Search results for: nanotube arrays
355 Fabrication of SnO₂ Nanotube Arrays for Enhanced Gas Sensing Properties
Authors: Hsyi-En Cheng, Ying-Yi Liou
Abstract:
Metal-oxide semiconductor (MOS) gas sensors are widely used in the gas-detection market due to their high sensitivity, fast response, and simple device structures. However, the high working temperature of MOS gas sensors makes them difficult to integrate with the appliance or consumer goods. One-dimensional (1-D) nanostructures are considered to have the potential to lower their working temperature due to their large surface-to-volume ratio, confined electrical conduction channels, and small feature sizes. Unfortunately, the difficulty of fabricating 1-D nanostructure electrodes has hindered the development of low-temperature MOS gas sensors. In this work, we proposed a method to fabricate nanotube-arrays, and the SnO₂ nanotube-array sensors with different wall thickness were successfully prepared and examined. The fabrication of SnO₂ nanotube arrays incorporates the techniques of barrier-free anodic aluminum oxide (AAO) template and atomic layer deposition (ALD) of SnO₂. First, 1.0 µm Al film was deposited on ITO glass substrate by electron beam evaporation and then anodically oxidized by five wt% phosphoric acid solution at 5°C under a constant voltage of 100 V to form porous aluminum oxide. As the Al film was fully oxidized, a 15 min over anodization and a 30 min post chemical dissolution were used to remove the barrier oxide at the bottom end of pores to generate a barrier-free AAO template. The ALD using reactants of TiCl4 and H₂O was followed to grow a thin layer of SnO₂ on the template to form SnO₂ nanotube arrays. After removing the surface layer of SnO₂ by H₂ plasma and dissolving the template by 5 wt% phosphoric acid solution at 50°C, upright standing SnO₂ nanotube arrays on ITO glass were produced. Finally, Ag top electrode with line width of 5 μm was printed on the nanotube arrays to form SnO₂ nanotube-array sensor. Two SnO₂ nanotube-arrays with wall thickness of 30 and 60 nm were produced in this experiment for the evaluation of gas sensing ability. The flat SnO₂ films with thickness of 30 and 60 nm were also examined for comparison. The results show that the properties of ALD SnO₂ films were related to the deposition temperature. The films grown at 350°C had a low electrical resistivity of 3.6×10-3 Ω-cm and were, therefore, used for the nanotube-array sensors. The carrier concentration and mobility of the SnO₂ films were characterized by Ecopia HMS-3000 Hall-effect measurement system and were 1.1×1020 cm-3 and 16 cm3/V-s, respectively. The electrical resistance of SnO₂ film and nanotube-array sensors in air and in a 5% H₂-95% N₂ mixture gas was monitored by Pico text M3510A 6 1/2 Digits Multimeter. It was found that, at 200 °C, the 30-nm-wall SnO₂ nanotube-array sensor performs the highest responsivity to 5% H₂, followed by the 30-nm SnO₂ film sensor, the 60-nm SnO₂ film sensor, and the 60-nm-wall SnO₂ nanotube-array sensor. However, at temperatures below 100°C, all the samples were insensitive to the 5% H₂ gas. Further investigation on the sensors with thinner SnO₂ is necessary for improving the sensing ability at temperatures below 100 °C.Keywords: atomic layer deposition, nanotube arrays, gas sensor, tin dioxide
Procedia PDF Downloads 242354 Electrochemical Anodic Oxidation Synthesis of TiO2 nanotube as Perspective Electrode for the Detection of Phenyl Hydrazine
Authors: Sadia Ameen, M. Nazim, Hyumg-Kee Seo, Hyung-Shik Shin
Abstract:
TiO2 nanotube (NT) arrays were grown on titanium (Ti) foil substrate by electrochemical anodic oxidation and utilized as working electrode to fabricate a highly sensitive and reproducible chemical sensor for the detection of harmful phenyl hydrazine chemical. The fabricated chemical sensor based on TiO2 NT arrays electrode exhibited high sensitivity of ~40.9 µA.mM-1.cm-2 and detection limit of ~0.22 µM with short response time (10s).Keywords: TiO2 NT, phenyl hydrazine, chemical sensor, sensitivity, electrocatalytic properties
Procedia PDF Downloads 500353 C4H6 Adsorption on the Surface of A BN Nanotube: A DFT Studies
Authors: Maziar Noei
Abstract:
Adsorption of a boron nitride nanotube (BNNT) was examined toward ethylacetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethylacetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube have been doped with Si and Al atomes, the adsorption energy of ethylacetylene molecule was increased. Calculation showed that when the nanotube is doping by Al, the adsorption energy is about -24.19kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanotube is a suitable adsorbent for ethylacetylene and can be used in separation processes ethylacetylene. It is seem that nanotube (BNNT) is a suitable semiconductor after doping, and the doped BNNT in the presence of ethylacetylene an electrical signal is generating directly and therefore can potentially be used for ethylacetylene sensors.Keywords: sensor, nanotube, DFT, ethylacetylene
Procedia PDF Downloads 249352 Green Synthesized Palladium Loaded Titanium Nanotube Arrays for Simultaneous Azo-Dye Degradation and Hydrogen Production
Authors: Yen-Ping Peng, Ku-Fan Chen, Ken-Lin Chang, Jian Sun
Abstract:
In this study, palladium loaded titanium dioxide nanotube arrays (Pd/TNAs) was successfully synthesized by anodic oxidation etching method combined with microwave hydrothermal method, using tea or coffee as a green reductant. Pd/TNAs was employed as an electrode in a photoelectrochemcial (PEC) system to simultaneously remove azo-dye and to generate hydrogen in the anodic and cathodic chamber, respectively. The chemical and physical properties of as-synthesized Pd/TNAs were characterized by scanning electron microscopy (SEM), ultraviolet–visible spectroscopy (UV-vis), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). SEM image indicates the diameter and the length of Pd/TNAs were approximately 300 nm and 2.5 μm, respectively. XPS analyses indicate that 1.13% (atomic %) of Pd was loaded onto the surface of TNAs. UV-vis results show that the band gap of TNAs was reduced from 3.2 eV to 2.37 eV after Pd loading. In addition, the electrochemical performances of Pd/TNAs were investigated by photocurrent density test and electrochemical impedance spectroscopy (EIS). The photocurrent (4.0 mA/cm²) of Pd /TNAs was higher than that of the uncoated TNAs (1.4 mA/cm²) at a bias potential of 1 V (vs. Ag/AgCl), indicating that Pd/TNAs-C can effectively separate photogenerated electrons and holes. The mechanism of our PEC system was proposed and discussed in detail in this study.Keywords: Pd/TNAs, photoelectrochemical, azo-dye degradation, hydrogen generation
Procedia PDF Downloads 422351 Experimental Study on Hardness and Impact Strength of Polyethylene/Carbon Composites
Authors: Armin Najipour, A. M. Fattahi
Abstract:
The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM: D6110 standard. The effects of carbon nanotube addition in 4 different levels and injection pressure in 2 levels on the hardness and impact strength of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving hardness and impact strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the impact strength and hardness of the samples improved to 74% and 46.7% respectively. Also, according to the results, the effect of injection pressure on the results was much less than that of carbon nanotube weight percentage.Keywords: carbon nanotube, injection molding, mechanical properties, nanocomposite, polyethylene
Procedia PDF Downloads 321350 Micromechanical Determination of the Mechanical Properties of Carbon Nanotube-Polymer Composites with a Functionally Graded Interphase
Authors: Vahidullah Tac, Ercan Gurses
Abstract:
There have been numerous attempts at modelling carbon nanotube – polymer composites micromechanically in recent years, albeit to limited success. One of the major setbacks of the models used in the scientific community is the lack of regard to the different phases present in a nanocomposite. We employ a multi-phase micromechanical model that allows functionally grading certain phases to determine the mechanical properties of nanocomposites. The model has four distinct phases; the nanotube, the interface between the nanotube and polymer, the interphase, and the bulk matrix. Among the four phases, the interphase is functionally graded such that its moduli gradually decrease from some predetermined values to those of the bulk polymer. We find that the interface plays little role in stiffening/softening of the polymer per se , but instead, it is responsible for load transfer between the polymer and the carbon nanotube. Our results indicate that the carbon nanotube, as well as the interphase, have significant roles in stiffening the composite. The results are then compared to experimental findings and the interphase is tuned accordingly.Keywords: carbon nanotube, composite, interphase, micromechanical modeling
Procedia PDF Downloads 166349 Experimental Study on Tensile Strength of Polyethylene/Carbon Injected Composites
Authors: Armin Najipour, A. M. Fattahi
Abstract:
The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM:D638 standard. The effects of carbon nanotube addition in 4 different levels on the tensile strength, elastic modulus and elongation of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving tensile strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the tensile strength 23.4%,elastic modulus 60.4%and elongation 29.7% of the samples improved. Also, according to the results, Manera approximation model at percentages about 0.5% weight and modified Halpin-Tsai at percentages about 1% weight lead to favorite and reliable results.Keywords: carbon nanotube, injection molding, Mechanical properties, Nanocomposite, polyethylene
Procedia PDF Downloads 270348 Electrocatalytic Properties of Ru-Pd Bimetal Quantum Dots/TiO₂ Nanotube Arrays Electrodes Composites with Double Schottky Junctions
Authors: Shiying Fan, Xinyong Li
Abstract:
The development of highly efficient multifunctional catalytic materials towards HER, ORR and Photo-fuel cell applications in terms of combined electrochemical and photo-electrochemical principles have currently confronted with dire challenges. In this study, novel palladium (Pd) and ruthenium (Ru) Bimetal Quantum Dots (BQDs) co-anchored on Titania nanotube (NTs) arrays electrodes have been successfully constructed by facial two-step electrochemical strategy. Double Schottky junctions with superior performance in electrocatalytic (EC) hydrogen generations and solar fuel cell energy conversions (PE) have been found. Various physicochemical techniques including UV-vis spectroscopy, TEM/EDX/HRTEM, SPV/TRV and electro-chemical strategy including EIS, C-V, I-V, and I-T, etc. were chronically utilized to systematically characterize the crystal-, electronic and micro-interfacial structures of the composites with double Schottky junction, respectively. The characterizations have implied that the marvelous enhancement of separation efficiency of electron-hole pairs generations is mainly caused by the Schottky-barriers within the nanocomposites, which would greatly facilitate the interfacial charge transfer for H₂ generations and solar fuel cell energy conversions. Moreover, the DFT calculations clearly indicated that the oriented growth of Ru and Pd bimetal atoms at the anatase (101) surface is mainly driven by the interaction between Ru/Pd and surface atoms, and the most active site for bimetal Ru and Pd adatoms on the perfect TiO₂ (101) surface is the 2cO-6cTi-3cO bridge sites and the 2cO-bridge sites with the highest adsorption energy of 9.17 eV. Furthermore, the electronic calculations show that in the nanocomposites, the number of impurity (i.e., co-anchored Ru-Pd BQDs) energy levels near Fermi surface increased and some were overlapped with original energy level, promoting electron energy transition and reduces the band gap. Therefore, this work shall provide a deeper insight for the molecular design of Bimetal Quantum Dots (BQDs) assembled onto Tatiana NTs composites with superior performance for electrocatalytic hydrogen productions and solar fuel cell energy conversions (PE) simultaneously.Keywords: eletrocatalytic, Ru-Pd bimetallic quantum dots, titania nanotube arrays, double Schottky junctions, hydrogen production
Procedia PDF Downloads 143347 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation
Authors: M. Dehestani, M. Ghasemi-Kooch
Abstract:
In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.Keywords: adsorption, chlorophyll, interaction, molecular dynamics simulation, nanotube
Procedia PDF Downloads 235346 Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites
Authors: Min Ye Koo, Gyo Woo Lee
Abstract:
In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens.Keywords: carbon nanotube filler, epoxy composite, ultra-sonication, shear mixer, mechanical property, thermal property
Procedia PDF Downloads 370345 Top-Down Approach for Fabricating Hematite Nanowire Arrays
Authors: Seungmin Shin, Jin-Baek Kim
Abstract:
Hematite (α-Fe2O3) has very good semiconducting properties with a band gap of 2.1 eV and is antiferromagnetic. Due to its electrochemical stability, low toxicity, wide abundance, and low-cost, hematite, it is a particularly attractive material for photoelectrochemical cells. Additionally, hematite has also found applications in gas sensing, field emission, heterogeneous catalysis, and lithium-ion battery electrodes. Here, we discovered a new universal top-down method for the synthesis of one-dimensional hematite nanowire arrays. Various shapes and lengths of hematite nanowire have been easily fabricated over large areas by sequential processes. The obtained hematite nanowire arrays are promising candidates as photoanodes in photoelectrochemical solar cells.Keywords: hematite, lithography, nanowire, top-down process
Procedia PDF Downloads 249344 Fabrication of Immune-Affinity Monolithic Array for Detection of α-Fetoprotein and Carcinoembryonic Antigen
Authors: Li Li, Li-Ru Xia, He-Ye Wang, Xiao-Dong Bi
Abstract:
In this paper, we presented a highly sensitive immune-affinity monolithic array for detection of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA). Firstly, the epoxy functionalized monolith arrays were fabricated using UV initiated copolymerization method. Scanning electron microscopy (SEM) image showed that the poly(BABEA-co-GMA) monolith exhibited a well-controlled skeletal and well-distributed porous structure. Then, AFP and CEA immune-affinity monolithic arrays were prepared by immobilization of AFP and CEA antibodies on epoxy functionalized monolith arrays. With a non-competitive immune response format, the presented AFP and CEA immune-affinity arrays were demonstrated as an inexpensive, flexible, homogeneous and stable array for detection of AFP and CEA.Keywords: chemiluminescent detection, immune-affinity, monolithic copolymer array, UV-initiated copolymerization
Procedia PDF Downloads 340343 Terahertz Surface Plasmon in Carbon Nanotube Dielectric Interface via Amplitude Modulated Laser
Authors: Monika Singh
Abstract:
A carbon nanotube thin film coated on dielectric interface is employed to produce THz surface plasma wave (SPW). The carbon nanotube has its plasmon frequency in the THz range. The SPW field falls off away from the metal film both inside the dielectric as well as in free space. An amplitude modulated laser pulse normally incident, from free space on slow wave structure, exert a modulation frequency ponderomotive force on the free electrons of the CNT film and resonantly excite the THz surface plasma wave at the modulation frequency. Carbon nanotube based plasmonic nano-structure materials provides potentially more versatile approach to tightly confined surface modes in the THz range in comparison to noble metals.Keywords: surface plasmons, surface waves, thin films, THz radiation
Procedia PDF Downloads 392342 Chaotic Motion of Single-Walled Carbon Nanotube Subject to Damping Effect
Authors: Tai-Ping Chang
Abstract:
In the present study, the effects on chaotic motion of single-walled carbon nanotube (SWCNT) due to the linear and nonlinear damping are investigated. By using the Hamilton’s principle, the nonlinear governing equation of the single-walled carbon nanotube embedded in a matrix is derived. The Galerkin’s method is adopted to simplify the integro-partial differential equation into a nonlinear dimensionless governing equation for the SWCNT, which turns out to be a forced Duffing equation. The variations of the Lyapunov exponents of the SWCNT with damping and harmonic forcing amplitudes are investigated. Based on the computations of the top Lyapunov exponent, it is concluded that the chaotic motion of the SWCNT occurs when the amplitude of the periodic excitation exceeds certain value, besides, the chaotic motion of the SWCNT occurs with small linear damping and tiny nonlinear damping.Keywords: chaotic motion, damping, Lyapunov exponents, single-walled carbon nanotube
Procedia PDF Downloads 320341 Template-Assisted Synthesis of IrO2 Nanopores Membrane Electrode Assembly
Authors: Zhuo-Xin Lu, Yan Shi, Chang-Feng Yan, Ying Huang, Yuan Gan, Zhi-Da Wang
Abstract:
With TiO2 nanotube arrays (TNTA) as template, a IrO2 nanopores membrane electrode assembly (MEA) was synthesized by a novel depositi-assemble-etch strategy. By analysing the morphology of IrO2/TNTA and cyclic voltammetry (CV) curve at different deposition cycles, we proposed a reasonable scheme for the process of IrO2 electrodeposition on TNTA. The current density of IrO2/TNTA at 1.5V vs RHE reaches 5.12mA/cm2 after 55 cycles deposition, which shows promising performance for its high OER activity after template removal.Keywords: electrodeposition, IrO2 nanopores, MEA, OER
Procedia PDF Downloads 446340 Electrochemical Performance of Carbon Nanotube Based Supercapacitor
Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari
Abstract:
Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry
Procedia PDF Downloads 562339 Numerical Simulation of Multiple Arrays Arrangement of Micro Hydro Power Turbines
Authors: M. A. At-Tasneem, N. T. Rao, T. M. Y. S. Tuan Ya, M. S. Idris, M. Ammar
Abstract:
River flow over micro hydro power (MHP) turbines of multiple arrays arrangement is simulated with computational fluid dynamics (CFD) software to obtain the flow characteristics. In this paper, CFD software is used to simulate the water flow over MHP turbines as they are placed in a river. Multiple arrays arrangement of MHP turbines lead to generate large amount of power. In this study, a river model is created and simulated in CFD software to obtain the water flow characteristic. The process then continued by simulating different types of arrays arrangement in the river model. A MHP turbine model consists of a turbine outer body and static propeller blade in it. Five types of arrangements are used which are parallel, series, triangular, square and rhombus with different spacing sizes. The velocity profiles on each MHP turbines are identified at the mouth of each turbine bodies. This study is required to obtain the arrangement with increasing spacing sizes that can produce highest power density through the water flow variation.Keywords: micro hydro power, CFD, arrays arrangement, spacing sizes, velocity profile, power
Procedia PDF Downloads 358338 Effect of Carbon Nanotube Reinforcement in Polymer Composite Plates under Static Loading
Authors: S. Madhu, V. V. Subba Rao
Abstract:
In the implementation of carbon nanotube reinforced polymer matrix composites in structural applications, deflection and stress analysis are important considerations. In the present study, a multi scale analysis of deflection and stress analysis of carbon nanotube (CNT) reinforced polymer composite plates is presented. A micromechanics model based on the Mori-Tanaka method is developed by introducing straight CNTs aligned in one direction. The effect of volume fraction and diameter of CNTs on plate deflection and the stresses are investigated using Classical Laminate Plate Theory (CLPT). The study is primarily conducted with the intention of observing the suitability of CNT reinforced polymer composite plates under static loading for structural applications.Keywords: carbon nanotube, micromechanics, composite plate, multi-scale analysis, classical laminate plate theory
Procedia PDF Downloads 372337 Effect of Carbon Nanotubes on Nanocomposite from Nanofibrillated Cellulose
Authors: M. Z. Shazana, R. Rosazley, M. A. Izzati, A. W. Fareezal, I. Rushdan, A. B. Suriani, S. Zakaria
Abstract:
There is an increasing interest in the development of flexible energy storage for application of Carbon Nanotubes and nanofibrillated cellulose (NFC). In this study, nanocomposite is consisting of Carbon Nanotube (CNT) mixed with suspension of nanofibrillated cellulose (NFC) from Oil Palm Empty Fruit Bunch (OPEFB). The use of Carbon Nanotube (CNT) as additive nanocomposite was improved the conductivity and mechanical properties of nanocomposite from nanofibrillated cellulose (NFC). The nanocomposite were characterized for electrical conductivity and mechanical properties in uniaxial tension, which were tensile to measure the bond of fibers in nanocomposite. The processing route is environmental friendly which leads to well-mixed structures and good results as well.Keywords: carbon nanotube (CNT), nanofibrillated cellulose (NFC), mechanical properties, electrical conductivity
Procedia PDF Downloads 334336 Raman Line Mapping on Melt Spun Polycarbonate/MWNT Fiber-Based Nanocomposites
Authors: Poonam Yadav, Dong Bok Lee
Abstract:
Raman spectroscopy was used for characterization of multi-wall carbon nanotube (MWNT) and Polycarbonate/multi-wall carbon nanotube (PC/MWNT) based fibers with 0.55% and 0.75% of MWNT (PC/MWNT55 and PC/MWNT75). PC/MWNT55 and PC/MWNT75 fibers was prepared by melt spinning device using nanocomposites made by two different route, viz., solvent casting and melt extrusion. Fibers prepared from melt extruded nanocomposites showed smooth and uniform morphology as compared to solvent casting based nanocomposites. The Raman mapping confirmed that the melt extruded based nanocomposites had better dispersion of MWNT in Polycarbonate (PC) than solvent casting carbon nanotube.Keywords: dispersion, melt extrusion, multi-wall carbon nanotube, mapping
Procedia PDF Downloads 347335 Molecular Dynamics Simulation for Vibration Analysis at Nanocomposite Plates
Authors: Babak Safaei, A. M. Fattahi
Abstract:
Polymer/carbon nanotube nanocomposites have a wide range of promising applications Due to their enhanced properties. In this work, free vibration analysis of single-walled carbon nanotube-reinforced composite plates is conducted in which carbon nanotubes are embedded in an amorphous polyethylene. The rule of mixture based on various types of plate model namely classical plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order shear deformation theory (HSDT) was employed to obtain fundamental frequencies of the nanocomposite plates. Generalized differential quadrature (GDQ) method was used to discretize the governing differential equations along with the simply supported and clamped boundary conditions. The material properties of the nanocomposite plates were evaluated using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites. Then the results obtained directly from MD simulations were fitted with those calculated by the rule of mixture to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results are presented to address the influences of nanotube volume fraction and edge supports on the value of fundamental frequency of carbon nanotube-reinforced composite plates corresponding to both long- and short-nanotube composites.Keywords: nanocomposites, molecular dynamics simulation, free vibration, generalized, differential quadrature (GDQ) method
Procedia PDF Downloads 329334 Design of Non-uniform Circular Antenna Arrays Using Firefly Algorithm for Side Lobe Level Reduction
Authors: Gopi Ram, Durbadal Mandal, Rajib Kar, Sakti Prasad Ghoshal
Abstract:
A design problem of non-uniform circular antenna arrays for maximum reduction of both the side lobe level (SLL) and first null beam width (FNBW) is dealt with. This problem is modeled as a simple optimization problem. The method of Firefly algorithm (FFA) is used to determine an optimal set of current excitation weights and antenna inter-element separations that provide radiation pattern with maximum SLL reduction and much improvement on FNBW as well. Circular array antenna laid on x-y plane is assumed. FFA is applied on circular arrays of 8-, 10-, and 12- elements. Various simulation results are presented and hence performances of side lobe and FNBW are analyzed. Experimental results show considerable reductions of both the SLL and FNBW with respect to those of the uniform case and some standard algorithms GA, PSO, and SA applied to the same problem.Keywords: circular arrays, first null beam width, side lobe level, FFA
Procedia PDF Downloads 258333 Molecular Dynamics Analysis onI mpact Behaviour of Carbon Nanotubes and Graphene Sheets
Authors: Sajjad Seifoori
Abstract:
Impact behavior of striker on graphene sheet and carbon nanotube is investigated based on molecular dynamics (MD) simulations. A MD simulation is conducted to obtain the maximum dynamic deflections of a square and rectangular single-layered graphene sheets (SLGSs) with various values of side-length and striker parameter. Effect of (i) chirality, (ii) graphene side-length and nanotube length, (iii) striker mass on the maximum dynamic deflections of graphene and nanotube are investigated. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (Length/Diameter).Keywords: impact, molecular dynamic, graphene, spring mass
Procedia PDF Downloads 329332 Stability and Rheological Study of Carbon Nanotube Water Based Nanofluid
Authors: S. Rashidi, L. C. Abdullah, R. Walvekar, K. Mohammad, F-R. Ahmadun, M. Y. Faizah
Abstract:
In this research, stability and rheology behavior of Multi-walled carbon nanotube (MWCNT) nanofluids by using Xanthan Gum as a dispersant were measured. This paper addresses the effects of Xanthan Gum (XG) concentration and nanoparticle loading on stability and viscosity of nanofluids. The stability of nanofluids is measured by Zeta Sizer Nano-ZS (Malvern Instruments, ZEN 3600). The zeta potential of the stable samples was analyzed. The rheological behavior of carbon nanotube CNT nanofluids was analyzed using rheometer (Model AR G2, TA Instrument). Both stability and viscosity of the nanofluids increased with increasing CNT and XG concentration. The experimental results indicated that the zeta potential of nanofluid samples is stable. The results demonstrated that the zeta potential was affected by the CNT concentration and is augmented in parallel with increasing CNT concentration. The rheology results showed that the viscosity of CNT/XG nanofluid was increased. The escalated viscosity of CNT/XG nanofluid is owing to the higher van der Waals interaction between the CNT nanoparticles. On the other hand, the viscosity of the CNT/XG nanofluid decreases with increasing temperature. In summary, this research provides useful insight into the behavior of CNT nanofluids.Keywords: nanofluid, carbon nanotube, stability, rheology
Procedia PDF Downloads 132331 A Novel All-Solid-State Microsupercapacitor Based on Carbon Nanotube Sheets
Authors: Behnoush Dousti, Ye Choi, Gil S. Lee
Abstract:
Supercapacitors which are also known as ultra supercapacitors play a significant role in development of energy storage devices owing to their high power density and rate capability. Nobel research has been conducted on micro scale energy storage systems currently to address the demand for smaller wearable technology and portable devices. Improving the performance of these microsupercapacitors have been always a challenge. Here, we demonstrate a facile fabrication of a microsupercapacitor (MSC) with interdigitated electrodes using novel structure of carbon nanotube sheets which are spun directly from as-grown carbon nanotube forests. Stability and performance of the device was tested using an aqueous PVA-H3PO4 gel electrolyte that also offers desirable electrochemical capacitive properties. High Coulombic efficiency around 100%, great rate capability and excellent capacitance retention over 15,000 cycles were obtained. Capacitive performance greatly improved with surface modification with acid and nitrogen doping of the CNT sheets. The high power density and stable cycling performance make this microsupercapacitor a suitable candidate for verity of energy storage application.Keywords: carbon nanotube sheet, energy storage, solid state electrolyte, supercapacitor
Procedia PDF Downloads 142330 Investigation of Atomic Adsorption on the Surface of BC3 Nanotubes
Authors: S. V. Boroznin, I. V. Zaporotskova, N. P. Polikarpova
Abstract:
Studing of nanotubes sorption properties is very important for researching. These processes for carbon and boron nanotubes described in the high number of papers. But the sorption properties of boron containing nanotubes, susch as BC3-nanotubes haven’t been studied sufficiently yet. In this paper we present the results of theoretical research into the mechanism of atomic surface adsorption on the two types of boron-carbon nanotubes (BCNTs) within the framework of an ionic-built covalent-cyclic cluster model and an appropriately modified MNDO quantum chemical scheme and DFT method using B3LYP functional with 6-31G basis. These methods are well-known and the results, obtained using them, were in good agreement with the experiment. Also we studied three position of atom location above the nanotube surface. These facts suggest us to use them for our research and quantum-chemical calculations. We studied the mechanism of sorption of Cl, O and F atoms on the external surface of single-walled BC3 arm-chair nanotubes. We defined the optimal geometry of the sorption complexes and obtained the values of the sorption energies. Analysis of the band structure suggests that the band gap is insensitive to adsorption process. The electron density is located near atoms of the surface of the tube. Also we compared our results with others, which have been obtained earlier for pure carbon and boron nanotubes. The most stable adsorption complex has been between boron-carbon nanotube and oxygen atom. So, it suggests us to make a research of oxygen molecule adsorption on the BC3 nanotube surface. We modeled five variants of molecule orientation above the nanotube surface. The most stable sorption complex has been defined between the oxygen molecule and nanotube when the oxygen molecule is located above the nanotube surface perpendicular to the axis of the tube.Keywords: Boron-carbon nanotubes, nanostructures, nanolayers, quantum-chemical calculations, nanoengineering
Procedia PDF Downloads 317329 Electromagnetic Interface Shielding of Graphene Oxide–Carbon Nanotube Hybrid ABS Composites
Authors: Jeevan Jyoti, Bhanu Pratap Singh, S. R. Dhakate
Abstract:
In the present study, multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) were synthesized by chemical vapor deposition and Improved Hummer’s method, respectively and their composite with acrylonitrile butadiene styrene (ABS) were prepared by twin screw co rotating extrusion technique. The electromagnetic interference (EMI) shielding effectiveness of graphene oxide carbon nanotube (GCNTs) hybrid composites was investigated and the results were compared with EMI shielding of carbon nanotube (CNTs) and reduced graphene oxide (RGO) in the frequency range of 12.4-18 GHz (Ku-band). The experimental results indicate that the EMI shielding effectiveness of these composites is achieved up to –21 dB for 10 wt. % loading of GCNT loading. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites. The electrical conductivity of these GCNT/ABS composites was increased from 10-13 S/cm to 10-7 S/cm showing the improvement of the 6 order of the magnitude. Scanning electron microscopic (SEM) and high resolution transmission electron microscopic (HRTEM) studies showed that the GCNTs were uniformly dispersed in the ABS polymer matrix. GCNTs form a network throughout the polymer matrix and promote the reinforcement.Keywords: ABS, EMI shielding, multiwalled carbon nanotubes, reduced graphene oxide, graphene, oxide-carbon nanotube (GCNTs), twin screw extruder, multiwall carbon nanotube, electrical conductivity
Procedia PDF Downloads 361328 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams
Authors: Babak Safaei, A. M. Fattahi
Abstract:
In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long-(10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.Keywords: nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ)
Procedia PDF Downloads 325327 Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite
Authors: Illyas Md Isa, Maryam Musfirah Che Sobry, Mohamad Syahrizal Ahmad, Nurashikin Abd Azis
Abstract:
A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods.Keywords: bisphenol A, magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite, Nanocomposite, uric acid
Procedia PDF Downloads 212326 Vibration Behavior of Nanoparticle Delivery in a Single-Walled Carbon Nanotube Using Nonlocal Timoshenko Beam Theory
Authors: Haw-Long Lee, Win-Jin Chang, Yu-Ching Yang
Abstract:
In the paper, the coupled equation of motion for the dynamic displacement of a fullerene moving in a (10,10) single-walled carbon nanotube (SWCNT) is derived using nonlocal Timoshenko beam theory, including the effects of rotary inertia and shear deformation. The effects of confined stiffness between the fullerene and nanotube, foundation stiffness, and nonlocal parameter on the dynamic behavior are analyzed using the Runge-Kutta Method. The numerical solution is in agreement with the analytical result for the special case. The numerical results show that increasing the confined stiffness and foundation stiffness decrease the dynamic displacement of SWCNT. However, the dynamic displacement increases with increasing the nonlocal parameter. In addition, result using the Euler beam theory and the Timoshenko beam theory are compared. It can be found that ignoring the effects of rotary inertia and shear deformation leads to an underestimation of the displacement.Keywords: single-walled carbon nanotube, nanoparticle delivery, Nonlocal Timoshenko beam theory, Runge-Kutta Method, Van der Waals force
Procedia PDF Downloads 377