarding the reliability dimension, ability of professors and staff to perform the promised services with quality to students in the post-graduate courses offered by Sri Venkateswara University in India. The research is done with the notion that the student compares the perceived performance with prior expectations. Customer satisfaction is seen as the outcome of this comparison. The sample respondents were administered with the schedule based on the stratified random technique for this study. Statistical techniques such as factor analysis, t-test and correlation analysis were used to accomplish the respective objectives of the study.Keywords: satisfaction, reliability, service quality, customer
Procedia PDF Downloads 550556 The Primitive Code-Level Design Patterns for Distributed Programming
Authors: Bing Li
Abstract:
The primitive code-level design patterns (PDP) are the rudimentary programming elements to develop any distributed systems in the generic distributed programming environment, GreatFree. The PDP works with the primitive distributed application programming interfaces (PDA), the distributed modeling, and the distributed concurrency for scaling-up. They not only hide developers from underlying technical details but also support sufficient adaptability to a variety of distributed computing environments. Programming with them, the simplest distributed system, the lightweight messaging two-node client/server (TNCS) system, is constructed rapidly with straightforward and repeatable behaviors, copy-paste-replace (CPR). As any distributed systems are made up of the simplest ones, those PDAs, as well as the PDP, are generic for distributed programming.Keywords: primitive APIs, primitive code-level design patterns, generic distributed programming, distributed systems, highly patterned development environment, messaging
Procedia PDF Downloads 194555 Application of IF Rough Data on Knowledge Towards Malaria of Rural Tribal Communities in Tripura
Authors: Chhaya Gangwal, R. N. Bhaumik, Shishir Kumar
Abstract:
Handling uncertainty and impreciseness of knowledge appears to be a challenging task in Information Systems. Intuitionistic fuzzy (IF) and rough set theory enhances databases by allowing it for the management of uncertainty and impreciseness. This paper presents a new efficient query optimization technique for the multi-valued or imprecise IF rough database. The usefulness of this technique was illustrated on malaria knowledge from the rural tribal communities of Tripura where most of the information is multi-valued and imprecise. Then, the querying about knowledge on malaria is executed into SQL server to make the implementation of IF rough data querying simpler.Keywords: intuitionistic fuzzy set, rough set, relational database, IF rough relational database
Procedia PDF Downloads 446554 Low-Cost VoIP University Solution
Authors: Carlos Henrique Rodrigues de Oliveira, Luis Carlos Costa Fonseca, Caio de Castro Torres, Daniel Gusmão Pereira, Luiz Ricardo Souza Ripardo, Magno Castro Moraes, Ana Paula Ferreira Costa, Luiz Carlos Chaves Lima Junior, Aurelianny Almeida da Cunha
Abstract:
VoIP University is a communication solution based on the IP protocol. This solution was proposed to modernize and save on communication, which required the development of Android, iOS, and Windows applications and a web service server. This solution allows integration with management system databases to create and manage a list of user extensions. VoIP UEMA was the first deployed project of VoIP University. MOS subjective voice quality test was done, and the results indicated good quality. A financial analysis revealed that annual spending on telephone bills decreased by more than 97 %.Keywords: VoIP eTec, VoIP UEMA, VoIP University, VoIP Valen
Procedia PDF Downloads 63553 The Effect of Mood and Creativity on Product Creativity: Using LEGO as a Hands-On Activity
Authors: Kaewmart Pongakkasira
Abstract:
This study examines whether construction of LEGO reflects affective states and creativity as the clue to develop effective learning resources for classrooms. For this purpose, participants are instructed to complete a hands-on activity by using LEGO. Prior to the experiment, participants’ affective states and creativity are measured by the Positive and Negative Affect Schedule (PANAS) and the Alternate Uses Task (AUT), respectively. Then, subjects are asked to freely combine LEGO as unusual as possible versus constraint LEGO combination and named the LEGO products. Creativity of the LEGO products is scored for originality and abstractness of titles. It is hypothesized that individuals’ mood and creativity may affect product creativity. If so, there might be correlation among the three parameters.Keywords: affective states, creativity, hands-on activity, LEGO
Procedia PDF Downloads 373552 The Fluid Limit of the Critical Processor Sharing Tandem Queue
Authors: Amal Ezzidani, Abdelghani Ben Tahar, Mohamed Hanini
Abstract:
A sequence of finite tandem queue is considered for this study. Each one has a single server, which operates under the egalitarian processor sharing discipline. External customers arrive at each queue according to a renewal input process and having a general service times distribution. Upon completing service, customers leave the current queue and enter to the next. Under mild assumptions, including critical data, we prove the existence and the uniqueness of the fluid solution. For asymptotic behavior, we provide necessary and sufficient conditions for the invariant state and the convergence to this invariant state. In the end, we establish the convergence of a correctly normalized state process to a fluid limit characterized by a system of algebraic and integral equations.Keywords: fluid limit, fluid model, measure valued process, processor sharing, tandem queue
Procedia PDF Downloads 325551 Design of Middleware for Mobile Group Control in Physical Proximity
Authors: Moon-Tak Oh, Kyung-Min Park, Tae-Eun Yoon, Hoon Choi, Chil-Woo Lee
Abstract:
This paper is about middle-ware which enables group-user applications on mobile devices in physical proximity to interact with other devices without intervention of a central server. Requirements of the middle-ware are identified from service usage scenarios, and the functional architecture of the middle-ware is specified. These requirements include group management, synchronization, and resource management. Group Management needs to provide various capabilities to such applications with respect to managing multiple users (e.g., creation of groups, discovery of group or individual users, member join/leave, election of a group manager and service-group association) using D2D communication technology. We designed the middle-ware for the above requirements on the Android platform.Keywords: group user, middleware, mobile service, physical proximity
Procedia PDF Downloads 507550 Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports
Authors: Babak Safaei, Ahmad Ghanbari, Arash Rahmani
Abstract:
In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios.Keywords: double-walled carbon nanotubes, nonlocal continuum elasticity, free vibrations, molecular dynamics simulation, generalized differential quadrature method
Procedia PDF Downloads 296549 Rescheduling of Manufacturing Flow Shop under Different Types of Disruption
Authors: M. Ndeley
Abstract:
Now our days, Almost all manufacturing facilities need to use production planning and scheduling systems to increase productivity and to reduce production costs. Real-life production operations are subject to a large number of unexpected disruptions that may invalidate the original schedules. In these cases, rescheduling is essential to minimize the impact on the performance of the system. In this work we consider flow shop layouts that have seldom been studied in the rescheduling literature. We generate and employ three types of disruption that interrupt the original schedules simultaneously. We develop rescheduling algorithms to finally accomplish the twofold objective of establishing a standard framework on the one hand; and proposing rescheduling methods that seek a good trade-off between schedule quality and stability on the other.Keywords: flow shop scheduling, uncertainty, rescheduling, stability
Procedia PDF Downloads 441548 Job Shop Scheduling: Classification, Constraints and Objective Functions
Authors: Majid Abdolrazzagh-Nezhad, Salwani Abdullah
Abstract:
The job-shop scheduling problem (JSSP) is an important decision facing those involved in the fields of industry, economics and management. This problem is a class of combinational optimization problem known as the NP-hard problem. JSSPs deal with a set of machines and a set of jobs with various predetermined routes through the machines, where the objective is to assemble a schedule of jobs that minimizes certain criteria such as makespan, maximum lateness, and total weighted tardiness. Over the past several decades, interest in meta-heuristic approaches to address JSSPs has increased due to the ability of these approaches to generate solutions which are better than those generated from heuristics alone. This article provides the classification, constraints and objective functions imposed on JSSPs that are available in the literature.Keywords: job-shop scheduling, classification, constraints, objective functions
Procedia PDF Downloads 447547 Video Games Technologies Approach for Their Use in the Classroom
Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present the advances corresponding to the implementation of a set of educational materials based on video games technologies. Essentially these materials correspond to projects developed and under development as bachelor thesis of some Computer Engineering students of the Engineering School. All materials are based on the Unity SDK; integrating some devices such as kinect, leap motion, oculus rift, data gloves and Google cardboard. In detail, we present a virtual reality application for neurosciences students (suitable for neural rehabilitation), and virtual scenes for the Google cardboard, which will be used by the psychology students for phobias treatment. The objective is these materials will be located at a server to be available for all students, in the classroom or in the cloud, considering the use of smartphones has been widely extended between students.Keywords: virtual reality, interactive technologies, video games, educational materials
Procedia PDF Downloads 658546 Estimation of Train Operation Using an Exponential Smoothing Method
Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono
Abstract:
The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.Keywords: exponential smoothing method, open data, operation estimation, train schedule
Procedia PDF Downloads 388545 Composing Method of Decision-Making Function for Construction Management Using Active 4D/5D/6D Objects
Authors: Hyeon-Seung Kim, Sang-Mi Park, Sun-Ju Han, Leen-Seok Kang
Abstract:
As BIM (Building Information Modeling) application continually expands, the visual simulation techniques used for facility design and construction process information are becoming increasingly advanced and diverse. For building structures, BIM application is design - oriented to utilize 3D objects for conflict management, whereas for civil engineering structures, the usability of nD object - oriented construction stage simulation is important in construction management. Simulations of 5D and 6D objects, for which cost and resources are linked along with process simulation in 4D objects, are commonly used, but they do not provide a decision - making function for process management problems that occur on site because they mostly focus on the visual representation of current status for process information. In this study, an nD CAD system is constructed that facilitates an optimized schedule simulation that minimizes process conflict, a construction duration reduction simulation according to execution progress status, optimized process plan simulation according to project cost change by year, and optimized resource simulation for field resource mobilization capability. Through this system, the usability of conventional simple simulation objects is expanded to the usability of active simulation objects with which decision - making is possible. Furthermore, to close the gap between field process situations and planned 4D process objects, a technique is developed to facilitate a comparative simulation through the coordinated synchronization of an actual video object acquired by an on - site web camera and VR concept 4D object. This synchronization and simulation technique can also be applied to smartphone video objects captured in the field in order to increase the usability of the 4D object. Because yearly project costs change frequently for civil engineering construction, an annual process plan should be recomposed appropriately according to project cost decreases/increases compared with the plan. In the 5D CAD system provided in this study, an active 5D object utilization concept is introduced to perform a simulation in an optimized process planning state by finding a process optimized for the changed project cost without changing the construction duration through a technique such as genetic algorithm. Furthermore, in resource management, an active 6D object utilization function is introduced that can analyze and simulate an optimized process plan within a possible scope of moving resources by considering those resources that can be moved under a given field condition, instead of using a simple resource change simulation by schedule. The introduction of an active BIM function is expected to increase the field utilization of conventional nD objects.Keywords: 4D, 5D, 6D, active BIM
Procedia PDF Downloads 278544 Comprehensive Approach to Control Virus Infection and Energy Consumption in An Occupant Classroom
Authors: SeyedKeivan Nateghi, Jan Kaczmarczyk
Abstract:
People nowadays spend most of their time in buildings. Accordingly, maintaining a good quality of indoor air is very important. New universal matters related to the prevalence of Covid-19 also highlight the importance of indoor air conditioning in reducing the risk of virus infection. Cooling and Heating of a house will provide a suitable zone of air temperature for residents. One of the significant factors in energy demand is energy consumption in the building. In general, building divisions compose more than 30% of the world's fundamental energy requirement. As energy demand increased, greenhouse effects emerged that caused global warming. Regardless of the environmental damage to the ecosystem, it can spread infectious diseases such as malaria, cholera, or dengue to many other parts of the world. With the advent of the Covid-19 phenomenon, the previous instructions to reduce energy consumption are no longer responsive because they increase the risk of virus infection among people in the room. Two problems of high energy consumption and coronavirus infection are opposite. A classroom with 30 students and one teacher in Katowice, Poland, considered controlling two objectives simultaneal. The probability of transmission of the disease is calculated from the carbon dioxide concentration of people. Also, in a certain period, the amount of energy consumption is estimated by EnergyPlus. The effect of three parameters of number, angle, and time or schedule of opening windows on the probability of infection transmission and energy consumption of the class were investigated. Parameters were examined widely to determine the best possible condition for simultaneous control of infection spread and energy consumption. The number of opening windows is discrete (0,3), and two other parameters are continuous (0,180) and (8 AM, 2 PM). Preliminary results show that changes in the number, angle, and timing of window openings significantly impact the likelihood of virus transmission and class energy consumption. The greater the number, tilt, and timing of window openings, the less likely the student will transmit the virus. But energy consumption is increasing. When all the windows were closed at all hours of the class, the energy consumption for the first day of January was only 0.2 megajoules. In comparison, the probability of transmitting the virus per person in the classroom is more than 45%. But when all windows were open at maximum angles during class, the chance of transmitting the infection was reduced to 0.35%. But the energy consumption will be 36 megajoules. Therefore, school classrooms need an optimal schedule to control both functions. In this article, we will present a suitable plan for the classroom with natural ventilation through windows to control energy consumption and the possibility of infection transmission at the same time.Keywords: Covid-19, energy consumption, building, carbon dioxide, energyplus
Procedia PDF Downloads 102543 Multilevel of Factors Affected Optimal Adherence to Antiretroviral Therapy and Viral Suppression amongst HIV-Infected Prisoners in South Ethiopia: A Prospective Cohort Study
Authors: Terefe Fuge, George Tsourtos , Emma Miller
Abstract:
Objectives: Maintaining optimal adherence and viral suppression in people living with HIV (PLWHA) is essential to ensure both preventative and therapeutic benefits of antiretroviral therapy (ART). Prisoners bear a particularly high burden of HIV infection and are highly likely to transmit to others during and after incarceration. However, the level of adherence and viral suppression, as well as its associated factors in incarcerated populations in low-income countries is unknown. This study aimed to determine the prevalence of non-adherence and viral failure, and contributing factors to this amongst prisoners in South Ethiopia. Methods: A prospective cohort study was conducted between June 1, 2019 and July 31, 2020 to compare the level of adherence and viral suppression between incarcerated and non-incarcerated PLWHA. The study involved 74 inmates living with HIV (ILWHA) and 296 non-incarcerated PLWHA. Background information including sociodemographic, socioeconomic, psychosocial, behavioural, and incarceration-related characteristics was collected using a structured questionnaire. Adherence was determined based on participants’ self-report and pharmacy refill records, and plasma viral load measurements which were undertaken within the study period were prospectively extracted to determine viral suppression. Various univariate and multivariate regression models were used to analyse data. Results: Self-reported dose adherence was approximately similar between ILWHA and non-incarcerated PLWHA (81% and 83% respectively), but ILWHA had a significantly higher medication possession ratio (MPR) (89% vs 75%). The prevalence of viral failure (VF) was slightly higher (6%) in ILWHA compared to non-incarcerated PLWHA (4.4%). The overall dose non-adherence (NA) was significantly associated with missing ART appointments, level of satisfaction with ART services, patient’s ability to comply with a specified medication schedule and types of methods used to monitor the schedule. In ILWHA specifically, accessing ART services from a hospital compared to a health centre, an inability to always attend clinic appointments, experience of depression and a lack of social support predicted NA. VF was significantly higher in males, people of age 31-35 years and in those who experienced social stigma, regardless of their incarceration status. Conclusions: This study revealed that HIV-infected prisoners in South Ethiopia were more likely to be non-adherent to doses and so to develop viral failure compared to their non-incarcerated counterparts. A multitude of factors was found to be responsible for this requiring multilevel intervention strategies focusing on the specific needs of prisoners.Keywords: Adherence , Antiretroviral therapy, Incarceration, South Ethiopia, Viral suppression
Procedia PDF Downloads 135542 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 485