Search results for: two liquid layers
3286 Interfacial Instability and Mixing Behavior between Two Liquid Layers Bounded in Finite Volumes
Authors: Lei Li, Ming M. Chai, Xiao X. Lu, Jia W. Wang
Abstract:
The mixing process of two liquid layers in a cylindrical container includes the upper liquid with higher density rushing into the lower liquid with lighter density, the lower liquid rising into the upper liquid, meanwhile the two liquid layers having interactions with each other, forming vortices, spreading or dispersing in others, entraining or mixing with others. It is a complex process constituted of flow instability, turbulent mixing and other multiscale physical phenomena and having a fast evolution velocity. In order to explore the mechanism of the process and make further investigations, some experiments about the interfacial instability and mixing behavior between two liquid layers bounded in different volumes are carried out, applying the planar laser induced fluorescence (PLIF) and the high speed camera (HSC) techniques. According to the results, the evolution of interfacial instability between immiscible liquid develops faster than theoretical rate given by the Rayleigh-Taylor Instability (RTI) theory. It is reasonable to conjecture that some mechanisms except the RTI play key roles in the mixture process of two liquid layers. From the results, it is shown that the invading velocity of the upper liquid into the lower liquid does not depend on the upper liquid's volume (height). Comparing to the cases that the upper and lower containers are of identical diameter, in the case that the lower liquid volume increases to larger geometric space, the upper liquid spreads and expands into the lower liquid more quickly during the evolution of interfacial instability, indicating that the container wall has important influence on the mixing process. In the experiments of miscible liquid layers’ mixing, the diffusion time and pattern of the liquid interfacial mixing also does not depend on the upper liquid's volumes, and when the lower liquid volume increases to larger geometric space, the action of the bounded wall on the liquid falling and rising flow will decrease, and the liquid interfacial mixing effects will also attenuate. Therefore, it is also concluded that the volume weight of upper heavier liquid is not the reason of the fast interfacial instability evolution between the two liquid layers and the bounded wall action is limited to the unstable and mixing flow. The numerical simulations of the immiscible liquid layers’ interfacial instability flow using the VOF method show the typical flow pattern agree with the experiments. However the calculated instability development is much slower than the experimental measurement. The numerical simulation of the miscible liquids’ mixing, which applying Fick’s diffusion law to the components’ transport equation, shows a much faster mixing rate than the experiments on the liquids’ interface at the initial stage. It can be presumed that the interfacial tension plays an important role in the interfacial instability between the two liquid layers bounded in finite volume.Keywords: interfacial instability and mixing, two liquid layers, Planar Laser Induced Fluorescence (PLIF), High Speed Camera (HSC), interfacial energy and tension, Cahn-Hilliard Navier-Stokes (CHNS) equations
Procedia PDF Downloads 2483285 Ionic Liquid Effects on Metal Ion-Based Extractions of Olefin/Paraffin Hydrocarbon
Authors: Ellen M. Lukasik
Abstract:
In coordination and support of the Center for Innovative and Strategic Transformation of Alkane Resources (CISTAR) Research Experience for Teachers (RET) at the University of Texas at Austin and under the guidance and direction of Professor Joan Brennecke, this study examined the addition of silver in an ionic liquid used to separate cyclohexane from cyclohexene. We recreated the liquid-liquid separation experimental results from the literature on cyclohexene, cyclohexane, and [allylmim][Tf2N] to verify our method, then evaluated the separation performance of silver - ionic liquid (IL) mixtures by various characterization techniques. To introduce the concepts of this research in high school education, a lesson plan was developed to instruct students on the principles of liquid-liquid separation.Keywords: ionic liquids, liquid-liquid separation, hydrocarbon, research experience for teachers
Procedia PDF Downloads 1053284 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger
Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He
Abstract:
Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.Keywords: liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation
Procedia PDF Downloads 3263283 The Locus of Action - Tinted Windows
Authors: Devleminck Steven, Debackere Boris
Abstract:
This research is about the ways artists and scientists deal with (and endure) new meaning and comprehend and construct the world. The project reflects on the intense connection between comprehension and construction and their place of creation – the ‘locus of action’. It seeks to define a liquid form of understanding and analysis capable of approaching our complex liquid world as discussed by Zygmunt Bauman. The aim is to establish a multi-viewpoint theoretical approach based on the dynamic concept of the Flâneur as introduced by Baudelaire, replacing single viewpoint categorization. This is coupled with the concept of thickening as proposed by Clifford Geertz with its implication of interaction between multi-layers of meaning. Here walking and looking is introduced as a method or strategy, a model or map, providing a framework of understanding in conditions of hybridity and change.Keywords: action, art, liquid, locus, negotiation, place, science
Procedia PDF Downloads 2813282 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks
Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi
Abstract:
Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.Keywords: ionic liquid, neural networks, VLE, dilute solution
Procedia PDF Downloads 3003281 Magnetohydrodynamic Flows in a Conduit with Multiple Channels under a Magnetic Field Applied Perpendicular to the Plane of Flow
Authors: Yang Luo, Chang Nyung Kim
Abstract:
This study numerically analyzes a steady-state, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows in the inflow channel, then turns 1800 in the transition segment, finally flows into three different outflow channels simultaneously. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before. The axial velocity in the side layer near the first partitioning wall, which is located between the inflow channel and the first outflow channel, is the highest. ‘M-shaped’ velocity profiles are obtained in the side layers of the inflow and outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows.Keywords: liquid-metal, multiple channels, magnetic field, magnetohydrodynamic
Procedia PDF Downloads 2813280 Investigation of Textile Laminates Structure and Electrical Resistance
Authors: A. Gulbiniene, V. Jankauskaite
Abstract:
Textile laminates with breathable membranes are used extensively in protective footwear. Such polymeric membranes act as a barrier to liquid water and soil entry from the environment, but are sufficiently permeable to water vapour to allow significant amounts of sweat to evaporate and affect the comfort of the wearer. In this paper the influence of absorbed humidity amount on the electrical properties of textiles lining laminates with and without polymeric membrane is presented. It was shown that textile laminate structure and its layers have a great influence on the water vapour absorption. Laminates with polyurethane foam layers show lower ability to absorb water vapour. Semi-permeable membrane increases absorbed humidity amount. The increase of water vapour absorption ability decreases textile laminates' electrical resistance. However, the intensity of the decrease in electrical resistance depends on the textile laminate layers' nature. Laminates with polyamide layers show significantly lower electrical resistance values.Keywords: electrical resistance, humid atmosphere, textiles laminate, water vapour absorption
Procedia PDF Downloads 2423279 Measurement of Liquid Film Thickness in a Vertical Annular Two Phase Flow Changing the Gas-Liquid Density Ratio
Authors: Shoji Mori, Kunito Okuyama
Abstract:
Annular two phase flow is encountered in many industrial equipments, including flow near nuclear fuel rods in boiling water reactor (BWR). Especially, disturbance waves play important roles in the pressure drop, the generation of entrainments, and the dryout of the liquid film. Therefore, it is important to clarify the behavior of disturbance waves and base film. However, most of the previous studies have been performed under atmospheric pressure conditions that provides the properties of liquid and gas which are significantly different from those of a BWR. Therefore, the effect of properties in gas and liquid on liquid film characteristics should be clarified. In this paper we focus on the effect of gas-liquid density ratio on liquid film thickness characteristics. The experiments have been conducted at four density ratio conditions (ρL/ρG =763, 451, 231, and 31). As a result, it is found that and interfacial shear stress collapse not only tF ave but also tF max and tF min successfully under the same liquid mass flow rate conditions irrespective of ρL/ρG, and moreover a non-dimensional parameter tends to collapse tF max,tF ave,and tF min in the wide range of experimental conditions (ρL/ρG:31~763,We:10~1800,ReL:500 ~ 2200).Keywords: two phase flow, liquid film, annular flow, disturbance wave
Procedia PDF Downloads 3893278 Moisture Variations in Unbound Layers in an Instrumented Pavement Section
Authors: R. Islam, Rafiqul A. Tarefder
Abstract:
This study presents the moisture variations of unbound layers from April 2012 to January 2014 in the Interstate 40 (I-40) pavement section in New Mexico. Three moisture probes were installed at different layers inside the pavement which measure the continuous moisture variations of the pavement. Data show that the moisture contents of unbound layers are typically constant throughout the day and month unless there is rainfall. Moisture contents of all unbound layers change with rainfall. Change in ground water table may affect the moisture content of unbound layers which has not investigated in this study. In addition, the Level 3 predictions of moisture contents using the Pavement Mechanistic-Empirical (ME) Design software are compared and found quite reasonable. However, results presented in the current study may not be applicable for pavement in other regions.Keywords: asphalt pavement, moisture probes, resilient modulus, climate model
Procedia PDF Downloads 4933277 Removal Cobalt (II) and Copper (II) by Solvent Extraction from Sulfate Solutions by Capric Acid in Chloroform
Abstract:
Liquid-liquid extraction is one of the most useful techniques for selective removal and recovery of metal ions from aqueous solutions, applied in purification processes in numerous chemical and metallurgical industries. In this work, The liquid-liquid extraction of cobalt (II) and copper (II) from aqueous solution by capric acid (HL) in chloroform at 25°C has been studied. Our interest in this paper is to study the effect of concentration of capric acid on the extraction of Co(II) and Cu(II) to see the complexes could be formed in the organic phase using various concentration of capric acid. The extraction of cobalt (II) and copper (II) is extracted as the complex CoL2 (HL )2, CuL2 (HL)2.Keywords: capric acid, Cobalt(II), copper(II), liquid-liquid extraction
Procedia PDF Downloads 4413276 Biocompatible Ionic Liquids in Liquid-Liquid Extraction of Lactic Acid: A Comparative Study
Authors: Konstantza Tonova, Ivan Svinyarov, Milen G. Bogdanov
Abstract:
Ionic liquids consisting of pairs of imidazolium or phosphonium cation and chloride or saccharinate anion were synthesized and compared with respect to their extraction efficiency towards the fermentative L-lactic acid. The acid partitioning in the equilibrated biphasic systems of ionic liquid and water was quantified through the extraction degree and the partition coefficient. The water transfer from the aqueous into the ionic liquid-rich phase was also always followed. The effect of pH, which determines the state of lactic acid in the aqueous source was studied. The effect of other salting-out substances that modify the ionic liquid/water equilibrium was also investigated in view to reveal the best liquid-liquid system with respect to low toxicity, high extraction and back extraction efficiencies and performance simplicity.Keywords: ionic liquids, biphasic system, extraction, lactic acid
Procedia PDF Downloads 4813275 Wear Resistance and Thermal Stability of Tungsten Boride Layers Deposited by Magnetron Sputtering
Authors: Justyna Chrzanowska, Jacek Hoffman, Dariusz Garbiec, Łukasz Kurpaska, Piotr Denis, Tomasz Moscicki, Zygmunt Szymanski
Abstract:
Tungsten and boron compounds belong to the group of superhard materials and its hardness could exceed 40 GPa. In this study, the properties of the tungsten boride (WB) layers deposited in magnetron sputtering process are investigated. The sputtering process occurred from specially prepared targets that were composed of boron and tungsten mixed in molar ratio of 2.5 or 4.5 and sintered in spark plasma sintering process. WB layers were deposited on silicon (100) and stainless steel 304 substrates at room temperature (RT) or in 570 °C. Layers deposited in RT and in elevated temperature varied considerably. Layers deposited in RT are amorphous and have low adhesion. In contrast, the layers deposited in 570 °C are crystalline and have good adhesion. All deposited layers have a hardness about 40 GPa. Moreover, the friction coefficient of crystalline layers is 0.22 and wear rate is about 0.67•10-6 mm3N-1m-1. After material characterization the WB layers were annealed in argon atmosphere in 1000 °C for 1 hour. On the basis of X-Ray Diffraction analysis, it has been noted that the crystalline layers are thermally stable and do not change their phase composition, whereas the amorphous layers change their phase composition. Moreover, after annealing, on the surface of WB layers some cracks were observed. It is probably connected with the differences of the thermal expansion between the layer and the substrate. Despite of the presence of cracks, the wear resistance of annealed layers is still higher than the wear resistance of uncoated substrate. The analysis of the structure and properties of tungsten boride layers lead to the discussion about the application area of this material.Keywords: hard coatings, hard materials, magnetron sputtering, mechanical properties, tungsten boride
Procedia PDF Downloads 2893274 Formation of Nanostructured Surface Layers of a Material with TiNi-Based Shape Memory by Diffusion Metallization
Authors: Zh. M. Blednova, P. O. Rusinov
Abstract:
Results of research on the formation of the surface layers of a material with shape memory effect (SME) based on TiNi diffusion metallization in molten Pb-Bi under isothermal conditions in an argon atmosphere are presented. It is shown that this method allows obtaining of uniform surface layers in nanostructured state of internal surfaces on the articles of complex shapes with stress concentrators. Structure, chemical and phase composition of the surface layers provide a manifestation of TiNi shape memory. The average grain size of TiNi coatings ranges between 60 ÷ 160 nm.Keywords: diffusion metallization, nikelid titanium surface layers, shape memory effect, nanostructures
Procedia PDF Downloads 3243273 Development of a Smart Liquid Level Controller
Authors: Adamu Mudi, Ibrahim Wahab Fawole, Abubakar Abba Kolo
Abstract:
In this research paper, we present a microcontroller-based liquid level controller that identifies the various levels of a liquid, carries out certain actions, and is capable of communicating with the human being and other devices through the GSM network. This project is useful in ensuring that a liquid is not wasted. It also contributes to the internet of things paradigm, which is the future of the internet. The method used in this work includes designing the circuit and simulating it. The circuit is then implemented on a solderless breadboard, after which it is implemented on a strip board. A C++ computer program is developed and uploaded into the microcontroller. This program instructs the microcontroller on how to carry out its actions. In other to determine levels of the liquid, an ultrasonic wave is sent to the surface of the liquid similar to radar or the method for detecting the level of sea bed. Message is sent to the phone of the user similar to the way computers send messages to phones of GSM users. It is concluded that the routine of observing the levels of a liquid in a tank, refilling the tank when the liquid level is too low can be entirely handled by a programmable device without wastage of the liquid or bothering a human being with such tasks.Keywords: Arduino Uno, HC-SR04 ultrasonic sensor, internet of things, IoT, SIM900 GSM module
Procedia PDF Downloads 1303272 Ion-Acoustic Double Layers in a Non-Thermal Electronegative Magnetized Plasma
Authors: J. K. Chawla, S. K. Jain, M. K. Mishra
Abstract:
Ion-acoustic double layers have been studied in magnetized plasma. The modified Korteweg-de Vries (m-KdV) equation using reductive perturbation method is derived. It is found that for the selected set of parameters, the system supports rarefactive double layers depending upon the value of nonthermal parameters. It is also found that the magnetization affects only the width of the double layer. For a given set of parameter values, increases in the magnetization and the obliqueness angle (θ) between wave vector and magnetic field, affect the width of the double layers, however the amplitude of the double layers have no effect. An increase in the values of nonthermal parameter decreases the amplitude of the rarefactive double layer. The effect of the ion temperature ratio on the amplitude and width of the double layers are also discussed in detail.Keywords: ion-acoustic double layers, magnetized electronegative plasma, reductive perturbation method, the modified Korteweg-de Vries (KdV) equation
Procedia PDF Downloads 6103271 Soil Respiration Rate of Laurel-Leaved and Cryptomeria japonica Forests
Authors: Ayuko Itsuki, Sachiyo Aburatani
Abstract:
We assessed the ecology of the organic and mineral soil layers of laurel-leaved (BB-1) and Cryptomeria japonica (BB-2 and Pw) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The soil respiration rate was higher in the deeper horizons (F and H) of organic layers than in those of mineral soil layers, suggesting organic layers may be where active microbial metabolism occurs. Respiration rates in the soil of BB-1, BB-2 and Pw forests were closely similar at 5 and 10°C. However, the soil respiration rate increased in proportion to temperatures of 15°C or above. We therefore consider the activity of soil microorganisms to markedly decrease at temperatures below 10°C. At a temperature of 15°C or above, the soil respiration rate in the BB-1 organic layers was higher than in those of the BB-2 and Pw organic layers, due to differences in forest vegetation that appeared to influence several salient soil properties, particularly pH and the carbon (C) and nitrogen (N) content of the F and H horizons.Keywords: forest soil, mineralization rate, heterotroph, soil respiration rate
Procedia PDF Downloads 3363270 Sustainable Separation of Nicotine from Its Aqueous Solutions
Authors: Zoran Visak, Joana Lopes, Vesna Najdanovic-Visak
Abstract:
Within this study, the separation of nicotine from its aqueous solutions, using inorganic salt sodium chloride or ionic liquid (molten salt) ECOENG212® as salting-out media, was carried out. Thus, liquid-liquid equilibria of the ternary solutions (nicotine+water+NaCl) and (nicotine+water+ECOENG212®) were determined at ambient pressure, 0.1 MPa, at three temperatures. The related phase diagrams were constructed in two manners: by adding the determined cloud-points and by the chemical analysis of phases in equilibrium (tie-line data). The latter were used to calculate two important separation parameters - partition coefficients of nicotine and separation factors. The impacts of the initial compositions of the mother solutions and of temperature on the liquid-liquid phase separation and partition coefficients were analyzed and discussed. The results obtained clearly showed that both investigated salts are good salting-out media for the efficient and sustainable separation of nicotine from its solutions with water. However, when compared, sodium chloride exhibited much better separation performance than the ionic liquid.Keywords: nicotine, liquid-liquid separation, inorganic salt, ionic liquid
Procedia PDF Downloads 3113269 Perceptions of Farmers against Liquid Fertilizer Benefits of Beef Cattle Urine
Authors: Sitti Nurani Sirajuddin, Ikrar Moh. Saleh, Kasmiyati Kasim
Abstract:
The aim of this study was to know the perception of livestock farmers on the use of liquid organic fertilizer from urine of cattle at Sinjai Regency, South Sulawesi Province. The choice of location for a farmer group manufactures and markets liquid organic fertilizer from cattle urine. This research was conducted in May to July 2013.The population were all livestock farmers who use organic liquid fertilizer from cattle urine samples while livestock farmers who are directly involved in the manufacture of liquid organic fertilizer totaled 42 people. Data were collected through observation and interview. Data were analyzed descriptively. The results showed that the perception of livestock farmers of using liquid organic fertilizer from cattle urine provide additional revenue benefits, cost minimization farming, reducing environmental pollution which not contrary to the customs.Keywords: liquid organic fertilizer, perceptions, farmers, beef cattle
Procedia PDF Downloads 4733268 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface
Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan
Abstract:
Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor
Procedia PDF Downloads 4843267 Direct Bonded Aluminum to Alumina Using a Transient Eutectic Liquid Phase for Power Electronics Applications
Authors: Yu-Ting Wang, Yun-Hsiang Cheng, Chien-Cheng Lin, Kun-Lin Lin
Abstract:
Using a transient liquid phase method, Al was successfully bonded with Al₂O₃, which deposited Ni, Cu, Ge, and Si at the surface of the Al₂O₃ substrate after annealing at the relatively low melting point of Al. No reaction interlayer existed at the interface of any Al/Al₂O₃ specimens. Al−Fe intermetallic compounds, such as Al₉Fe₂ and Al₃Fe, formed in the Al substrate because of the precipitation of Fe, which was an impurity of the Al foil, and the reaction with Al at the grain boundaries of Al during annealing processing. According to the evaluation results of mechanical and thermal properties, the Al/Al₂O₃ specimen deposited on the Ni film possessed the highest shear strength, thermal conductivity, and bonding area percentage, followed by the Cu, Ge, and Si films. The properties of the Al/Al₂O₃ specimens deposited with Ge and Si were relatively unsatisfactory, which could be because the deposited amorphous layers easily formed oxide, resulting in inferior adhesion between Al and Al₂O₃. Therefore, the optimal choice for use in high-power devices is Al/Al₂O₃, with the deposition of Ni film.Keywords: direct-bonded aluminum, transient liquid phase, thermal conductivity, microstructures, shear strength
Procedia PDF Downloads 1573266 Two and Three Layer Lamination of Nanofiber
Authors: Roman Knizek, Denisa Karhankova, Ludmila Fridrichova
Abstract:
For their exceptional properties nanofibers, respectively, nanofiber layers are achieving an increasingly wider range of uses. Nowadays nanofibers are used mainly in the field of air filtration where they are removing submicron particles, bacteria, and viruses. Their efficiency is not changed in time, and the power consumption is much lower than that of electrically charged filters. Nanofibers are primarily used for converting and storage of energy in both air and liquid filtration, in food and packaging, protecting the environment, but also in health care which is made possible by their newly discovered properties. However, a major problem of the nanofiber layer is practically zero abrasion resistance; it is, therefore, necessary to laminate the nanofiber layer with another suitable material. Unfortunately, lamination of nanofiber layers is a major problem since the nanofiber layer contains small pores through which it is very difficult for adhesion to pass through. Therefore, there is still only a small percentage of products with these unique fibers 5.Keywords: nanofiber layer, nanomembrane, lamination, electrospinning
Procedia PDF Downloads 7273265 Rotary Entrainment in Two Phase Stratified Gas-Liquid Layers: An Experimental Study
Authors: Yagya Sharma, Basanta K. Rana, Arup K. Das
Abstract:
Rotary entrainment is a phenomenon in which the interfaces of two immiscible fluids are subjected to external flux in the form of rotation. Present work reports the experimental study on rotary motion of a horizontal cylinder between the interface of air and water to observe the penetration of gas inside the liquid. Experiments have been performed to establish entrainment of air mass in water alongside the cylindrical surface. The movement of tracer and seeded particles have been tracked to calculate the speed and path of the entrained air inside water. Simplified particle image velocimetry technique has been used to trace the movement of particles/tracers at the moment they are injected inside the entrainment zone and suspended beads have been used to replicate the particle movement with respect to time in order to determine the flow dynamics of the fluid along the cylinder. Present paper establishes a thorough experimental analysis of the rotary entrainment phenomenon between air and water keeping in interest the extent to which we can intermix the two and also to study its entrainment trajectories.Keywords: entrainment, gas-liquid flow, particle image velocimetry, stratified layer mixing
Procedia PDF Downloads 3393264 The Effects of Oxygen Partial Pressure to the Anti-Corrosion Layer in the Liquid Metal Coolant: A Density Functional Theory Simulation
Authors: Rui Tu, Yakui Bai, Huailin Li
Abstract:
The lead-bismuth eutectic (LBE) alloy is a promising candidate of coolant in the fast neutron reactors and accelerator-driven systems (ADS) because of its good properties, such as low melting point, high neutron yields and high thermal conductivity. Although the corrosion of the structure materials caused by the liquid metal (LM) coolant is a challenge to the safe operating of a lead-bismuth eutectic nuclear reactor. Thermodynamic theories, experiential formulas and experimental data can be used for explaining the maintenance of the protective oxide layers on stainless steels under satisfaction oxygen concentration, but the atomic scale insights of such anti-corrosion mechanisms are little known. In the present work, the first-principles calculations are carried out to study the effects of oxygen partial pressure on the formation energies of the liquid metal coolant relevant impurity defects in the anti-corrosion oxide films on the surfaces of the structure materials. These approaches reveal the microscope mechanisms of the corrosion of the structure materials, especially for the influences from the oxygen partial pressure. The results are helpful for identifying a crucial oxygen concentration for corrosion control, which can ensure the systems to be operated safely under certain temperatures.Keywords: oxygen partial pressure, liquid metal coolant, TDDFT, anti-corrosion layer, formation energy
Procedia PDF Downloads 1313263 Nanofluidic Cell for Resolution Improvement of Liquid Transmission Electron Microscopy
Authors: Deybith Venegas-Rojas, Sercan Keskin, Svenja Riekeberg, Sana Azim, Stephanie Manz, R. J. Dwayne Miller, Hoc Khiem Trieu
Abstract:
Liquid Transmission Electron Microscopy (TEM) is a growing area with a broad range of applications from physics and chemistry to material engineering and biology, in which it is possible to image in-situ unseen phenomena. For this, a nanofluidic device is used to insert the nanoflow with the sample inside the microscope in order to keep the liquid encapsulated because of the high vacuum. In the last years, Si3N4 windows have been widely used because of its mechanical stability and low imaging contrast. Nevertheless, the pressure difference between the inside fluid and the outside vacuum in the TEM generates bulging in the windows. This increases the imaged fluid volume, which decreases the signal to noise ratio (SNR), limiting the achievable spatial resolution. With the proposed device, the membrane is fortified with a microstructure capable of stand higher pressure differences, and almost removing completely the bulging. A theoretical study is presented with Finite Element Method (FEM) simulations which provide a deep understanding of the membrane mechanical conditions and proves the effectiveness of this novel concept. Bulging and von Mises Stress were studied for different membrane dimensions, geometries, materials, and thicknesses. The microfabrication of the device was made with a thin wafer coated with thin layers of SiO2 and Si3N4. After the lithography process, these layers were etched (reactive ion etching and buffered oxide etch (BOE) respectively). After that, the microstructure was etched (deep reactive ion etching). Then the back side SiO2 was etched (BOE) and the array of free-standing micro-windows was obtained. Additionally, a Pyrex wafer was patterned with windows, and inlets/outlets, and bonded (anodic bonding) to the Si side to facilitate the thin wafer handling. Later, a thin spacer is sputtered and patterned with microchannels and trenches to guide the nanoflow with the samples. This approach reduces considerably the common bulging problem of the window, improving the SNR, contrast and spatial resolution, increasing substantially the mechanical stability of the windows, allowing a larger viewing area. These developments lead to a wider range of applications of liquid TEM, expanding the spectrum of possible experiments in the field.Keywords: liquid cell, liquid transmission electron microscopy, nanofluidics, nanofluidic cell, thin films
Procedia PDF Downloads 2553262 Ionic Liquid Desiccant for the Dehumidification System
Authors: Chih-Hao Chen, Yu-Heng Fang, Jyi-Ching Perng, Wei-Chih Lee, Yi-Hsiang Chen, Jiun-Jen Chen
Abstract:
Emerging markets are almost in the high temperature and high humidity area. Regardless of industry or domestic fields, the energy consumption of air conditioning systems in buildings is always significant. Moreover, the proportion of latent heat load is high. A liquid desiccant dehumidification system is one kind of energy-saving air conditioning system. However, traditional absorbents such as lithium chloride are hindered in market promotion because they will crystallized and cause metal corrosion. This study used the commercial ionic liquid to build a liquid desiccant dehumidification system with an air volume of 300 CMH. When the absolute humidity of the inlet air was 15g/kg, the absolute humidity of the outlet air was 10g/kg. The operating condition of a hot water temperature is 45 °C, and the cooling water temperature is 15 °C. The test result proves that the ionic liquid desiccant can completely replace the traditional liquid desiccant.Keywords: ionic liquid desiccant, dehumidification, heat pump, air conditioning systems
Procedia PDF Downloads 1693261 Liquid-Liquid Equilibrium Study in Solvent Extraction of o-Cresol from Coal Tar
Authors: Dewi Selvia Fardhyanti, Astrilia Damayanti
Abstract:
Coal tar is a liquid by-product of the process of coal gasification and carbonation, also in some industries such as steel, power plant, cement, and others. This liquid oil mixture contains various kinds of useful compounds such as aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research investigates thermodynamic modelling of liquid-liquid equilibria (LLE) in solvent extraction of o-Cresol from the coal tar. The equilibria are modeled by ternary components of Wohl, Van Laar, and Three-Suffix Margules models. The values of the parameters involved are obtained by curve-fitting to the experimental data. Based on the comparison between calculated and experimental data, it turns out that among the three models studied, the Three-Suffix Margules seems to be the best to predict the LLE of o-Cresol for those system.Keywords: coal tar, o-Cresol, Wohl, Van Laar, three-suffix margules
Procedia PDF Downloads 2773260 Neuron Imaging in Lateral Geniculate Nucleus
Authors: Sandy Bao, Yankang Bao
Abstract:
The understanding of information that is being processed in the brain, especially in the lateral geniculate nucleus (LGN), has been proven challenging for modern neuroscience and for researchers with a focus on how neurons process signals and images. In this paper, we are proposing a method to image process different colors within different layers of LGN, that is, green information in layers 4 & 6 and red & blue in layers 3 & 5 based on the surface dimension of layers. We take into consideration the images in LGN and visual cortex, and that the edge detected information from the visual cortex needs to be considered in order to return back to the layers of LGN, along with the image in LGN to form the new image, which will provide an improved image that is clearer, sharper, and making it easier to identify objects in the image. Matrix Laboratory (MATLAB) simulation is performed, and results show that the clarity of the output image has significant improvement.Keywords: lateral geniculate nucleus, matrix laboratory, neuroscience, visual cortex
Procedia PDF Downloads 2793259 Modifying the Electrical Properties of Liquid Crystal Cells by Including TiO₂ Nanoparticles on a Substrate
Authors: V. Marzal, J. C. Torres, B. Garcia-Camara, Manuel Cano-Garcia, Xabier Quintana, I. Perez Garcilopez, J. M. Sanchez-Pena
Abstract:
At the present time, the use of nanostructures in complex media, like liquid crystals, is widely extended to manipulate their properties, either electrical or optical. In addition, these media can also be used to control the optical properties of the nanoparticles, for instance when they are resonant. In this work, the change on electrical properties of a liquid crystal cell by adding TiO₂ nanoparticles on one of the alignment layers has been analyzed. These nanoparticles, with a diameter of 100 nm and spherical shape, were deposited in one of the substrates (ITO + polyimide) by spin-coating in order to produce a homogeneous layer. These substrates were checked using an optical microscope (objective x100) to avoid potential agglomerates. The liquid crystal cell is then fabricated, using one of these substrates and another without nanoparticles, and filled with E7. The study of the electrical response was done through impedance measurements in a long range of frequencies (3 Hz- 6 MHz) and at ambient temperature. Different nanoparticle concentrations were considered, as well as pure E7 and an empty cell for comparison purposes. Results about the effective dielectric permittivity and conductivity are presented along with models of equivalent electric circuits and its physical interpretation. As a summary, it has been observed the clear influence of the presence of the nanoparticles, strongly modifying the electric response of the device. In particular, a variation of both the effective permittivity and the conductivity of the device have been observed. This result requires a deep analysis of the effect of these nanoparticles on the trapping of free ions in the device, allowing a controlled manipulation and frequency tuning of the electrical response of these devices.Keywords: alignment layer, electrical behavior, liquid crystal, TiO₂ nanoparticles
Procedia PDF Downloads 2133258 Electricity Production from Vermicompost Liquid Using Microbial Fuel Cell
Authors: Pratthana Ammaraphitak, Piyachon Ketsuwan, Rattapoom Prommana
Abstract:
Electricity production from vermicompost liquid was investigated in microbial fuel cells (MFCs). The aim of this study was to determine the performance of vermicompost liquid as a biocatalyst for electricity production by MFCs. Chemical and physical parameters of vermicompost liquid as total nitrogen, ammonia-nitrogen, nitrate, nitrite, total phosphorus, potassium, organic matter, C:N ratio, pH, and electrical conductivity in MFCs were studied. The performance of MFCs was operated in open circuit mode for 7 days. The maximum open circuit voltage (OCV) was 0.45 V. The maximum power density of 5.29 ± 0.75 W/m² corresponding to a current density of 0.024 2 ± 0.0017 A/m² was achieved by the 1000 Ω on day 2. Vermicompost liquid has efficiency to generate electricity from organic waste.Keywords: vermicompost liquid, microbial fuel cell, nutrient, electricity production
Procedia PDF Downloads 1783257 Effect of Repellent Coatings, Aerosol Protective Liners, and Lamination on the Properties of Chemical/Biological Protective Textiles
Authors: Natalie Pomerantz, Nicholas Dugan, Molly Richards, Walter Zukas
Abstract:
The primary research question to be answered for Chemical/Biological (CB) protective clothing, is how to protect wearers from a range of chemical and biological threats in liquid, vapor, and aerosol form, while reducing the thermal burden. Currently, CB protective garments are hot, heavy, and wearers are limited by short work times in order to prevent heat injury. This study demonstrates how to incorporate different levels of protection on a material level and modify fabric composites such that the thermal burden is reduced to such an extent it approaches that of a standard duty uniform with no CB protection. CB protective materials are usually comprised of several fabric layers: a cover fabric with a liquid repellent coating, a protective layer which is comprised of a carbon-based sorptive material or semi-permeable membrane, and a comfort next-to-skin liner. In order to reduce thermal burden, all of these layers were laminated together to form one fabric composite which had no insulative air gap in between layers. However, the elimination of the air gap also reduced the CB protection of the fabric composite. In order to increase protection in the laminated composite, different nonwoven aerosol protective liners were added, and a super repellent coating was applied to the cover fabric, prior to lamination. Different adhesive patterns were investigated to determine the durability of the laminate with the super repellent coating, and the effect on air permeation. After evaluating the thermal properties, textile properties and protective properties of the iterations of these fabric composites, it was found that the thermal burden of these materials was greatly reduced by decreasing the thermal resistance with the elimination of the air gap between layers. While the level of protection was reduced in laminate composites, the addition of a super repellent coating increased protection towards low volatility agents without impacting thermal burden. Similarly, the addition of aerosol protective liner increased protection without reducing water vapor transport, depending on the nonwoven used, however, the air permeability was significantly decreased. The balance of all these properties and exploration of the trade space between thermal burden and protection will be discussed.Keywords: aerosol protection, CBRNe protection, lamination, nonwovens, repellent coatings, thermal burden
Procedia PDF Downloads 364