Search results for: greedy approach
13891 Model-Based Software Regression Test Suite Reduction
Authors: Shiwei Deng, Yang Bao
Abstract:
In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.Keywords: dependence analysis, EFSM model, greedy algorithm, regression test
Procedia PDF Downloads 42713890 Resource Allocation and Task Scheduling with Skill Level and Time Bound Constraints
Authors: Salam Saudagar, Ankit Kamboj, Niraj Mohan, Satgounda Patil, Nilesh Powar
Abstract:
Task Assignment and Scheduling is a challenging Operations Research problem when there is a limited number of resources and comparatively higher number of tasks. The Cost Management team at Cummins needs to assign tasks based on a deadline and must prioritize some of the tasks as per business requirements. Moreover, there is a constraint on the resources that assignment of tasks should be done based on an individual skill level, that may vary for different tasks. Another constraint is for scheduling the tasks that should be evenly distributed in terms of number of working hours, which adds further complexity to this problem. The proposed greedy approach to solve assignment and scheduling problem first assigns the task based on management priority and then by the closest deadline. This is followed by an iterative selection of an available resource with the least allocated total working hours for a task, i.e. finding the local optimal choice for each task with the goal of determining the global optimum. The greedy approach task allocation is compared with a variant of Hungarian Algorithm, and it is observed that the proposed approach gives an equal allocation of working hours among the resources. The comparative study of the proposed approach is also done with manual task allocation and it is noted that the visibility of the task timeline has increased from 2 months to 6 months. An interactive dashboard app is created for the greedy assignment and scheduling approach and the tasks with more than 2 months horizon that were waiting in a queue without a delivery date initially are now analyzed effectively by the business with expected timelines for completion.Keywords: assignment, deadline, greedy approach, Hungarian algorithm, operations research, scheduling
Procedia PDF Downloads 14613889 A Novel Exploration/Exploitation Policy Accelerating Learning In Both Stationary And Non Stationary Environment Navigation Tasks
Authors: Wiem Zemzem, Moncef Tagina
Abstract:
In this work, we are addressing the problem of an autonomous mobile robot navigating in a large, unknown and dynamic environment using reinforcement learning abilities. This problem is principally related to the exploration/exploitation dilemma, especially the need to find a solution letting the robot detect the environmental change and also learn in order to adapt to the new environmental form without ignoring knowledge already acquired. Firstly, a new action selection strategy, called ε-greedy-MPA (the ε-greedy policy favoring the most promising actions) is proposed. Unlike existing exploration/exploitation policies (EEPs) such as ε-greedy and Boltzmann, the new EEP doesn’t only rely on the information of the actual state but also uses those of the eventual next states. Secondly, as the environment is large, an exploration favoring least recently visited states is added to the proposed EEP in order to accelerate learning. Finally, various simulations with ball-catching problem have been conducted to evaluate the ε-greedy-MPA policy. The results of simulated experiments show that combining this policy with the Qlearning method is more effective and efficient compared with the ε-greedy policy in stationary environments and the utility-based reinforcement learning approach in non stationary environments.Keywords: autonomous mobile robot, exploration/ exploitation policy, large, dynamic environment, reinforcement learning
Procedia PDF Downloads 41713888 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 8613887 Optimal Management of Internal Capital of Company
Authors: S. Sadallah
Abstract:
In this paper, dynamic programming is used to determine the optimal management of financial resources in company. Solution of the problem by consider into simpler substructures is constructed. The optimal management of internal capital of company are simulated. The tools applied in this development are based on graph theory. The software of given problems is built by using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.Keywords: management, software, optimal, greedy algorithm, graph-diagram
Procedia PDF Downloads 28513886 Product Development in Company
Authors: Giorgi Methodishvili, Iuliia Methodishvili
Abstract:
In this paper product development algorithm is used to determine the optimal management of financial resources in company. Aspects of financial management considered include put initial investment, examine all possible ways to solve the problem and the optimal rotation length of profit. The software of given problems is based using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.Keywords: management, software, optimal, greedy algorithm, graph-diagram
Procedia PDF Downloads 5613885 Survey Paper on Graph Coloring Problem and Its Application
Authors: Prateek Chharia, Biswa Bhusan Ghosh
Abstract:
Graph coloring is one of the prominent concepts in graph coloring. It can be defined as a coloring of the various regions of the graph such that all the constraints are fulfilled. In this paper various graphs coloring approaches like greedy coloring, Heuristic search for maximum independent set and graph coloring using edge table is described. Graph coloring can be used in various real time applications like student time tabling generation, Sudoku as a graph coloring problem, GSM phone network.Keywords: graph coloring, greedy coloring, heuristic search, edge table, sudoku as a graph coloring problem
Procedia PDF Downloads 53913884 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares
Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang
Abstract:
the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction
Procedia PDF Downloads 14713883 Efficient Reconstruction of DNA Distance Matrices Using an Inverse Problem Approach
Authors: Boris Melnikov, Ye Zhang, Dmitrii Chaikovskii
Abstract:
We continue to consider one of the cybernetic methods in computational biology related to the study of DNA chains. Namely, we are considering the problem of reconstructing the not fully filled distance matrix of DNA chains. When applied in a programming context, it is revealed that with a modern computer of average capabilities, creating even a small-sized distance matrix for mitochondrial DNA sequences is quite time-consuming with standard algorithms. As the size of the matrix grows larger, the computational effort required increases significantly, potentially spanning several weeks to months of non-stop computer processing. Hence, calculating the distance matrix on conventional computers is hardly feasible, and supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains; then, we published algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. In this paper, we propose an algorithm for restoring the distance matrix for DNA chains, and the primary focus is on enhancing the algorithms that shape the greedy function within the branches and boundaries method framework.Keywords: DNA chains, distance matrix, optimization problem, restoring algorithm, greedy algorithm, heuristics
Procedia PDF Downloads 11813882 A Greedy Alignment Algorithm Supporting Medication Reconciliation
Authors: David Tresner-Kirsch
Abstract:
Reconciling patient medication lists from multiple sources is a critical task supporting the safe delivery of patient care. Manual reconciliation is a time-consuming and error-prone process, and recently attempts have been made to develop efficiency- and safety-oriented automated support for professionals performing the task. An important capability of any such support system is automated alignment – finding which medications from a list correspond to which medications from a different source, regardless of misspellings, naming differences (e.g. brand name vs. generic), or changes in treatment (e.g. switching a patient from one antidepressant class to another). This work describes a new algorithmic solution to this alignment task, using a greedy matching approach based on string similarity, edit distances, concept extraction and normalization, and synonym search derived from the RxNorm nomenclature. The accuracy of this algorithm was evaluated against a gold-standard corpus of 681 medication records; this evaluation found that the algorithm predicted alignments with 99% precision and 91% recall. This performance is sufficient to support decision support applications for medication reconciliation.Keywords: clinical decision support, medication reconciliation, natural language processing, RxNorm
Procedia PDF Downloads 28513881 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour
Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani
Abstract:
In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.Keywords: video tracking, particle filter, greedy snake, neural network
Procedia PDF Downloads 34113880 Multi-Scale Control Model for Network Group Behavior
Authors: Fuyuan Ma, Ying Wang, Xin Wang
Abstract:
Social networks have become breeding grounds for the rapid spread of rumors and malicious information, posing threats to societal stability and causing significant public harm. Existing research focuses on simulating the spread of information and its impact on users through propagation dynamics and applies methods such as greedy approximation strategies to approximate the optimal control solution at the global scale. However, the greedy strategy at the global scale may fall into locally optimal solutions, and the approximate simulation of information spread may accumulate more errors. Therefore, we propose a multi-scale control model for network group behavior, introducing individual and group scales on top of the greedy strategy’s global scale. At the individual scale, we calculate the propagation influence of nodes based on their structural attributes to alleviate the issue of local optimality. At the group scale, we conduct precise propagation simulations to avoid introducing cumulative errors from approximate calculations without increasing computational costs. Experimental results on three real-world datasets demonstrate the effectiveness of our proposed multi-scale model in controlling network group behavior.Keywords: influence blocking maximization, competitive linear threshold model, social networks, network group behavior
Procedia PDF Downloads 2113879 Heuristic Algorithms for Time Based Weapon-Target Assignment Problem
Authors: Hyun Seop Uhm, Yong Ho Choi, Ji Eun Kim, Young Hoon Lee
Abstract:
Weapon-target assignment (WTA) is a problem that assigns available launchers to appropriate targets in order to defend assets. Various algorithms for WTA have been developed over past years for both in the static and dynamic environment (denoted by SWTA and DWTA respectively). Due to the problem requirement to be solved in a relevant computational time, WTA has suffered from the solution efficiency. As a result, SWTA and DWTA problems have been solved in the limited situation of the battlefield. In this paper, the general situation under continuous time is considered by Time based Weapon Target Assignment (TWTA) problem. TWTA are studied using the mixed integer programming model, and three heuristic algorithms; decomposed opt-opt, decomposed opt-greedy, and greedy algorithms are suggested. Although the TWTA optimization model works inefficiently when it is characterized by a large size, the decomposed opt-opt algorithm based on the linearization and decomposition method extracted efficient solutions in a reasonable computation time. Because the computation time of the scheduling part is too long to solve by the optimization model, several algorithms based on greedy is proposed. The models show lower performance value than that of the decomposed opt-opt algorithm, but very short time is needed to compute. Hence, this paper proposes an improved method by applying decomposition to TWTA, and more practical and effectual methods can be developed for using TWTA on the battlefield.Keywords: air and missile defense, weapon target assignment, mixed integer programming, piecewise linearization, decomposition algorithm, military operations research
Procedia PDF Downloads 33613878 A Hybrid Algorithm Based on Greedy Randomized Adaptive Search Procedure and Chemical Reaction Optimization for the Vehicle Routing Problem with Hard Time Windows
Authors: Imen Boudali, Marwa Ragmoun
Abstract:
The Vehicle Routing Problem with Hard Time Windows (VRPHTW) is a basic distribution management problem that models many real-world problems. The objective of the problem is to deliver a set of customers with known demands on minimum-cost vehicle routes while satisfying vehicle capacity and hard time windows for customers. In this paper, we propose to deal with our optimization problem by using a new hybrid stochastic algorithm based on two metaheuristics: Chemical Reaction Optimization (CRO) and Greedy Randomized Adaptive Search Procedure (GRASP). The first method is inspired by the natural process of chemical reactions enabling the transformation of unstable substances with excessive energy to stable ones. During this process, the molecules interact with each other through a series of elementary reactions to reach minimum energy for their existence. This property is embedded in CRO to solve the VRPHTW. In order to enhance the population diversity throughout the search process, we integrated the GRASP in our method. Simulation results on the base of Solomon’s benchmark instances show the very satisfactory performances of the proposed approach.Keywords: Benchmark Problems, Combinatorial Optimization, Vehicle Routing Problem with Hard Time Windows, Meta-heuristics, Hybridization, GRASP, CRO
Procedia PDF Downloads 41113877 Block Based Imperial Competitive Algorithm with Greedy Search for Traveling Salesman Problem
Authors: Meng-Hui Chen, Chiao-Wei Yu, Pei-Chann Chang
Abstract:
Imperial competitive algorithm (ICA) simulates a multi-agent algorithm. Each agent is like a kingdom has its country, and the strongest country in each agent is called imperialist, others are colony. Countries are competitive with imperialist which in the same kingdom by evolving. So this country will move in the search space to find better solutions with higher fitness to be a new imperialist. The main idea in this paper is using the peculiarity of ICA to explore the search space to solve the kinds of combinational problems. Otherwise, we also study to use the greed search to increase the local search ability. To verify the proposed algorithm in this paper, the experimental results of traveling salesman problem (TSP) is according to the traveling salesman problem library (TSPLIB). The results show that the proposed algorithm has higher performance than the other known methods.Keywords: traveling salesman problem, artificial chromosomes, greedy search, imperial competitive algorithm
Procedia PDF Downloads 45813876 Joint Optimization of Carsharing Stations with Vehicle Relocation and Demand Selection
Authors: Jiayuan Wu. Lu Hu
Abstract:
With the development of the sharing economy and mobile technology, carsharing becomes more popular. In this paper, we focus on the joint optimization of one-way station-based carsharing systems. We model the problem as an integer linear program with six elements: station locations, station capacity, fleet size, initial vehicle allocation, vehicle relocation, and demand selection. A greedy-based heuristic is proposed to address the model. Firstly, initialization based on the location variables relaxation using Gurobi solver is conducted. Then, according to the profit margin and demand satisfaction of each station, the number of stations is downsized iteratively. This method is applied to real data from Chengdu, Sichuan taxi data, and it’s efficient when dealing with a large scale of candidate stations. The result shows that with vehicle relocation and demand selection, the profit and demand satisfaction of carsharing systems are increased.Keywords: one-way carsharing, location, vehicle relocation, demand selection, greedy algorithm
Procedia PDF Downloads 13713875 Spectrum Assignment Algorithms in Optical Networks with Protection
Authors: Qusay Alghazali, Tibor Cinkler, Abdulhalim Fayad
Abstract:
In modern optical networks, the flex grid spectrum usage is most widespread, where higher bit rate streams get larger spectrum slices while lower bit rate traffic streams get smaller spectrum slices. To our practice, under the ITU-T recommendation, G.694.1, spectrum slices of 50, 75, and 100 GHz are being used with central frequency at 193.1 THz. However, when these spectrum slices are not sufficient, multiple spectrum slices can use either one next to another or anywhere in the optical wavelength. In this paper, we propose the analysis of the wavelength assignment problem. We compare different algorithms for this spectrum assignment with and without protection. As a reference for comparisons, we concluded that the Integer Linear Programming (ILP) provides the global optimum for all cases. The most scalable algorithm is the greedy one, which yields results in subsequent ranges even for more significant network instances. The algorithms’ benchmark implemented using the LEMON C++ optimization library and simulation runs based on a minimum number of spectrum slices assigned to lightpaths and their execution time.Keywords: spectrum assignment, integer linear programming, greedy algorithm, international telecommunication union, library for efficient modeling and optimization in networks
Procedia PDF Downloads 16913874 The Military and Motherhood: Identity and Role Expectation within Two Greedy Institutions
Authors: Maureen Montalban
Abstract:
The military is a predominantly male-dominated organisation that has entrenched hierarchical and patriarchal norms. Since 1975, women have been allowed to continue active service in the Australian Defence Force during pregnancy and after the birth of a child; prior to this time, pregnancy was grounds for automatic termination. The military and family, as institutions, make great demands on individuals with respect to their commitment, loyalty, time and energy. This research explores what it means to serve in the Australian Army as a woman through a gender lens, overlaid during a specific time period of their service; that is, during pregnancy, birth, and being a mother. It investigates the external demands faced by servicewomen who are mothers, whether it be from society, the Army, their teammates, their partners, or their children; and how they internally make sense of that with respect to their own identity and role as a mother, servicewoman, partner and as an individual. It also seeks to uncover how Australian Army servicewomen who are also mothers attempt to manage the dilemma of serving two greedy institutions when both expect and demand so much and whether this is, in fact, an impossible dilemma.Keywords: women's health, gender studies, military culture, identity
Procedia PDF Downloads 10113873 Performance Evaluation of Hierarchical Location-Based Services Coupled to the Greedy Perimeter Stateless Routing Protocol for Wireless Sensor Networks
Authors: Rania Khadim, Mohammed Erritali, Abdelhakim Maaden
Abstract:
Nowadays Wireless Sensor Networks have attracted worldwide research and industrial interest, because they can be applied in various areas. Geographic routing protocols are very suitable to those networks because they use location information when they need to route packets. Obviously, location information is maintained by Location-Based Services provided by network nodes in a distributed way. In this paper we choose to evaluate the performance of two hierarchical rendezvous location based-services, GLS (Grid Location Service) and HLS (Hierarchical Location Service) coupled to the GPSR routing protocol (Greedy Perimeter Stateless Routing) for Wireless Sensor Network. The simulations were performed using NS2 simulator to evaluate the performance and power of the two services in term of location overhead, the request travel time (RTT) and the query Success ratio (QSR). This work presents also a new scalability performance study of both GLS and HLS, specifically, what happens if the number of nodes N increases. The study will focus on three qualitative metrics: The location maintenance cost, the location query cost and the storage cost.Keywords: location based-services, routing protocols, scalability, wireless sensor networks
Procedia PDF Downloads 37213872 Pure Scalar Equilibria for Normal-Form Games
Authors: Herbert W. Corley
Abstract:
A scalar equilibrium (SE) is an alternative type of equilibrium in pure strategies for an n-person normal-form game G. It is defined using optimization techniques to obtain a pure strategy for each player of G by maximizing an appropriate utility function over the acceptable joint actions. The players’ actions are determined by the choice of the utility function. Such a utility function could be agreed upon by the players or chosen by an arbitrator. An SE is an equilibrium since no players of G can increase the value of this utility function by changing their strategies. SEs are formally defined, and examples are given. In a greedy SE, the goal is to assign actions to the players giving them the largest individual payoffs jointly possible. In a weighted SE, each player is assigned weights modeling the degree to which he helps every player, including himself, achieve as large a payoff as jointly possible. In a compromise SE, each player wants a fair payoff for a reasonable interpretation of fairness. In a parity SE, the players want their payoffs to be as nearly equal as jointly possible. Finally, a satisficing SE achieves a personal target payoff value for each player. The vector payoffs associated with each of these SEs are shown to be Pareto optimal among all such acceptable vectors, as well as computationally tractable.Keywords: compromise equilibrium, greedy equilibrium, normal-form game, parity equilibrium, pure strategies, satisficing equilibrium, scalar equilibria, utility function, weighted equilibrium
Procedia PDF Downloads 11313871 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset
Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli
Abstract:
Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence
Procedia PDF Downloads 7813870 A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce
Authors: Aditi Viswanathan, Shree Ranjani, Aruna Govada
Abstract:
With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms.Keywords: distributed algorithm, MapReduce, multi-class, support vector machine
Procedia PDF Downloads 40113869 Gender Recognition with Deep Belief Networks
Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang
Abstract:
A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs
Procedia PDF Downloads 45213868 Arithmetic Operations Based on Double Base Number Systems
Authors: K. Sanjayani, C. Saraswathy, S. Sreenivasan, S. Sudhahar, D. Suganya, K. S. Neelukumari, N. Vijayarangan
Abstract:
Double Base Number System (DBNS) is an imminent system of representing a number using two bases namely 2 and 3, which has its application in Elliptic Curve Cryptography (ECC) and Digital Signature Algorithm (DSA).The previous binary method representation included only base 2. DBNS uses an approximation algorithm namely, Greedy Algorithm. By using this algorithm, the number of digits required to represent a larger number is less when compared to the standard binary method that uses base 2 algorithms. Hence, the computational speed is increased and time being reduced. The standard binary method uses binary digits 0 and 1 to represent a number whereas the DBNS method uses binary digit 1 alone to represent any number (canonical form). The greedy algorithm uses two ways to represent the number, one is by using only the positive summands and the other is by using both positive and negative summands. In this paper, arithmetic operations are used for elliptic curve cryptography. Elliptic curve discrete logarithm problem is the foundation for most of the day to day elliptic curve cryptography. This appears to be a momentous hard slog compared to digital logarithm problem. In elliptic curve digital signature algorithm, the key generation requires 160 bit of data by usage of standard binary representation. Whereas, the number of bits required generating the key can be reduced with the help of double base number representation. In this paper, a new technique is proposed to generate key during encryption and extraction of key in decryption.Keywords: cryptography, double base number system, elliptic curve cryptography, elliptic curve digital signature algorithm
Procedia PDF Downloads 39613867 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia PDF Downloads 52713866 Automated Test Data Generation For some types of Algorithm
Authors: Hitesh Tahbildar
Abstract:
The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.Keywords: ongest path, saturation point, lmax, kL, kS
Procedia PDF Downloads 40513865 Objects Tracking in Catadioptric Images Using Spherical Snake
Authors: Khald Anisse, Amina Radgui, Mohammed Rziza
Abstract:
Tracking objects on video sequences is a very challenging task in many works in computer vision applications. However, there is no article that treats this topic in catadioptric vision. This paper is an attempt that tries to describe a new approach of omnidirectional images processing based on inverse stereographic projection in the half-sphere. We used the spherical model proposed by Gayer and al. For object tracking, our work is based on snake method, with optimization using the Greedy algorithm, by adapting its different operators. The algorithm will respect the deformed geometries of omnidirectional images such as spherical neighborhood, spherical gradient and reformulation of optimization algorithm on the spherical domain. This tracking method that we call "spherical snake" permitted to know the change of the shape and the size of object in different replacements in the spherical image.Keywords: computer vision, spherical snake, omnidirectional image, object tracking, inverse stereographic projection
Procedia PDF Downloads 40213864 Pareto Optimal Material Allocation Mechanism
Authors: Peter Egri, Tamas Kis
Abstract:
Scheduling problems have been studied by the algorithmic mechanism design research from the beginning. This paper is focusing on a practically important, but theoretically rather neglected field: the project scheduling problem where the jobs connected by precedence constraints compete for various nonrenewable resources, such as materials. Although the centralized problem can be solved in polynomial-time by applying the algorithm of Carlier and Rinnooy Kan from the Eighties, obtaining materials in a decentralized environment is usually far from optimal. It can be observed in practical production scheduling situations that project managers tend to cache the required materials as soon as possible in order to avoid later delays due to material shortages. This greedy practice usually leads both to excess stocks for some projects and materials, and simultaneously, to shortages for others. The aim of this study is to develop a model for the material allocation problem of a production plant, where a central decision maker—the inventory—should assign the resources arriving at different points in time to the jobs. Since the actual due dates are not known by the inventory, the mechanism design approach is applied with the projects as the self-interested agents. The goal of the mechanism is to elicit the required information and allocate the available materials such that it minimizes the maximal tardiness among the projects. It is assumed that except the due dates, the inventory is familiar with every other parameters of the problem. A further requirement is that due to practical considerations monetary transfer is not allowed. Therefore a mechanism without money is sought which excludes some widely applied solutions such as the Vickrey–Clarke–Groves scheme. In this work, a type of Serial Dictatorship Mechanism (SDM) is presented for the studied problem, including a polynomial-time algorithm for computing the material allocation. The resulted mechanism is both truthful and Pareto optimal. Thus the randomization over the possible priority orderings of the projects results in a universally truthful and Pareto optimal randomized mechanism. However, it is shown that in contrast to problems like the many-to-many matching market, not every Pareto optimal solution can be generated with an SDM. In addition, no performance guarantee can be given compared to the optimal solution, therefore this approximation characteristic is investigated with experimental study. All in all, the current work studies a practically relevant scheduling problem and presents a novel truthful material allocation mechanism which eliminates the potential benefit of the greedy behavior that negatively influences the outcome. The resulted allocation is also shown to be Pareto optimal, which is the most widely used criteria describing a necessary condition for a reasonable solution.Keywords: material allocation, mechanism without money, polynomial-time mechanism, project scheduling
Procedia PDF Downloads 33213863 An Algorithm for the Map Labeling Problem with Two Kinds of Priorities
Authors: Noboru Abe, Yoshinori Amai, Toshinori Nakatake, Sumio Masuda, Kazuaki Yamaguchi
Abstract:
We consider the problem of placing labels of the points on a plane. For each point, its position, the size of its label and a priority are given. Moreover, several candidates of its label positions are prespecified, and each of such label positions is assigned a priority. The objective of our problem is to maximize the total sum of priorities of placed labels and their points. By refining a labeling algorithm that can use these priorities, we propose a new heuristic algorithm which is more suitable for treating the assigned priorities.Keywords: map labeling, greedy algorithm, heuristic algorithm, priority
Procedia PDF Downloads 43313862 Two Efficient Heuristic Algorithms for the Integrated Production Planning and Warehouse Layout Problem
Authors: Mohammad Pourmohammadi Fallah, Maziar Salahi
Abstract:
In the literature, a mixed-integer linear programming model for the integrated production planning and warehouse layout problem is proposed. To solve the model, the authors proposed a Lagrangian relax-and-fix heuristic that takes a significant amount of time to stop with gaps above 5$\%$ for large-scale instances. Here, we present two heuristic algorithms to solve the problem. In the first one, we use a greedy approach by allocating warehouse locations with less reservation costs and also less transportation costs from the production area to locations and from locations to the output point to items with higher demands. Then a smaller model is solved. In the second heuristic, first, we sort items in descending order according to the fraction of the sum of the demands for that item in the time horizon plus the maximum demand for that item in the time horizon and the sum of all its demands in the time horizon. Then we categorize the sorted items into groups of 3, 4, or 5 and solve a small-scale optimization problem for each group, hoping to improve the solution of the first heuristic. Our preliminary numerical results show the effectiveness of the proposed heuristics.Keywords: capacitated lot-sizing, warehouse layout, mixed-integer linear programming, heuristics algorithm
Procedia PDF Downloads 195