Search results for: statistical potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14976

Search results for: statistical potential

14976 Lambda-Levelwise Statistical Convergence of a Sequence of Fuzzy Numbers

Authors: F. Berna Benli, Özgür Keskin

Abstract:

Lately, many mathematicians have been studied the statistical convergence of a sequence of fuzzy numbers. We know that Lambda-statistically convergence is a kind of convergence between ordinary convergence and statistical convergence. In this paper, we will introduce the new kind of convergence such as λ-levelwise statistical convergence. Then, we will define the concept of the λ-levelwise statistical cluster and limit points of a sequence of fuzzy numbers. Also, we will discuss the relations between the sets of λ-levelwise statistical cluster points and λ-levelwise statistical limit points of sequences of fuzzy numbers. This work has been extended in this paper, where some relations have been considered such that when lambda-statistical limit inferior and lambda-statistical limit superior for lambda-statistically convergent sequences of fuzzy numbers are equal. Furthermore, lambda-statistical boundedness condition for different sequences of fuzzy numbers has been studied.

Keywords: fuzzy number, λ-levelwise statistical cluster points, λ-levelwise statistical convergence, λ-levelwise statistical limit points, λ-statistical cluster points, λ-statistical convergence, λ-statistical limit points

Procedia PDF Downloads 477
14975 Quantum Statistical Mechanical Formulations of Three-Body Problems via Non-Local Potentials

Authors: A. Maghari, V. M. Maleki

Abstract:

In this paper, we present a quantum statistical mechanical formulation from our recently analytical expressions for partial-wave transition matrix of a three-particle system. We report the quantum reactive cross sections for three-body scattering processes 1 + (2,3)-> 1 + (2,3) as well as recombination 1 + (2,3) -> 2 + (3,1) between one atom and a weakly-bound dimer. The analytical expressions of three-particle transition matrices and their corresponding cross-sections were obtained from the three-dimensional Faddeev equations subjected to the rank-two non-local separable potentials of the generalized Yamaguchi form. The equilibrium quantum statistical mechanical properties such partition function and equation of state as well as non-equilibrium quantum statistical properties such as transport cross-sections and their corresponding transport collision integrals were formulated analytically. This leads to obtain the transport properties, such as viscosity and diffusion coefficient of a moderate dense gas.

Keywords: statistical mechanics, nonlocal separable potential, three-body interaction, faddeev equations

Procedia PDF Downloads 401
14974 Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops: Statistical Evaluation of the Potential Herbicide Savings

Authors: Morten Stigaard Laursen, Rasmus Nyholm Jørgensen, Henrik Skov Midtiby, Anders Krogh Mortensen, Sanmohan Baby

Abstract:

This work contributes a statistical model and simulation framework yielding the best estimate possible for the potential herbicide reduction when using the MoDiCoVi algorithm all the while requiring a efficacy comparable to conventional spraying. In June 2013 a maize field located in Denmark were seeded. The field was divided into parcels which was assigned to one of two main groups: 1) Control, consisting of subgroups of no spray and full dose spraty; 2) MoDiCoVi algorithm subdivided into five different leaf cover thresholds for spray activation. In addition approximately 25% of the parcels were seeded with additional weeds perpendicular to the maize rows. In total 299 parcels were randomly assigned with the 28 different treatment combinations. In the statistical analysis, bootstrapping was used for balancing the number of replicates. The achieved potential herbicide savings was found to be 70% to 95% depending on the initial weed coverage. However additional field trials covering more seasons and locations are needed to verify the generalisation of these results. There is a potential for further herbicide savings as the time interval between the first and second spraying session was not long enough for the weeds to turn yellow, instead they only stagnated in growth.

Keywords: herbicide reduction, macrosprayer, weed crop discrimination, site-specific, sprayer boom

Procedia PDF Downloads 294
14973 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 88
14972 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot

Authors: Arezou Javadi

Abstract:

The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.

Keywords: machine learning, financial income, statistical potential, govpilot

Procedia PDF Downloads 70
14971 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.

Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications

Procedia PDF Downloads 93
14970 Students' Statistical Reasoning and Attitudes towards Statistics in Blended Learning, E-Learning and On-Campus Learning

Authors: Petros Roussos

Abstract:

The present study focused on students' statistical reasoning related to Null Hypothesis Statistical Testing and p-values. Its objective was to test the hypothesis that neither the place (classroom, at a distance, online) nor the medium that actually supports the learning (ICT, internet, books) has an effect on understanding of statistical concepts. In addition, it was expected that students' attitudes towards statistics would not predict understanding of statistical concepts. The sample consisted of 385 undergraduate and postgraduate students from six state and private universities (five in Greece and one in Cyprus). Students were administered two questionnaires: a) the Greek version of the Survey of Attitudes Toward Statistics, and b) a short instrument which measures students' understanding of statistical significance and p-values. Results suggest that attitudes towards statistics do not predict students' understanding of statistical concepts, whereas the medium did not have an effect.

Keywords: attitudes towards statistics, blended learning, e-learning, statistical reasoning

Procedia PDF Downloads 310
14969 Statistical Investigation Projects: A Way for Pre-Service Mathematics Teachers to Actively Solve a Campus Problem

Authors: Muhammet Şahal, Oğuz Köklü

Abstract:

As statistical thinking and problem-solving processes have become increasingly important, teachers need to be more rigorously prepared with statistical knowledge to teach their students effectively. This study examined preservice mathematics teachers' development of statistical investigation projects using data and exploratory data analysis tools, following a design-based research perspective and statistical investigation cycle. A total of 26 pre-service senior mathematics teachers from a public university in Turkiye participated in the study. They formed groups of 3-4 members voluntarily and worked on their statistical investigation projects for six weeks. The data sources were audio recordings of pre-service teachers' group discussions while working on their projects in class, whole-class video recordings, and each group’s weekly and final reports. As part of the study, we reviewed weekly reports, provided timely feedback specific to each group, and revised the following week's class work based on the groups’ needs and development in their project. We used content analysis to analyze groups’ audio and classroom video recordings. The participants encountered several difficulties, which included formulating a meaningful statistical question in the early phase of the investigation, securing the most suitable data collection strategy, and deciding on the data analysis method appropriate for their statistical questions. The data collection and organization processes were challenging for some groups and revealed the importance of comprehensive planning. Overall, preservice senior mathematics teachers were able to work on a statistical project that contained the formulation of a statistical question, planning, data collection, analysis, and reaching a conclusion holistically, even though they faced challenges because of their lack of experience. The study suggests that preservice senior mathematics teachers have the potential to apply statistical knowledge and techniques in a real-world context, and they could proceed with the project with the support of the researchers. We provided implications for the statistical education of teachers and future research.

Keywords: design-based study, pre-service mathematics teachers, statistical investigation projects, statistical model

Procedia PDF Downloads 83
14968 Correlation between Potential Intelligence Explanatory Study in the Perspective of Multiple Intelligence Theory by Using Dermatoglyphics and Culture Approaches

Authors: Efnie Indrianie

Abstract:

Potential Intelligence constitutes one essential factor in every individual. This intelligence can be a provision for the development of Performance Intelligence if it is supported by surrounding environment. Fingerprint analysis is a method in recognizing this Potential Intelligence. This method is grounded on pattern and number of finger print outlines that are assumed symmetrical with the number of nerves in our brain, in which these areas have their own function among another. These brain’s functions are later being transposed into intelligence components in accordance with the Multiple Intelligences theory. This research tested the correlation between Potential Intelligence and the components of its Performance Intelligence. Statistical test results that used Pearson correlation showed that five components of Potential Intelligence correlated with Performance Intelligence. Those five components are Logic-Math, Logic, Linguistic, Music, Kinesthetic, and Intrapersonal. Also, this research indicated that cultural factor had a big role in shaping intelligence.

Keywords: potential intelligence, performance intelligence, multiple intelligences, fingerprint, environment, brain

Procedia PDF Downloads 535
14967 Analytical and Statistical Study of the Parameters of Expansive Soil

Authors: A. Medjnoun, R. Bahar

Abstract:

The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.

Keywords: analysis, estimated model, parameter identification, swelling of clay

Procedia PDF Downloads 416
14966 Statistical Convergence for the Approximation of Linear Positive Operators

Authors: Neha Bhardwaj

Abstract:

In this paper, we consider positive linear operators and study the Voronovskaya type result of the operator then obtain an error estimate in terms of the higher order modulus of continuity of the function being approximated and its A-statistical convergence. Also, we compute the corresponding rate of A-statistical convergence for the linear positive operators.

Keywords: Poisson distribution, Voronovskaya, modulus of continuity, a-statistical convergence

Procedia PDF Downloads 333
14965 South African Students' Statistical Literacy in the Conceptual Understanding about Measures of Central Tendency after Completing Their High School Studies

Authors: Lukanda Kalobo

Abstract:

In South Africa, the High School Mathematics Curriculum provides teachers with specific aims and skills to be developed which involves the understanding about the measures of central tendency. The exploration begins with the definitions of statistical literacy, measurement of central tendency and a discussion on why statistical literacy is essential today. It furthermore discusses the statistical literacy basics involved in understanding the concepts of measures of central tendency. The statistical literacy test on the measures of central tendency, was used to collect data which was administered to 78 first year students direct from high schools. The results indicated that students seemed to have forgotten about the statistical literacy in understanding the concepts of measure of central tendency after completing their high school study. The authors present inferences regarding the alignment between statistical literacy and the understanding of the concepts about the measures of central tendency, leading to the conclusion that there is a need to provide in-service and pre-service training.

Keywords: conceptual understanding, mean, median, mode, statistical literacy

Procedia PDF Downloads 301
14964 Wind Power Forecast Error Simulation Model

Authors: Josip Vasilj, Petar Sarajcev, Damir Jakus

Abstract:

One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds.

Keywords: wind power, uncertainty, stochastic process, Monte Carlo simulation

Procedia PDF Downloads 483
14963 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method

Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain

Abstract:

The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.

Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR

Procedia PDF Downloads 318
14962 Transforming Data into Knowledge: Mathematical and Statistical Innovations in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in various domains has created a pressing need for effective methods to transform this data into meaningful knowledge. In this era of big data, mathematical and statistical innovations play a crucial role in unlocking insights and facilitating informed decision-making in data analytics. This abstract aims to explore the transformative potential of these innovations and their impact on converting raw data into actionable knowledge. Drawing upon a comprehensive review of existing literature, this research investigates the cutting-edge mathematical and statistical techniques that enable the conversion of data into knowledge. By evaluating their underlying principles, strengths, and limitations, we aim to identify the most promising innovations in data analytics. To demonstrate the practical applications of these innovations, real-world datasets will be utilized through case studies or simulations. This empirical approach will showcase how mathematical and statistical innovations can extract patterns, trends, and insights from complex data, enabling evidence-based decision-making across diverse domains. Furthermore, a comparative analysis will be conducted to assess the performance, scalability, interpretability, and adaptability of different innovations. By benchmarking against established techniques, we aim to validate the effectiveness and superiority of the proposed mathematical and statistical innovations in data analytics. Ethical considerations surrounding data analytics, such as privacy, security, bias, and fairness, will be addressed throughout the research. Guidelines and best practices will be developed to ensure the responsible and ethical use of mathematical and statistical innovations in data analytics. The expected contributions of this research include advancements in mathematical and statistical sciences, improved data analysis techniques, enhanced decision-making processes, and practical implications for industries and policymakers. The outcomes will guide the adoption and implementation of mathematical and statistical innovations, empowering stakeholders to transform data into actionable knowledge and drive meaningful outcomes.

Keywords: data analytics, mathematical innovations, knowledge extraction, decision-making

Procedia PDF Downloads 75
14961 Explore Urban Spatial Density with Boltzmann Statistical Distribution

Authors: Jianjia Wang, Tong Yu, Haoran Zhu, Kun Liu, Jinwei Hao

Abstract:

The underlying pattern in the modern city is agglomeration. To some degree, the distribution of urban spatial density can be used to describe the status of this assemblage. There are three intrinsic characteristics to measure urban spatial density, namely, Floor Area Ratio (FAR), Building Coverage Ratio (BCR), and Average Storeys (AS). But the underlying mechanism that contributes to these quantities is still vague in the statistical urban study. In this paper, we explore the corresponding extrinsic factors related to spatial density. These factors can further provide the potential influence on the intrinsic quantities. Here, we take Shanghai Inner Ring Area and Manhattan in New York as examples to analyse the potential impacts on urban spatial density with six selected extrinsic elements. Ebery single factor presents the correlation to the spatial distribution, but the overall global impact of all is still implicit. To handle this issue, we attempt to develop the Boltzmann statistical model to explicitly explain the mechanism behind that. We derive a corresponding novel quantity, called capacity, to measure the global effects of all other extrinsic factors to the three intrinsic characteristics. The distribution of capacity presents a similar pattern to real measurements. This reveals the nonlinear influence on the multi-factor relations to the urban spatial density in agglomeration.

Keywords: urban spatial density, Boltzmann statistics, multi-factor correlation, spatial distribution

Procedia PDF Downloads 149
14960 The Assessment of Forest Wood Biomass Potential in Terms of Sustainable Development

Authors: Julija Konstantinavičienė, Vlada Vitunskienė

Abstract:

The role of sustainable biomass, including wood biomass, is becoming more important because of European Green Deal. The New EU Forest strategy is a flagship element of the European Green Deal and a key action on the EU biodiversity strategy for 2030. The first measure of this strategy is promoting sustainable forest management, including encouraging the sustainable use of wood-based resources. The first aim of this research was to develop and present a new approach to the concept of forest wood biomass potential in terms of sustainable development, distinguishing theoretical, technical and sustainable potential and detailing its constraints. The second aim was to prepare the methodology outline of sustainable forest wood biomass potential assessment and empirically check this methodology, considering economic, social and ecological constraints. The basic methodologies of the research: the review of research (with a combination of semi-systematic and integrative review methodologies), rapid assessment method and statistical data analysis. The developed methodology of assessment of forest wood potential in terms of sustainable development can be used in Lithuania and in other countries and will let us compare this potential a different time and spatial levels. The application of the methodology will be able to serve the development of new national strategies for the wood sector.

Keywords: assessment, constraints, forest wood biomass, methodology, potential, sustainability

Procedia PDF Downloads 123
14959 Characteristic Function in Estimation of Probability Distribution Moments

Authors: Vladimir S. Timofeev

Abstract:

In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique, author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.

Keywords: characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation

Procedia PDF Downloads 504
14958 Trends and Perspectives of Agrotourism Development in Georgia

Authors: Tamar Lazariashvili

Abstract:

The development of agrotourism in Georgia has significant potential. The trend of population growth and demand for agrotourism products makes the interest and importance of the development of this field even more relevant. The article studies the trends in the development of agrotourism in Georgia; SWOT analysis reveals the potential for the development of agrotourism and assesses the perspectives, examines the factors hindering the development of agrotourism, assesses the role of the state in the development of agrotourism. Objectives: The purpose of the study is to determine the development trends of agrotourism in Georgia and to develop recommendations for prospective directions based on the assessment of the field's potential. Methodologies: Research methods are used: analysis, synthesis, induction, deduction, comparison, statistical (selection, grouping, observation, trend) and other methods, as well as SWOT analysis. Contributions: A positive trend in the development of agrotourism has been revealed. It is also shown that the demand for agrotourism products is growing. The agro touristic potential of Georgia was assessed and prospective directions for the development of the field have been determined. Conclusions: are drawn on the problems identified in the work and recommendations are proposed on ways to effectively use the potential opportunities of agrotourism and ways of long-term development.

Keywords: agrotourism, agrotourism products, agrotourism potential, development prospects.

Procedia PDF Downloads 92
14957 Statistical Description of Counterpoise Effective Length Based on Regressive Formulas

Authors: Petar Sarajcev, Josip Vasilj, Damir Jakus

Abstract:

This paper presents a novel statistical description of the counterpoise effective length due to lightning surges, where the (impulse) effective length had been obtained by means of regressive formulas applied to the transient simulation results. The effective length is described in terms of a statistical distribution function, from which median, mean, variance, and other parameters of interest could be readily obtained. The influence of lightning current amplitude, lightning front duration, and soil resistivity on the effective length has been accounted for, assuming statistical nature of these parameters. A method for determining the optimal counterpoise length, in terms of the statistical impulse effective length, is also presented. It is based on estimating the number of dangerous events associated with lightning strikes. Proposed statistical description and the associated method provide valuable information which could aid the design engineer in optimising physical lengths of counterpoises in different grounding arrangements and soil resistivity situations.

Keywords: counterpoise, grounding conductor, effective length, lightning, Monte Carlo method, statistical distribution

Procedia PDF Downloads 426
14956 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models

Authors: Jihye Jeon

Abstract:

This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.

Keywords: multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon

Procedia PDF Downloads 652
14955 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung

Abstract:

Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 368
14954 Statistical Convergence of the Szasz-Mirakjan-Kantorovich-Type Operators

Authors: Rishikesh Yadav, Ramakanta Meher, Vishnu Narayan Mishra

Abstract:

The main aim of this article is to investigate the statistical convergence of the summation of integral type operators and to obtain the weighted statistical convergence. The rate of statistical convergence by means of modulus of continuity and function belonging to the Lipschitz class are also studied. We discuss the convergence of the defined operators by graphical representation and put a better rate of convergence than the Szasz-Mirakjan-Kantorovich operators. In the last section, we extend said operators into bivariate operators to study about the rate of convergence in sense of modulus of continuity and by means of Lipschitz class by using function of two variables.

Keywords: The Szasz-Mirakjan-Kantorovich operators, statistical convergence, modulus of continuity, Peeters K-functional, weighted modulus of continuity

Procedia PDF Downloads 211
14953 Soil Salinity from Wastewater Irrigation in Urban Greenery

Authors: H. Nouri, S. Chavoshi Borujeni, S. Anderson, S. Beecham, P. Sutton

Abstract:

The potential risk of salt leaching through wastewater irrigation is of concern for most local governments and city councils. Despite the necessity of salinity monitoring and management in urban greenery, most attention has been on agricultural fields. This study was defined to investigate the capability and feasibility of monitoring and predicting soil salinity using near sensing and remote sensing approaches using EM38 surveys, and high-resolution multispectral image of WorldView3. Veale Gardens within the Adelaide Parklands was selected as the experimental site. The results of the near sensing investigation were validated by testing soil salinity samples in the laboratory. Over 30 band combinations forming salinity indices were tested using image processing techniques. The outcomes of the remote sensing and near sensing approaches were compared to examine whether remotely sensed salinity indicators could map and predict the spatial variation of soil salinity through a potential statistical model. Statistical analysis was undertaken using the Stata 13 statistical package on over 52,000 points. Several regression models were fitted to the data, and the mixed effect modelling was selected the most appropriate one as it takes to account the systematic observation-specific unobserved heterogeneity. Results showed that SAVI (Soil Adjusted Vegetation Index) was the only salinity index that could be considered as a predictor for soil salinity but further investigation is needed. However, near sensing was found as a rapid, practical and realistically accurate approach for salinity mapping of heterogeneous urban vegetation.

Keywords: WorldView3, remote sensing, EM38, near sensing, urban green spaces, green smart cities

Procedia PDF Downloads 162
14952 Statistical and Land Planning Study of Tourist Arrivals in Greece during 2005-2016

Authors: Dimitra Alexiou

Abstract:

During the last 10 years, in spite of the economic crisis, the number of tourists arriving in Greece has increased, particularly during the tourist season from April to October. In this paper, the number of annual tourist arrivals is studied to explore their preferences with regard to the month of travel, the selected destinations, as well the amount of money spent. The collected data are processed with statistical methods, yielding numerical and graphical results. From the computation of statistical parameters and the forecasting with exponential smoothing, useful conclusions are arrived at that can be used by the Greek tourism authorities, as well as by tourist organizations, for planning purposes for the coming years. The results of this paper and the computed forecast can also be used for decision making by private tourist enterprises that are investing in Greece. With regard to the statistical methods, the method of Simple Exponential Smoothing of time series of data is employed. The search for a best forecast for 2017 and 2018 provides the value of the smoothing coefficient. For all statistical computations and graphics Microsoft Excel is used.

Keywords: tourism, statistical methods, exponential smoothing, land spatial planning, economy

Procedia PDF Downloads 265
14951 Exploring the Spatial Characteristics of Mortality Map: A Statistical Area Perspective

Authors: Jung-Hong Hong, Jing-Cen Yang, Cai-Yu Ou

Abstract:

The analysis of geographic inequality heavily relies on the use of location-enabled statistical data and quantitative measures to present the spatial patterns of the selected phenomena and analyze their differences. To protect the privacy of individual instance and link to administrative units, point-based datasets are spatially aggregated to area-based statistical datasets, where only the overall status for the selected levels of spatial units is used for decision making. The partition of the spatial units thus has dominant influence on the outcomes of the analyzed results, well known as the Modifiable Areal Unit Problem (MAUP). A new spatial reference framework, the Taiwan Geographical Statistical Classification (TGSC), was recently introduced in Taiwan based on the spatial partition principles of homogeneous consideration of the number of population and households. Comparing to the outcomes of the traditional township units, TGSC provides additional levels of spatial units with finer granularity for presenting spatial phenomena and enables domain experts to select appropriate dissemination level for publishing statistical data. This paper compares the results of respectively using TGSC and township unit on the mortality data and examines the spatial characteristics of their outcomes. For the mortality data between the period of January 1st, 2008 and December 31st, 2010 of the Taitung County, the all-cause age-standardized death rate (ASDR) ranges from 571 to 1757 per 100,000 persons, whereas the 2nd dissemination area (TGSC) shows greater variation, ranged from 0 to 2222 per 100,000. The finer granularity of spatial units of TGSC clearly provides better outcomes for identifying and evaluating the geographic inequality and can be further analyzed with the statistical measures from other perspectives (e.g., population, area, environment.). The management and analysis of the statistical data referring to the TGSC in this research is strongly supported by the use of Geographic Information System (GIS) technology. An integrated workflow that consists of the tasks of the processing of death certificates, the geocoding of street address, the quality assurance of geocoded results, the automatic calculation of statistic measures, the standardized encoding of measures and the geo-visualization of statistical outcomes is developed. This paper also introduces a set of auxiliary measures from a geographic distribution perspective to further examine the hidden spatial characteristics of mortality data and justify the analyzed results. With the common statistical area framework like TGSC, the preliminary results demonstrate promising potential for developing a web-based statistical service that can effectively access domain statistical data and present the analyzed outcomes in meaningful ways to avoid wrong decision making.

Keywords: mortality map, spatial patterns, statistical area, variation

Procedia PDF Downloads 258
14950 A Targeted Maximum Likelihood Estimation for a Non-Binary Causal Variable: An Application

Authors: Mohamed Raouf Benmakrelouf, Joseph Rynkiewicz

Abstract:

Targeted maximum likelihood estimation (TMLE) is well-established method for causal effect estimation with desirable statistical properties. TMLE is a doubly robust maximum likelihood based approach that includes a secondary targeting step that optimizes the target statistical parameter. A causal interpretation of the statistical parameter requires assumptions of the Rubin causal framework. The causal effect of binary variable, E, on outcomes, Y, is defined in terms of comparisons between two potential outcomes as E[YE=1 − YE=0]. Our aim in this paper is to present an adaptation of TMLE methodology to estimate the causal effect of a non-binary categorical variable, providing a large application. We propose coding on the initial data in order to operate a binarization of the interest variable. For each category, we get a transformation of the non-binary interest variable into a binary variable, taking value 1 to indicate the presence of category (or group of categories) for an individual, 0 otherwise. Such a dummy variable makes it possible to have a pair of potential outcomes and oppose a category (or a group of categories) to another category (or a group of categories). Let E be a non-binary interest variable. We propose a complete disjunctive coding of our variable E. We transform the initial variable to obtain a set of binary vectors (dummy variables), E = (Ee : e ∈ {1, ..., |E|}), where each vector (variable), Ee, takes the value of 0 when its category is not present, and the value of 1 when its category is present, which allows to compute a pairwise-TMLE comparing difference in the outcome between one category and all remaining categories. In order to illustrate the application of our strategy, first, we present the implementation of TMLE to estimate the causal effect of non-binary variable on outcome using simulated data. Secondly, we apply our TMLE adaptation to survey data from the French Political Barometer (CEVIPOF), to estimate the causal effect of education level (A five-level variable) on a potential vote in favor of the French extreme right candidate Jean-Marie Le Pen. Counterfactual reasoning requires us to consider some causal questions (additional causal assumptions). Leading to different coding of E, as a set of binary vectors, E = (Ee : e ∈ {2, ..., |E|}), where each vector (variable), Ee, takes the value of 0 when the first category (reference category) is present, and the value of 1 when its category is present, which allows to apply a pairwise-TMLE comparing difference in the outcome between the first level (fixed) and each remaining level. We confirmed that the increase in the level of education decreases the voting rate for the extreme right party.

Keywords: statistical inference, causal inference, super learning, targeted maximum likelihood estimation

Procedia PDF Downloads 103
14949 Economic Design of a Quality Control Chart for the Proportion of Defective Items

Authors: Encarnación Álvarez-Verdejo, Raúl Amor-Pulido, Pablo J. Moya-Fernández, Juan F. Muñoz-Rosas, Francisco J. Blanco-Encomienda

Abstract:

Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process.

Keywords: proportion, type I error, economic plan, distribution function

Procedia PDF Downloads 443
14948 Implementation of Statistical Parameters to Form an Entropic Mathematical Models

Authors: Gurcharan Singh Buttar

Abstract:

It has been discovered that although these two areas, statistics, and information theory, are independent in their nature, they can be combined to create applications in multidisciplinary mathematics. This is due to the fact that where in the field of statistics, statistical parameters (measures) play an essential role in reference to the population (distribution) under investigation. Information measure is crucial in the study of ambiguity, assortment, and unpredictability present in an array of phenomena. The following communication is a link between the two, and it has been demonstrated that the well-known conventional statistical measures can be used as a measure of information.

Keywords: probability distribution, entropy, concavity, symmetry, variance, central tendency

Procedia PDF Downloads 156
14947 Ergonomical Study of Hand-Arm Vibrational Exposure in a Gear Manufacturing Plant in India

Authors: Santosh Kumar, M. Muralidhar

Abstract:

The term ‘ergonomics’ is derived from two Greek words: ‘ergon’, meaning work and ‘nomoi’, meaning natural laws. Ergonomics is the study of how working conditions, machines and equipment can be arranged in order that people can work with them more efficiently. In this research communication an attempt has been made to study the effect of hand-arm vibrational exposure on the workers of a gear manufacturing plant by comparison of potential Carpal Tunnel Syndrome (CTS) symptoms and effect of different exposure levels of vibration on occurrence of CTS in actual industrial environment. Chi square test and correlation analysis have been considered for statistical analysis. From Chi square test, it has been found that the potential CTS symptoms occurrence is significantly dependent on the level of vibrational exposure. Data analysis indicates that 40.51% workers having potential CTS symptoms are exposed to vibration. Correlation analysis reveals that potential CTS symptoms are significantly correlated with exposure to level of vibration from handheld tools and to repetitive wrist movements.

Keywords: CTS symptoms, hand-arm vibration, ergonomics, physical tests

Procedia PDF Downloads 371