Search results for: data databases
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25495

Search results for: data databases

25495 Assessment of Image Databases Used for Human Skin Detection Methods

Authors: Saleh Alshehri

Abstract:

Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.

Keywords: image databases, image processing, pattern recognition, neural networks

Procedia PDF Downloads 271
25494 Recommender System Based on Mining Graph Databases for Data-Intensive Applications

Authors: Mostafa Gamal, Hoda K. Mohamed, Islam El-Maddah, Ali Hamdi

Abstract:

In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs.

Keywords: graph databases, NLP, recommendation systems, similarity metrics

Procedia PDF Downloads 104
25493 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns

Authors: J. Suneetha, Vijayalaxmi

Abstract:

Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.

Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability

Procedia PDF Downloads 340
25492 Building an Integrated Relational Database from Swiss Nutrition National Survey and Swiss Health Datasets for Data Mining Purposes

Authors: Ilona Mewes, Helena Jenzer, Farshideh Einsele

Abstract:

Objective: The objective of the study was to integrate two big databases from Swiss nutrition national survey (menuCH) and Swiss health national survey 2012 for data mining purposes. Each database has a demographic base data. An integrated Swiss database is built to later discover critical food consumption patterns linked with lifestyle diseases known to be strongly tied with food consumption. Design: Swiss nutrition national survey (menuCH) with approx. 2000 respondents from two different surveys, one by Phone and the other by questionnaire along with Swiss health national survey 2012 with 21500 respondents were pre-processed, cleaned and finally integrated to a unique relational database. Results: The result of this study is an integrated relational database from the Swiss nutritional and health databases.

Keywords: health informatics, data mining, nutritional and health databases, nutritional and chronical databases

Procedia PDF Downloads 112
25491 A Method for Reduction of Association Rules in Data Mining

Authors: Diego De Castro Rodrigues, Marcelo Lisboa Rocha, Daniela M. De Q. Trevisan, Marcos Dias Da Conceicao, Gabriel Rosa, Rommel M. Barbosa

Abstract:

The use of association rules algorithms within data mining is recognized as being of great value in the knowledge discovery in databases. Very often, the number of rules generated is high, sometimes even in databases with small volume, so the success in the analysis of results can be hampered by this quantity. The purpose of this research is to present a method for reducing the quantity of rules generated with association algorithms. Therefore, a computational algorithm was developed with the use of a Weka Application Programming Interface, which allows the execution of the method on different types of databases. After the development, tests were carried out on three types of databases: synthetic, model, and real. Efficient results were obtained in reducing the number of rules, where the worst case presented a gain of more than 50%, considering the concepts of support, confidence, and lift as measures. This study concluded that the proposed model is feasible and quite interesting, contributing to the analysis of the results of association rules generated from the use of algorithms.

Keywords: data mining, association rules, rules reduction, artificial intelligence

Procedia PDF Downloads 160
25490 Cleaning of Scientific References in Large Patent Databases Using Rule-Based Scoring and Clustering

Authors: Emiel Caron

Abstract:

Patent databases contain patent related data, organized in a relational data model, and are used to produce various patent statistics. These databases store raw data about scientific references cited by patents. For example, Patstat holds references to tens of millions of scientific journal publications and conference proceedings. These references might be used to connect patent databases with bibliographic databases, e.g. to study to the relation between science, technology, and innovation in various domains. Problematic in such studies is the low data quality of the references, i.e. they are often ambiguous, unstructured, and incomplete. Moreover, a complete bibliographic reference is stored in only one attribute. Therefore, a computerized cleaning and disambiguation method for large patent databases is developed in this work. The method uses rule-based scoring and clustering. The rules are based on bibliographic metadata, retrieved from the raw data by regular expressions, and are transparent and adaptable. The rules in combination with string similarity measures are used to detect pairs of records that are potential duplicates. Due to the scoring, different rules can be combined, to join scientific references, i.e. the rules reinforce each other. The scores are based on expert knowledge and initial method evaluation. After the scoring, pairs of scientific references that are above a certain threshold, are clustered by means of single-linkage clustering algorithm to form connected components. The method is designed to disambiguate all the scientific references in the Patstat database. The performance evaluation of the clustering method, on a large golden set with highly cited papers, shows on average a 99% precision and a 95% recall. The method is therefore accurate but careful, i.e. it weighs precision over recall. Consequently, separate clusters of high precision are sometimes formed, when there is not enough evidence for connecting scientific references, e.g. in the case of missing year and journal information for a reference. The clusters produced by the method can be used to directly link the Patstat database with bibliographic databases as the Web of Science or Scopus.

Keywords: clustering, data cleaning, data disambiguation, data mining, patent analysis, scientometrics

Procedia PDF Downloads 194
25489 Perceptions of Academic Staff on the Influences of Librarians and Working Colleagues Towards the Awareness and Use of Electronic Databases in Umaru Musa Yar’adua University, Katsina

Authors: Lawal Kado

Abstract:

This paper investigates the perceptions of academic staff at Umaru Musa Yar’adua University regarding the influences of librarians and working colleagues on the awareness and use of electronic databases. The study aims to provide insights into the effectiveness of these influences and suggest strategies to improve the usage of electronic databases. Research aim: The aim of this study is to determine the perceptions of academic staff on the influence of librarians and working colleagues towards the awareness and use of electronic databases in Umaru Musa Yar’adua University, Katsina. Methodology: The study adopts a quantitative method and survey research design. The survey questionnaire is distributed to 110 respondents selected through simple random sampling from a population of 523 academic staff. The collected data is analyzed using the Statistical Package for Social Sciences (SPSS) version 23. Findings: The study reveals a high level of general awareness of electronic databases in the university, largely influenced by librarians and colleagues. Librarians have played a crucial role in making academic staff aware of the available databases. The sources of information for awareness include colleagues, social media, e-mails from the library, and internet searching. Theoretical importance: This study contributes to the literature by examining the perceptions of academic staff, which can inform policymakers and stakeholders in developing strategies to maximize the use of electronic databases. Data collection and analysis procedures: The data is collected through a survey questionnaire that utilizes the Likert scaling technique. The closed-ended questions are analyzed using SPSS 23. Question addressed: The paper addresses the question of how librarians and working colleagues influence the awareness and use of electronic databases among academic staff. Conclusion: The study concludes that the influence of librarians and working colleagues significantly contributes to the awareness and use of electronic databases among academic staff. The paper recommends the establishment of dedicated departments or units for marketing library resources to further promote the usage of electronic databases.

Keywords: awareness, electronic databases, academic staff, unified theory of acceptance and use of technology, social influence

Procedia PDF Downloads 89
25488 A Novel Framework for User-Friendly Ontology-Mediated Access to Relational Databases

Authors: Efthymios Chondrogiannis, Vassiliki Andronikou, Efstathios Karanastasis, Theodora Varvarigou

Abstract:

A large amount of data is typically stored in relational databases (DB). The latter can efficiently handle user queries which intend to elicit the appropriate information from data sources. However, direct access and use of this data requires the end users to have an adequate technical background, while they should also cope with the internal data structure and values presented. Consequently the information retrieval is a quite difficult process even for IT or DB experts, taking into account the limited contributions of relational databases from the conceptual point of view. Ontologies enable users to formally describe a domain of knowledge in terms of concepts and relations among them and hence they can be used for unambiguously specifying the information captured by the relational database. However, accessing information residing in a database using ontologies is feasible, provided that the users are keen on using semantic web technologies. For enabling users form different disciplines to retrieve the appropriate data, the design of a Graphical User Interface is necessary. In this work, we will present an interactive, ontology-based, semantically enable web tool that can be used for information retrieval purposes. The tool is totally based on the ontological representation of underlying database schema while it provides a user friendly environment through which the users can graphically form and execute their queries.

Keywords: ontologies, relational databases, SPARQL, web interface

Procedia PDF Downloads 272
25487 Enhance Security in XML Databases: XLog File for Severity-Aware Trust-Based Access Control

Authors: A: Asmawi, L. S. Affendey, N. I. Udzir, R. Mahmod

Abstract:

The topic of enhancing security in XML databases is important as it includes protecting sensitive data and providing a secure environment to users. In order to improve security and provide dynamic access control for XML databases, we presented XLog file to calculate user trust values by recording users’ bad transaction, errors and query severities. Severity-aware trust-based access control for XML databases manages the access policy depending on users' trust values and prevents unauthorized processes, malicious transactions and insider threats. Privileges are automatically modified and adjusted over time depending on user behaviour and query severity. Logging in database is an important process and is used for recovery and security purposes. In this paper, the Xlog file is presented as a dynamic and temporary log file for XML databases to enhance the level of security.

Keywords: XML database, trust-based access control, severity-aware, trust values, log file

Procedia PDF Downloads 300
25486 Analysis of Cyber Activities of Potential Business Customers Using Neo4j Graph Databases

Authors: Suglo Tohari Luri

Abstract:

Data analysis is an important aspect of business performance. With the application of artificial intelligence within databases, selecting a suitable database engine for an application design is also very crucial for business data analysis. The application of business intelligence (BI) software into some relational databases such as Neo4j has proved highly effective in terms of customer data analysis. Yet what remains of great concern is the fact that not all business organizations have the neo4j business intelligence software applications to implement for customer data analysis. Further, those with the BI software lack personnel with the requisite expertise to use it effectively with the neo4j database. The purpose of this research is to demonstrate how the Neo4j program code alone can be applied for the analysis of e-commerce website customer visits. As the neo4j database engine is optimized for handling and managing data relationships with the capability of building high performance and scalable systems to handle connected data nodes, it will ensure that business owners who advertise their products at websites using neo4j as a database are able to determine the number of visitors so as to know which products are visited at routine intervals for the necessary decision making. It will also help in knowing the best customer segments in relation to specific goods so as to place more emphasis on their advertisement on the said websites.

Keywords: data, engine, intelligence, customer, neo4j, database

Procedia PDF Downloads 193
25485 Autonomic Threat Avoidance and Self-Healing in Database Management System

Authors: Wajahat Munir, Muhammad Haseeb, Adeel Anjum, Basit Raza, Ahmad Kamran Malik

Abstract:

Databases are the key components of the software systems. Due to the exponential growth of data, it is the concern that the data should be accurate and available. The data in databases is vulnerable to internal and external threats, especially when it contains sensitive data like medical or military applications. Whenever the data is changed by malicious intent, data analysis result may lead to disastrous decisions. Autonomic self-healing is molded toward computer system after inspiring from the autonomic system of human body. In order to guarantee the accuracy and availability of data, we propose a technique which on a priority basis, tries to avoid any malicious transaction from execution and in case a malicious transaction affects the system, it heals the system in an isolated mode in such a way that the availability of system would not be compromised. Using this autonomic system, the management cost and time of DBAs can be minimized. In the end, we test our model and present the findings.

Keywords: autonomic computing, self-healing, threat avoidance, security

Procedia PDF Downloads 504
25484 A NoSQL Based Approach for Real-Time Managing of Robotics's Data

Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir

Abstract:

This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.

Keywords: NoSQL databases, database management systems, robotics, big data

Procedia PDF Downloads 353
25483 Recent Advances in Data Warehouse

Authors: Fahad Hanash Alzahrani

Abstract:

This paper describes some recent advances in a quickly developing area of data storing and processing based on Data Warehouses and Data Mining techniques, which are associated with software, hardware, data mining algorithms and visualisation techniques having common features for any specific problems and tasks of their implementation.

Keywords: data warehouse, data mining, knowledge discovery in databases, on-line analytical processing

Procedia PDF Downloads 404
25482 Comparison between RILM, JSTOR, and WorldCat Used to Search for Secondary Literature

Authors: Stacy Jarvis

Abstract:

Databases such as JSTOR, RILM and WorldCat have been the main source and storage of literature in the music orb. The Reference Index to Music Literature is a bibliographic database of over 2.6 million citations to writings about music from over 70 countries. The Research Institute produces RILM for the Study of Music at the University of Buffalo. JSTOR is an e-library of academic journals, books, and primary sources. Database JSTOR helps scholars find, utilise, and build upon a vast range of literature through a powerful teaching and research platform. Another database, WorldCat, is the world's biggest library catalogue, assisting scholars in finding library materials online. An evaluation of these databases in the music sphere is conducted by looking into the description and intended use and finding similarities and differences among them. Through comparison, it is found that these aim to serve different purposes, though they have the same goal of providing and storing literature. Also, since each database has different parts of literature that it majors on, the intended use of the three databases is evaluated. This can be found in the description, scope, and intended uses section. These areas are crucial to the research as it addresses the functional or literature differences among the three databases. It is also found that these databases have different quantitative potentials. This is determined by addressing the year each database began collecting literature and the number of articles, periodicals, albums, conference proceedings, music, dissertations, digital media, essays collections, journal articles, monographs, online resources, reviews, and reference materials that can be found in each one of them. This can be found in the sections- description, scope and intended uses and the importance of the database in identifying literature on different topics. To compare the delivery of services to the users, the importance of databases in identifying literature on different topics is also addressed in the section -the importance of databases in identifying literature on different topics. Even though these databases are used in research, they all have disadvantages and advantages. This is addressed in the sections on advantages and disadvantages. This will be significant in determining which of the three is the best. Also, it will help address how the shortcomings of one database can be addressed by utilising two databases together while conducting research. It is addressed in the section- a combination of RILM and JSTOR. All this information revolves around the idea that a huge amount of quantitative and qualitative data can be found in the presented databases on music and digital content; however, each of the given databases has a different construction and material features contributing to the musical scholarship in its way.

Keywords: RILM, JSTOR, WorldCat, database, literature, research

Procedia PDF Downloads 82
25481 Utilization of CD-ROM Database as a Storage and Retrieval System by Students of Nasarawa State University Keffi

Authors: Suleiman Musa

Abstract:

The utilization of CD-ROM as a storage and retrieval system by Nasarawa State University Keffi (NSUK) Library is crucial in preserving and dissemination of information to students and staff. This study investigated the utilization of CD-ROM Database storage and retrieval system by students of NUSK. Data was generated using structure questionnaire. One thousand and fifty two (1052) respondents were randomly selected among post-graduate and under-graduate students. Eight hundred and ten (810) questionnaires were returned, but only five hundred and ninety three (593) questionnaires were well completed and useful. The study found that post-graduate students use CD-ROM Databases more often than the under-graduate students in NSUK. The result of the study revealed that knowledge about CD-ROM Database 33.22% got it through library staff. 29.69% use CD-ROM once a month. Large number of users 45.70% purposely uses CD-ROM Databases for study and research. In fact, lack of users’ orientation amount to 58.35% of problems faced, while 31.20% lack of trained staff make it more difficult for utilization of CD-ROM Database. Major numbers of users 38.28% are neither satisfied nor dissatisfied, while a good number of them 27.99% are satisfied. Then 1.52% is highly dissatisfied but could not give reasons why. However, to ensure effective utilization of CD-ROM Database storage and retrieval system by students of NSUK, the following recommendations are made: effort should be made to encourage under-graduate in using CD-ROM Database. The institution should conduct orientation/induction course for students on CD-ROM Databases in the library. There is need for NSUK to produce in house databases on their CD-ROM for easy access by users.

Keywords: utilization, CD-ROM databases, storage, retrieval, students

Procedia PDF Downloads 444
25480 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria

Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov

Abstract:

This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.

Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model

Procedia PDF Downloads 62
25479 De-Novo Structural Elucidation from Mass/NMR Spectra

Authors: Ismael Zamora, Elisabeth Ortega, Tatiana Radchenko, Guillem Plasencia

Abstract:

The structure elucidation based on Mass Spectra (MS) data of unknown substances is an unresolved problem that affects many different fields of application. The recent overview of software available for structure elucidation of small molecules has shown the demand for efficient computational tool that will be able to perform structure elucidation of unknown small molecules and peptides. We developed an algorithm for De-Novo fragment analysis based on MS data that proposes a set of scored and ranked structures that are compatible with the MS and MSMS spectra. Several different algorithms were developed depending on the initial set of fragments and the structure building processes. Also, in all cases, several scores for the final molecule ranking were computed. They were validated with small and middle databases (DB) with the eleven test set compounds. Similar results were obtained from any of the databases that contained the fragments of the expected compound. We presented an algorithm. Or De-Novo fragment analysis based on only mass spectrometry (MS) data only that proposed a set of scored/ranked structures that was validated on different types of databases and showed good results as proof of concept. Moreover, the solutions proposed by Mass Spectrometry were submitted to the prediction of NMR spectra in order to elucidate which of the proposed structures was compatible with the NMR spectra collected.

Keywords: De Novo, structure elucidation, mass spectrometry, NMR

Procedia PDF Downloads 295
25478 Applying Spanning Tree Graph Theory for Automatic Database Normalization

Authors: Chetneti Srisa-an

Abstract:

In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.

Keywords: relational database, functional dependency, automatic normalization, primary key, spanning tree

Procedia PDF Downloads 353
25477 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system

Procedia PDF Downloads 261
25476 Formulation of a Rapid Earthquake Risk Ranking Criteria for National Bridges in the National Capital Region Affected by the West Valley Fault Using GIS Data Integration

Authors: George Mariano Soriano

Abstract:

In this study, a Rapid Earthquake Risk Ranking Criteria was formulated by integrating various existing maps and databases by the Department of Public Works and Highways (DPWH) and Philippine Institute of Volcanology and Seismology (PHIVOLCS). Utilizing Geographic Information System (GIS) software, the above-mentioned maps and databases were used in extracting seismic hazard parameters and bridge vulnerability characteristics in order to rank the seismic damage risk rating of bridges in the National Capital Region.

Keywords: bridge, earthquake, GIS, hazard, risk, vulnerability

Procedia PDF Downloads 409
25475 Optimized Approach for Secure Data Sharing in Distributed Database

Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal

Abstract:

In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.

Keywords: ER-schema, electronic record, P2P framework, API, query formulation

Procedia PDF Downloads 333
25474 Analyzing Medical Workflows Using Market Basket Analysis

Authors: Mohit Kumar, Mayur Betharia

Abstract:

Healthcare domain, with the emergence of Electronic Medical Record (EMR), collects a lot of data which have been attracting Data Mining expert’s interest. In the past, doctors have relied on their intuition while making critical clinical decisions. This paper presents the means to analyze the Medical workflows to get business insights out of huge dumped medical databases. Market Basket Analysis (MBA) which is a special data mining technique, has been widely used in marketing and e-commerce field to discover the association between products bought together by customers. It helps businesses in increasing their sales by analyzing the purchasing behavior of customers and pitching the right customer with the right product. This paper is an attempt to demonstrate Market Basket Analysis applications in healthcare. In particular, it discusses the Market Basket Analysis Algorithm ‘Apriori’ applications within healthcare in major areas such as analyzing the workflow of diagnostic procedures, Up-selling and Cross-selling of Healthcare Systems, designing healthcare systems more user-friendly. In the paper, we have demonstrated the MBA applications using Angiography Systems, but can be extrapolated to other modalities as well.

Keywords: data mining, market basket analysis, healthcare applications, knowledge discovery in healthcare databases, customer relationship management, healthcare systems

Procedia PDF Downloads 172
25473 An Optimized Association Rule Mining Algorithm

Authors: Archana Singh, Jyoti Agarwal, Ajay Rana

Abstract:

Data Mining is an efficient technology to discover patterns in large databases. Association Rule Mining techniques are used to find the correlation between the various item sets in a database, and this co-relation between various item sets are used in decision making and pattern analysis. In recent years, the problem of finding association rules from large datasets has been proposed by many researchers. Various research papers on association rule mining (ARM) are studied and analyzed first to understand the existing algorithms. Apriori algorithm is the basic ARM algorithm, but it requires so many database scans. In DIC algorithm, less amount of database scan is needed but complex data structure lattice is used. The main focus of this paper is to propose a new optimized algorithm (Friendly Algorithm) and compare its performance with the existing algorithms A data set is used to find out frequent itemsets and association rules with the help of existing and proposed (Friendly Algorithm) and it has been observed that the proposed algorithm also finds all the frequent itemsets and essential association rules from databases as compared to existing algorithms in less amount of database scan. In the proposed algorithm, an optimized data structure is used i.e. Graph and Adjacency Matrix.

Keywords: association rules, data mining, dynamic item set counting, FP-growth, friendly algorithm, graph

Procedia PDF Downloads 420
25472 A Survey of Semantic Integration Approaches in Bioinformatics

Authors: Chaimaa Messaoudi, Rachida Fissoune, Hassan Badir

Abstract:

Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community.

Keywords: biological ontology, linked data, semantic data integration, semantic web

Procedia PDF Downloads 449
25471 Post Pandemic Mobility Analysis through Indexing and Sharding in MongoDB: Performance Optimization and Insights

Authors: Karan Vishavjit, Aakash Lakra, Shafaq Khan

Abstract:

The COVID-19 pandemic has pushed healthcare professionals to use big data analytics as a vital tool for tracking and evaluating the effects of contagious viruses. To effectively analyze huge datasets, efficient NoSQL databases are needed. The analysis of post-COVID-19 health and well-being outcomes and the evaluation of the effectiveness of government efforts during the pandemic is made possible by this research’s integration of several datasets, which cuts down on query processing time and creates predictive visual artifacts. We recommend applying sharding and indexing technologies to improve query effectiveness and scalability as the dataset expands. Effective data retrieval and analysis are made possible by spreading the datasets into a sharded database and doing indexing on individual shards. Analysis of connections between governmental activities, poverty levels, and post-pandemic well being is the key goal. We want to evaluate the effectiveness of governmental initiatives to improve health and lower poverty levels. We will do this by utilising advanced data analysis and visualisations. The findings provide relevant data that supports the advancement of UN sustainable objectives, future pandemic preparation, and evidence-based decision-making. This study shows how Big Data and NoSQL databases may be used to address problems with global health.

Keywords: big data, COVID-19, health, indexing, NoSQL, sharding, scalability, well being

Procedia PDF Downloads 70
25470 Knowledge Discovery from Production Databases for Hierarchical Process Control

Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata

Abstract:

The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Keywords: hierarchical process control, knowledge discovery from databases, neural network, process control

Procedia PDF Downloads 481
25469 A Generic Middleware to Instantly Sync Intensive Writes of Heterogeneous Massive Data via Internet

Authors: Haitao Yang, Zhenjiang Ruan, Fei Xu, Lanting Xia

Abstract:

Industry data centers often need to sync data changes reliably and instantly from a large-scale of heterogeneous autonomous relational databases accessed via the not-so-reliable Internet, for which a practical universal sync middle of low maintenance and operation costs is most wanted, but developing such a product and adapting it for various scenarios are a very sophisticated and continuous practice. The authors have been devising, applying, and optimizing a generic sync middleware system, named GSMS since 2006, holding the principles or advantages that the middleware must be SyncML-compliant and transparent to data application layer logic, need not refer to implementation details of databases synced, does not rely on host computer operating systems deployed, and its construction is light weighted and hence, of low cost. A series of ultimate experiments with GSMS sync performance were conducted for a persuasive example of a source relational database that underwent a broad range of write loads, say, from one thousand to one million intensive writes within a few minutes. The tests proved that GSMS has achieved an instant sync level of well below a fraction of millisecond per record sync, and GSMS’ smooth performances under ultimate write loads also showed it is feasible and competent.

Keywords: heterogeneous massive data, instantly sync intensive writes, Internet generic middleware design, optimization

Procedia PDF Downloads 120
25468 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL

Procedia PDF Downloads 160
25467 Harmonic Data Preparation for Clustering and Classification

Authors: Ali Asheibi

Abstract:

The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.

Keywords: data mining, harmonic data, clustering, classification

Procedia PDF Downloads 247
25466 Algorithms used in Spatial Data Mining GIS

Authors: Vahid Bairami Rad

Abstract:

Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.

Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining

Procedia PDF Downloads 460