Search results for: hot pressing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 332

Search results for: hot pressing

332 Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method

Authors: A. Srion, W. Thepsuwan, N. Monmaturapoj

Abstract:

Two Lithium disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through glass melting method and then fabricated into dental crowns via hot pressing at 850˚C and 900˚C in order to study the effect of the pressing temperatures on theirs phase formation and microstructure. The factor such as heat treatment temperature (as-cast glass, 600˚C and 700˚C) of the glass ceramics used to press was also investigated the effect of an initial microstructure before pressing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine phase formation and microstructure of the samples, respectively. X-ray diffraction result shows that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F, SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formation but have less effect during pressing. Scanning electron microscopy analysis showed microstructure of lath-like of Li2Si2O5 in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by hot pressing and compiled microstructure.

Keywords: lithium disilicate, hot pressing, dental crown, microstructure

Procedia PDF Downloads 328
331 Design and Performance Optimization of Isostatic Pressing Working Cylinder Automatic Exhaust Valve

Authors: Wei-Zhao, Yannian-Bao, Xing-Fan, Lei-Cao

Abstract:

An isostatic pressing working cylinder automatic exhaust valve is designed. The finite element models of valve core and valve body under ultra-high pressure work environment are built to study the influence of interact of valve core and valve body to sealing performance. The contact stresses of metal sealing surface with different sizes are calculated and the automatic exhaust valve is optimized. The result of simulation and experiment shows that the sealing of optimized exhaust valve is more reliable and the service life is greatly improved. The optimized exhaust valve has been used in the warm isostatic pressing equipment.

Keywords: exhaust valve, sealing, ultra-high pressure, isostatic pressing

Procedia PDF Downloads 309
330 Optical and Mechanical Characterization of Severe Plastically Deformed Copper Alloy Processed by Constrained Groove Pressing

Authors: Jaya Prasad Vanam, Vinay Anurag P, Vidya Sravya N S, Kishore Babu Nagamothu

Abstract:

Constrained Groove Pressing (CGP) is one of the severe plastic deformation technique (SPD) by which we can process Ultra Fine Grained (UFG)/plane metallic materials. This paper discusses the effects of CGP on Cu-Zn alloy specimen at room temperature. A comprehensive study is made on the structural and mechanical properties of Brass specimen before and after Constrained grooves Pressing. Entire process is simulated in AFDEX CAE Software. It is found that most of the properties are superior with respect to brass samples such as yield strength, ultimate tensile strength, hardness, strain rate, etc., and they are found to be better for the CGP processed specimen. The results are discussed with respective graphs.

Keywords: constrained groove pressing, AFDEX, ultra fine grained materials, severe plastic deformation technique

Procedia PDF Downloads 157
329 Additive Manufacturing’s Impact on Product Design and Development: An Industrial Case Study

Authors: Ahmed Abdelsalam, Daniel Roozbahani, Marjan Alizadeh, Heikki Handroos

Abstract:

The aim of this study was to redesign a pressing air nozzle with lower weight and improved efficiency utilizing Selective Laser Melting (SLM) technology based on Design for Additive Manufacturing (DfAM) methods. The original pressing air nozzle was modified in SolidWorks 3D CAD, and two design concepts were introduced considering the DfAM approach. In the proposed designs, the air channels were amended. 3D models for the original pressing air nozzle and introduced designs were created to obtain the flow characteristic data using Ansys software. Results of CFD modeling for the original and two proposed designs were extracted, compared, and analyzed to demonstrate the impact of design on the development of a more efficient pressing air nozzle by AM process. Improved airflow was achieved by optimizing the pressing air nozzle's internal channel for both design concepts by providing 30% and 50.6% fewer pressure drops than the original design. Moreover, utilizing the presented designs, a significant reduction in product weight was attained. In addition, by applying the proposed designs, 48.3% and 70.3% reduction in product weight was attained compared to the original design. Therefore, pressing air nozzle with enhanced productivity and lowered weight was generated utilizing the DfAM-driven designs developed in this study. The main contribution of this study is to investigate the additional possibilities that can be achieved in designing modern parts using the advantage of SLM technology in producing that part. The approach presented in this study can be applied to almost any similar industrial application.

Keywords: additive manufacturing, design for additive manufacturing, design methods, product design, pressing air nozzle

Procedia PDF Downloads 175
328 Effect of Molybdenum Addition to Aluminum Grain Refined by Titanium Plus Boron on Its Grain Size and Mechanical Characteristics in the Cast and After Pressing by the Equal Channel Angular Pressing Conditions

Authors: A. I. O. Zaid, A. M. Attieh, S. M. A. Al Qawabah

Abstract:

Aluminum and its alloys solidify in columnar structure with large grain size which tends to reduce their mechanical strength and surface quality. They are, therefore, grain refined by addition of either titanium or titanium plus boron to their melt before solidification. Equal channel angular pressing, ECAP, process is a recent forming method for producing heavy plastic deformation in materials. In this paper, the effect of molybdenum addition to aluminum grain refined by Ti+B on its metallurgical and mechanical characteristics are investigated in the as cast condition and after pressing by the ECAP process. It was found that addition of Mo or Ti+B alone or together to aluminum resulted in grain refining of its microstructure in the as cast condition, as the average grain size was reduced from 139 micron to 46 micron when Mo and Ti+B are added together. Pressing by the ECAP process resulted in further refinement of the microstructure where 32 micron of average grain size was achieved in Al and the Al-Mo microalloy. Regarding the mechanical strength, addition of Mo or Ti+B alone to Al resulted in deterioration of its mechanical behavior but resulted in enhancement of its mechanical behavior when added together, increase of 10% in flow stress was achieved at 20% strain. However, pressing by ECAP addition of Mo or Ti+B alone to Al resulted in enhancement of its mechanical strength but reduced its strength when added together.

Keywords: ECAP, aluminum, cast, mechanical characteristics, Mo grain refiner

Procedia PDF Downloads 474
327 Production of Hard Nickel Particle Reinforced Ti6Al4V Matrix Composites by Hot Pressing

Authors: Ridvan Yamanoglu

Abstract:

In the current study, titanium based composites reinforced by hard nickel alloy particles were produced. Powder metallurgical hot pressing technique was used for the fabrication of composite materials. The composites containing different ratio of hard nickel particles were sintered at 900 oC for 15 and 30 minutes under 50 MPa pressure. All titanium based composites were obtained under a vacuum atmosphere of 10-4 mbar to prevent of oxidation of titanium due to its high reactivity to oxygen. The microstructural characterization of the composite samples was carried out by optical and scanning electron microscopy. The mechanical properties of the samples were determined by means of hardness and wear tests. The results showed that when the nickel particle content increased the mechanical properties of the composites enhanced. The results are discussed in detail and optimum nickel particle content were determined.

Keywords: titanium, composite, nickel, hot pressing

Procedia PDF Downloads 173
326 Effect of Hot Equal Channel Angular Pressing Process on Mechanical Properties of Commercial Pure Titanium

Authors: Seyed Ata Khalkhkali Sharifi, Gholamhossein Majzoubi, Farhad Abroush

Abstract:

Developing mechanical properties of pure titanium has been reviewed in this paper by using ECAP process. At the first step of this article, the experimental samples were prepared as mentioned in the standards. Then pure grade 2 Ti was processed via equal-channel angular pressing (ECAp) for 2 passes following route-A at 400°C. After processing, the microstructural evolution, tensile, fatigue, hardness properties and wear behavior were investigated. Finally, the effect of ECAP process on these samples was analyzed. The results showed improvement in strength values with a slight decrease in ductility. The analysis on 30 points within the sample showed hardness increase in each pass. Also, it was concluded that fatigue properties were increased too.

Keywords: equal-channel angular pressing, titanium, mechanical behavior, engineering materials and applications

Procedia PDF Downloads 260
325 Estimating the Effect of Fluid in Pressing Process

Authors: A. Movaghar, R. A. Mahdavinejad

Abstract:

To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.

Keywords: pressing, notch, matrix, flow function, vortex

Procedia PDF Downloads 290
324 High Temperature Volume Combustion Synthesis of Ti3Al with Low Porosities

Authors: Nese Ozturk Korpe, Muhammed H. Karas

Abstract:

Reaction synthesis, or combustion synthesis, is a processing technique in which the thermal activation energy of formation of a compound is sustained by its exothermic heat of reaction. The aim of the present study was to investigate the effect of high initial pressing pressures (420 MPa, 630 MPa, and 850 MPa) on porosity of Ti3Al which produced by volume combustion synthesis. Microstructure examinations were performed by optical microscope (OM) and scanning electron microscope (SEM). Phase analyses were performed with X-ray diffraction device (XRD). A significant decrease in porosity was obtained due to an increase in the initial pressing pressure.

Keywords: Titanium Aluminide, Volume Combustion Synthesis, Intermetallic, Porosity

Procedia PDF Downloads 172
323 Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing

Authors: W. H. El Garaihy, A. Nassef, S. Samy

Abstract:

Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate.

Keywords: Al-Mg-Si alloy, equal channel angular pressing, grain refinement, severe plastic deformation

Procedia PDF Downloads 435
322 Physical Parameters Influencing the Yield of Nigella Sativa Oil Extracted by Hydraulic Pressing

Authors: Hadjadj Naima, K. Mahdi, D. Belhachat, F. S. Ait Chaouche, A. Ferradji

Abstract:

The Nigella Sativa oil yield extracted by hydraulic pressing is influenced by the pressure temperature and size particles. The optimization of oil extraction is investigated. The rate of extraction of the whole seeds is very weak, a crushing of seeds is necessary to facilitate the extraction. This rate augments with the rise of the temperature and the pressure, and decrease of size particles. The best output (66%) is obtained for a granulometry lower than 1mm, a temperature of 50°C and a pressure of 120 bars.

Keywords: oil, Nigella sativa, extraction, optimization, temperature, pressure

Procedia PDF Downloads 482
321 The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing

Authors: P. G. F. Siqueira, N. G. S. Almeida, P. M. A. Stemler, P. R. Cetlin, M. T. P. Aguilar

Abstract:

The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.

Keywords: ECAP, mechanical design, numerical methods, SPD

Procedia PDF Downloads 141
320 Kenaf MDF Panels with Soy Based Adhesive. The Influence of Preparation Parameters on Physciomechanical Properties

Authors: Imtiaz Ali, Krishnan Jayaraman, Debes Bhattacharyya

Abstract:

Soybean concentrate is abundant material and renewable product that is recently been explored as an alternative to conventional formaldehyde based resins in wood based products. The main goal of this study is to evaluate the technical feasibility of manufacturing environment friendly MDF panels from renewable resources. The panels are made by using kenaf bast fibers (KB) as wood substitute and soy based adhesive as bonding material. Second order response surface regression models are used to understand the effects and interactions of resin content (RC) and pressing time (PT) on the mechanical and water soaking properties of kenaf panels. The mechanical and water soaking properties are significantly improved as the RC increased and reached at the highest level at maximum resin loading (12%). The effect of pressing time is significant in the first phase when the pressing time increased from 4 to 6 min; however the effect was not as significant when pressing time further increased to 8 min. The second order regression equations further confirm that the variation in process parameters has strong relationship with the physciomechanical properties. The MDF panels the minimum requirements of internal bond strength, modulus of rupture and modulus of elasticity as recommended by US wood MDF standard specifications for G110, G120, G130 and G140 grade MDF panels. However, the thickness swelling results are considerably poorer than the recommended values of general purpose standard requirements. This deficiency can be counterbalanced by the advantage of being formaldehyde free panels made from renewable sources and by making them suitable alternative for less humid environment applications.

Keywords: kenaf, Medium density fibreboard, soy adhesive, mechanical properties, water soaking properties

Procedia PDF Downloads 378
319 Influence of Densification Process and Material Properties on Final Briquettes Quality from FastGrowing Willows

Authors: Peter Križan, Juraj Beniak, Ľubomír Šooš, Miloš Matúš

Abstract:

Biomass treatment through densification is very suitable and important technology before its effective energy recovery. Densification process of biomass is significantly influenced by various technological and also material parameters which are ultimately reflected on the final solid Biofuels quality. The paper deals with the experimental research of the relationship between technological and material parameters during densification of fast-growing trees, roundly fast-rowing willow. The main goal of presented experimental research is to determine the relationship between pressing pressure raw material fraction size from a final briquettes density point of view. Experimental research was realized by single-axis densification. The impact of fraction size with interaction of pressing pressure and stabilization time on the quality properties of briquettes was determined. These parameters interaction affects the final solid biofuels (briquettes) quality. From briquettes production point of view and also from densification machines constructions point of view is very important to know about mutual interaction of these parameters on final briquettes quality. The experimental findings presented here are showing the importance of mentioned parameters during the densification process.

Keywords: briquettes density, densification, fraction size, pressing pressure, stabilization time

Procedia PDF Downloads 368
318 Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe

Authors: Ridvan Yamanoglu, Erdinc Efendi, Ismail Daoud

Abstract:

In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium.

Keywords: Ti5Al-2.5Fe, mechanical alloying, hot pressing, sintering

Procedia PDF Downloads 280
317 Consolidation of Carbonyl Nickel Powders by Hot Pressing

Authors: Ridvan Yamanoglu, Ismail Daoud

Abstract:

In the current study, carbonyl nickel powders were sintered by uniaxial hot pressing technique. Loose starting powders were poured directly into a graphite die with a 15.4 mm inner diameter. Two graphite punches with an outer diameter of 15 mm were inserted into the die; then the powders were sintered at different sintering temperatures, holding times and pressure conditions. The sintered samples were polished and examined by optical microscopy. Hardness and bending behavior of the sintered samples were investigated in order to determine the mechanical properties of the sintered nickel samples. To carried out the friction properties of the produced samples wear tests were studied using a pin on disc tribometer. Load and distance were selected as wear test parameters. The fracture surface of the samples after bending test was also carried out by using scanning electron microscopy.

Keywords: nickel powder, sintering, hot press, mechanical properties

Procedia PDF Downloads 168
316 Date Palm Compreg: A High Quality Bio-Composite of Date Palm Wood

Authors: Mojtaba Soltani, Edi Suhaimi Bakar, Hamid Reza Naji

Abstract:

Date Palm Wood (D.P.W) specimens were impregnated with Phenol formaldehyde (PF) resin at 15% level, using vacuum/pressure method. Three levels of moisture content (MC) (50%, 60%, and 70% ) before pressing stage and three hot pressing times (15, 20, and 30 minutes) were the variables. The boards were prepared at 20% compression rate. The physical properties of specimens such as spring back, thickness swelling and water absorption, and mechanical properties including MOR, MOE were studied and compared between variables. The results indicated that the percentage of MC levels before compression set was the main factor on the properties of the Date Palm Compreg. Also, the results showed that this compregnation method can be used as a good method for making high-quality bio-composite from Date Palm Wood.

Keywords: Date palm, phenol formaldehyde resin, high-quality bio-composite, physical and mechanical properties

Procedia PDF Downloads 353
315 Equal Channel Angular Pressing of Al1050 Sheets: Experimental and Finite Element Survey

Authors: P. M. Keshtiban, M. Zdshakoyan, G. Faragi

Abstract:

Different severe plastic deformation (SPD) methods are the most successful ways to build nano-structural materials from coarse grain samples without changing the cross-sectional area. One of the most widely used methods in the SPD process is equal channel angler pressing (ECAP). In this paper, ECAP process on Al1050 sheets was evaluated at room temperature by both experiments and finite element method. Since, one of the main objectives of SPD processes is to achieve high equivalent plastic strain (PEEQ) in one cycle, the values of PEEQ obtained by finite element simulation. Also, force-displacement curve achieved by FEM. To study the changes of mechanical properties, micro-hardness tests were conducted on samples and improvement in the mechanical properties were investigated. Results show that there is the good proportion between FEM, theory and experimental results.

Keywords: AL1050, experiments, finite element method, severe plastic deformation

Procedia PDF Downloads 424
314 Strength Performance and Microstructure Characteristics of Natural Bonded Fiber Composites from Malaysian Bamboo

Authors: Shahril Anuar Bahari, Mohd Azrie Mohd Kepli, Mohd Ariff Jamaludin, Kamarulzaman Nordin, Mohamad Jani Saad

Abstract:

Formaldehyde release from wood-based panel composites can be very toxicity and may increase the risk of human health as well as environmental problems. A new bio-composites product without synthetic adhesive or resin is possible to be developed in order to reduce these problems. Apart from formaldehyde release, adhesive is also considered to be expensive, especially in the manufacturing of composite products. Natural bonded composites can be termed as a panel product composed with any type of cellulosic materials without the addition of synthetic resins. It is composed with chemical content activation in the cellulosic materials. Pulp and paper making method (chemical pulping) was used as a general guide in the composites manufacturing. This method will also generally reduce the manufacturing cost and the risk of formaldehyde emission and has potential to be used as an alternative technology in fiber composites industries. In this study, the natural bonded bamboo fiber composite was produced from virgin Malaysian bamboo fiber (Bambusa vulgaris). The bamboo culms were chipped and digested into fiber using this pulping method. The black liquor collected from the pulping process was used as a natural binding agent in the composition. Then the fibers were mixed and blended with black liquor without any resin addition. The amount of black liquor used per composite board was 20%, with approximately 37% solid content. The composites were fabricated using a hot press machine at two different board densities, 850 and 950 kg/m³, with two sets of hot pressing time, 25 and 35 minutes. Samples of the composites from different densities and hot pressing times were tested in flexural strength and internal bonding (IB) for strength performance according to British Standard. Modulus of elasticity (MOE) and modulus of rupture (MOR) was determined in flexural test, while tensile force perpendicular to the surface was recorded in IB test. Results show that the strength performance of the composites with 850 kg/m³ density were significantly higher than 950 kg/m³ density, especially for samples from 25 minutes hot pressing time. Strength performance of composites from 25 minutes hot pressing time were generally greater than 35 minutes. Results show that the maximum mean values of strength performance were recorded from composites with 850 kg/m³ density and 25 minutes pressing time. The maximum mean values for MOE, MOR and IB were 3251.84, 16.88 and 0.27 MPa, respectively. Only MOE result has conformed to high density fiberboard (HDF) standard (2700 MPa) in British Standard for Fiberboard Specification, BS EN 622-5: 2006. Microstructure characteristics of composites can also be related to the strength performance of the composites, in which, the observed fiber damage in composites from 950 kg/m³ density and overheat of black liquor led to the low strength properties, especially in IB test.

Keywords: bamboo fiber, natural bonded, black liquor, mechanical tests, microstructure observations

Procedia PDF Downloads 254
313 Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper

Authors: Fahad Al-Mufadi, F. Djavanroodi

Abstract:

Ultrafine grained (UFG) and nanostructured (NS) materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present work has been undertaken to develop ultra-fine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20 mm had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136HV from 52HV after the final pass. Also, about 285% and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reduction in the impact energy have been attained for the samples as contrasted to annealed specimens.

Keywords: SPD, ECAP, pure cu, impact property

Procedia PDF Downloads 259
312 Influence of Drying Method in Parts of Alumina Obtained for Rapid Prototyping and Uniaxial Dry Pressing

Authors: N. O. Muniz, F. A. Vechietti, L. Treccani, K. Rezwan, Luis Alberto dos Santos

Abstract:

Developing new technologies in the manufacture of biomaterials is a major challenge for researchers in the tissue engineering area. Many in vitro and in vivo studies have revealed the significance of the porous structure of the biomaterials on the promotion of bone ingrowth. The use of Rapid Prototyping in the manufacture of ceramics in the biomedical area has increased in recent years and few studies are conducted on obtaining alumina pieces. The aim of this work was the study of alumina pieces obtained by 3D printing and uniaxial dry pressing (DP) in order to evaluate porosity achieved by this two different techniques. Also, the influence of the powder drying process was determined. The row alumina powders were drying by freeze drying and oven. Apparent porosity, apparent density, retraction after thermal treatment were evaluated. The porosity values obtained by DP, regardless of method of drying powders, were much lower than those obtained by RP as expected. And for the prototyped samples, the method of powder drying significantly influenced porosities, reached 48% for drying oven versus 65% for freeze-drying. Therefore, the method of 3D printing, using different powder drying, allows a better control over the porosity.

Keywords: rapid prototyping, freeze-drying, porosity, alumina

Procedia PDF Downloads 472
311 Processing and Characterization of Oxide Dispersion Strengthened (ODS) Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) Ferritic Steel

Authors: Farha Mizana Shamsudin, Shahidan Radiman, Yusof Abdullah, Nasri Abdul Hamid

Abstract:

Oxide dispersion strengthened (ODS) ferritic steels are amongst the most promising candidates for large scale structural materials to be applied in next generation fission and fusion nuclear power reactors. This kind of material is relatively stable at high temperature, possess remarkable mechanical properties and comparatively good resistance from neutron radiation damage. The superior performance of ODS ferritic steels over their conventional properties is attributed to the high number density of nano-sized dispersoids that act as nucleation sites and stable sinks for many small helium bubbles resulting from irradiation, and also as pinning points to dislocation movement and grain growth. ODS ferritic steels are usually produced by powder metallurgical routes involving mechanical alloying (MA) process of Y2O3 and pre-alloyed or elemental metallic powders, and then consolidated by hot isostatic pressing (HIP) or hot extrusion (HE) techniques. In this study, Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (designated as 14YWT) was produced by mechanical alloying process and followed by hot isostatic pressing (HIP) technique. Crystal structure and morphology of this sample were identified and characterized by using X-ray Diffraction (XRD) and field emission scanning electron microscope (FESEM) respectively. The magnetic measurement of this sample at room temperature was carried out by using a vibrating sample magnetometer (VSM). FESEM micrograph revealed a homogeneous microstructure constituted by fine grains of less than 650 nm in size. The ultra-fine dispersoids of size between 5 nm to 19 nm were observed homogeneously distributed within the BCC matrix. The EDS mapping reveals that the dispersoids contain Y-Ti-O nanoclusters and from the magnetization curve plotted by VSM, this sample approaches the behavior of soft ferromagnetic materials. In conclusion, ODS Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) ferritic steel was successfully produced by HIP technique in this present study.

Keywords: hot isostatic pressing, magnetization, microstructure, ODS ferritic steel

Procedia PDF Downloads 320
310 Fabrication of Powdery Composites Based Alumina and Its Consolidation by Hot Pressing Method in OXY-GON Furnace

Authors: T. Kuchukhidze, N. Jalagonia, T. Korkia, V. Gabunia, N. Jalabadze, R. Chedia

Abstract:

In this work, obtaining methods of ultrafine alumina powdery composites and high temperature pressing technology of matrix ceramic composites with different compositions have been discussed. Alumina was obtained by solution combustion synthesis and sol-gel methods. Metal carbides containing powdery composites were obtained by homogenization of finishing powders in nanomills, as well as by their single-step high temperature synthesis .Different types of matrix ceramics composites (α-Al2O3-ZrO2-Y2O3, α-Al2O3- Y2O3-MgO, α-Al2O3-SiC-Y2O3, α-Al2O3-WC-Co-Y2O3, α-Al2O3- B4C-Y2O3, α-Al2O3- B4C-TiB2 etc.) were obtained by using OXYGON furnace. Consolidation of powders were carried out at 1550- 1750°C (hold time - 1 h, pressure - 50 MPa). Corundum ceramics samples have been obtained and characterized by high hardness and fracture toughness, absence of open porosity, high corrosion resistance. Their density reaches 99.5-99.6% TD. During the work, the following devices have been used: High temperature vacuum furnace OXY-GON Industries Inc (USA), Electronic Scanning Microscopes Nikon Eclipse LV 150, Optical Microscope NMM- 800TRF, Planetary mill Pulverisette 7 premium line, Shimadzu Dynamic Ultra Micro Hardness Tester DUH-211S, Analysette 12 Dynasizer.

Keywords: α-alumina, consolidation, phase transformation, powdery composites

Procedia PDF Downloads 349
309 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, pure Al, mechanical properties

Procedia PDF Downloads 181
308 Effect of Two Different Method for Juice Processing on the Anthocyanins and Polyphenolics of Blueberry (Vaccinium corymbosum)

Authors: Onur Ercan, Buket Askin, Erdogan Kucukoner

Abstract:

Blueberry (Vaccinium corymbosum, bluegold) has become popular beverage due to their nutritional values such as vitamins, minerals, and antioxidants. In the study, the effects of pressing, mashing, enzymatic treatment, and pasteurization on anthocyanins, colour, and polyphenolics of blueberry juice (BJ) were studied. The blueberry juice (BJ) was produced with two different methods that direct juice extraction (DJE) and mash treatment process (MTP) were applied. After crude blueberry juice (CBJ) production, the samples were first treated with commercial enzymes [Novoferm-61 (Novozymes A/S) (2–10 mL/L)], to break down the hydrocolloid polysaccharides, mainly pectin and starch. The enzymes were added at various concentrations. The highest transmittance (%) was obtained for Novoferm-61 at a concentration of 2 mL/L was 66.53%. After enzymatic treatment, clarification trials were applied to the enzymatically treated BJs with adding various amounts of bentonite (10%, w/v), gelatin (1%, w/v) and kiselsol (15%, v/v). The turbidities of the clarified samples were then determined. However, there was no significant differences between transmittances (%) for samples. For that, only enzymatic treatment was applied to the blueberry juice processing (DDBJ, depectinized direct blueberry juice). Based on initial pressing process made to evaluate press function, it was determined that pressing fresh blueberries with no other processing did not render adequate juice due to lack of liquefaction. Therefore, the blueberries were mash into small pieces (3 mm) and then enzymatic treatments and clarification trials were performed. Finally, both BJ samples were pasteurized. Compositional analyses, colour properties, polyphenols and antioxidant properties were compared. Enzymatic treatment caused significant reductions in ACN content (30%) in Direct Blueberry Juice Processing (DBJ), while there was a significant increasing in Mash Treatment Processing (MTP). Overall anthocyanin levels were higher intreated samples after each processing step in MTP samples, but polyphenolic levels were slightly higher for both processes (DBJ and MTP). There was a reduction for ACNs and polyphenolics only after pasteurization. It has a result that the methods for tried to blueberry juice is suitable into obtain fresh juice. In addition, we examined fruit juice during processing stages; anthocyanin, phenolic substance content and antioxidant activity are higher, and yield is higher in fruit juice compared to DBJ method in MTP method, the MTP method should be preferred in processing juice of blueberry into fruit juice.

Keywords: anthocyanins, blueberry, depectinization, polyphenols

Procedia PDF Downloads 94
307 Manufacturing and Characterization of Bioresorbable Self-Reinforced PLA Composites for Bone Applications

Authors: Carolina Pereira Lobato Costa, Cristina Pascual-González, Monica Echeverry, Javier LLorca, Carlos Gonzáléz, Juan Pedro Fernández-Bláquez

Abstract:

Although the potential of PLA self-reinforced composites for bone applications, not much literature addresses optimal manufacturing conditions. In this regard, this paper describes the woven self-reinforced PLA composites manufacturing processes: the commingling of yarns, weaving, and hot pressing and characterizes the manufactured laminates. Different structures and properties can be achieved by varying the hot compaction process parameters (pressure, holding time, and temperature). The specimens manufactured were characterized in terms of thermal properties (DSC), microstructure (C-scan optical microscope and SEM), strength (tensile test), and biocompatibility (MTT assays). Considering the final device, 155 ℃ for 10 min at 2 MPa act as the more appropriate hot pressing parameters. The laminate produced with these conditions has few voids/porosity, a tensile strength of 30.39 ± 1.21 MPa, and a modulus of 4.09 ± 0.24 GPa. Subsequently to the tensile testing was possible to observe fiber pullout from the fracture surfaces, confirming that this material behaves as a composite. From the results, no single laminate can fulfill all the requirements, being necessary to compromise in function of the priority property. Further investigation is required to improve materials' mechanical performance. Subsequently, process parameters and materials configuration can be adjusted depending on the place and type of implant to suit its function.

Keywords: woven fabric, self-reinforced polymer composite, poly(lactic acid), biodegradable

Procedia PDF Downloads 196
306 Microstructure Study of Melt Spun Mg₆₅Cu₂₅Y₁₀

Authors: Michael Regev, Shai Essel, Alexander Katz-Demyanetz

Abstract:

Magnesium alloys are characterized by good physical properties: They exhibit high strength, are lightweight and have good damping absorption and good thermal and electrical conductivity. Amorphous magnesium alloys, moreover, exhibit higher strength, hardness and a large elastic domain in addition to having excellent corrosion resistance. These above-mentioned advantages make magnesium based metallic glasses attractive for industrial use. Among the various existing magnesium alloys, Mg₆₅Cu₂₅Y₁₀ alloy is known to be one of the best glass formers. In the current study, Mg₆₅Cu₂₅Y₁₀ ribbons were produced by melt spinning, their microstructure was investigated in its as-cast condition, after pressing under 0.5 GPa for 5 minutes under different temperatures - RT, 500C, 1000C, 1500C and 2000C - and after five minute exposure to the above temperatures without pressing. The microstructure was characterized by means of X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), High Resolution Scanning Electron Microscope (HRSEM) and High Resolution Transmission Electron Microscopy (HRTEM). XRD and DSC studies showed that the as-cast material had an amorphous character and that the material crystallized during exposure to temperature with or without applying stress. HRTEM revealed that the as-cast Mg65Cu25Y10, although known to be one of the best glass formers, is nano-crystalline rather than amorphous. The current study casts light on the question what an amorphous alloy is and whether there is any clear borderline between amorphous and nano-crystalline alloys.

Keywords: metallic glass, magnesium, melt spinning, amorphous alloys

Procedia PDF Downloads 238
305 Determination of Proximate, Mineral, and Heavy Metal Contents of Fish from the Lower River Niger at Agenebode, Edo State, Nigeria

Authors: Agbugui M. O., Inobeme A.

Abstract:

Fish constitutes a vital component of human diets due to their rich nutritional compositions. They serve as a remarkable source of proteins, vitamins, and fatty acids, which are indispensable for the effective growth and development of humans. The need to explore the nutritional compositions of various species of fish in different water bodies becomes paramount. Presently, consumer concern is not just on food's nutritional value but also on the safety level. Environmental contamination by heavy metals has become an issue of pressing concern in recent times. Heavy metals, due to their ubiquitous nature, are found in various water bodies as they are released from various anthropogenic activities. This work investigated the proximate compositions, mineral contents, and heavy metals concentrations of four different species of fish (P. annectens, L. niloticus, G. niloticus, and H. niloticus) collected from the lower Niger at Agenebode using standard procedures. The highest protein contents were in Gymnarchus niloticus (37.32%), while the least was in Heterotis niloticus (20.41%). Protopterus annectens had the highest carbohydrate content (34.55%), while Heterotis niloticus had the least (12.24%). The highest lipid content (14.41%) was in Gymnarchus niloticus. The highest concentration of potassium was 21.00 ppm. The concentrations of heavy metals in ppm ranged from 0.01 – 1.4 (Cd), 0.07 – 2.89 (Pb), 0.02 – 16.4 (Hg), 0.88 – 5.1 (Cu) and 1.2 – 8.23 (Zn). The concentrations of Hg, Cd and Pb in some of the samples investigated were higher than the permissible limits based on international standards. There is a pressing need for further study focusing on various species of animals and plants in the area due to the alarming contents of these metals; remedial measures could also be ensured for safety.

Keywords: trace metals, nutritional value, human health, crude protein, lipid content

Procedia PDF Downloads 95
304 Investigating the Characteristics of Multi-Plastic Composites Prepared from a Mixture of Silk Fibers and Recycled Polycarbonate

Authors: Razieh Shamsi, Mehdi Faezipour, Ali Abdolkhani

Abstract:

In this research, the characteristics of composites prepared from waste silk fibers and recycled polycarbonate polymer (used compacted boards) at four levels of 0, 10, 20, and 30% (silk fibers) and using 2% N- 2-Aminoethyl-3-Aminopropyltrimethoxysilane was investigated as a coupling agent and melt process method. Silk fibers (carpet weaving waste) with dimensions of 8-18 mm were prepared, and recycled polymer with 9 mesh grading was ground. Production boards in 3 thicknesses, 3 mm (tensile test samples), 5 mm (bending test samples, water absorption, and thickness shrinkage), 7 mm (impact resistance test samples) ) with a specific weight of 1 gram per cubic centimeter, hot pressing time and temperature of 12 minutes and 190 degrees Celsius with a pressure of 130 bar, cold pressing time of 6 minutes with a pressure of 50 bar and using the coupling agent N- (2- Aminoethyl)-3-aminopropyltrimethoxysilane was prepared in a constant amount of 2% of the dry weight of the filler. The results showed that, in general, by adding silk fibers to the base polymer, compared to the control samples (pure recycled polycarbonate polymer) and also by increasing the amount of silk fibers, almost all the resistances increased. The amount of water absorption of the constructed composite increased with the increase in the amount of silk fibers, and the thickness absorption was equal to 0% even after 72 hours of immersion in water. The thermal resistance of the pure recycled polymer was higher than the prepared composites, and by adding silk fibers to the base polymer and also by increasing the amount of silk fibers from 10 to 30%, the thermal resistance of the composites decreased.

Keywords: wood composite, recycled polycarbonate, silk fibers, polymer

Procedia PDF Downloads 93
303 Development of Natural Zeolites Adsorbent: Preliminary Study on Water-Isopropyl Alcohol Adsorption in a Close-Loop Continuous Adsorber

Authors: Sang Kompiang Wirawan, Pandu Prabowo Jati, I Wayan Warmada

Abstract:

Klaten Indonesian natural zeolite can be used as powder or pellet adsorbent. Pellet adsorbent has been made from activated natural zeolite powder by a conventional pressing method. Starch and formaldehyde were added as binder to strengthen the construction of zeolite pellet. To increase the absorptivity and its capacity, natural zeolite was activated first chemically and thermally. This research examined adsorption process of water from Isopropyl Alcohol (IPA)-water system using zeolite adsorbent pellet from natural zeolite powder which has been activated with H2SO4 0.1 M and 0.3 M. Adsorbent was pelleted by pressing apparatus at certain pressure to make specification in 1.96 cm diameter, 0.68 cm thickness which the natural zeolite powder (-80 mesh). The system of isopropyl-alcohol water contained 80% isopropyl-alcohol. Adsorption process was held in close-loop continuous apparatus which the zeolite pellet was put inside a column and the solution of IPA-water was circulated at certain flow. Concentration changing was examined thoroughly at a certain time. This adsorption process included mass transfer from bulk liquid into film layer and from film layer into the solid particle. Analysis of rate constant was using first order isotherm model that simulated with MATLAB. Besides using first order isotherm, intra-particle diffusion model was proposed by using pore diffusion model. The study shows that adsorbent activated by H2SO4 0.1 M has good absorptivity with mass transfer constant at 0.1286 min-1.

Keywords: intra-particle diffusion, fractional attainment, first order isotherm, zeolite

Procedia PDF Downloads 311