Search results for: Stefanie J. Huber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 36

Search results for: Stefanie J. Huber

36 Cross-Country Differences in Homeownership: A Cultural Phenomenon?

Authors: Stefanie J. Huber, Tobias Schmidt

Abstract:

Cross-country differences in homeownership rates are large and very persistent over time, ranging between 35% in Switzerland to 80% in Spain. In this project, we test the hypothesis that these cross-country differences are driven by cultural tastes. To isolate the effect of culture from the effects of institutions and economic factors, we investigate the homeownership attitudes of second-generation immigrants in the United States. We find robust evidence that cross-country differences in cultural preferences are an important explanatory factor for the observed persistent differences in homeownership rates across countries.

Keywords: housing markets, homeownership rates, country heterogeneity, preferences, cultural transmission, migration

Procedia PDF Downloads 276
35 Preference for Housing Services and Rational House Price Bubbles

Authors: Stefanie Jeanette Huber

Abstract:

This paper explores the relevance and implications of preferences for housing services on house price fluctuations through the lens of an overlapping generation’s model. The model implies that an economy whose agents have lower preferences for housing services is characterized with lower expenditure shares on housing services and will tend to experience more frequent and more volatile housing bubbles. These model predictions are tested empirically in the companion paper Housing Booms and Busts - Convergences and Divergences across OECD countries. Between 1970 - 2013, countries who spend less on housing services as a share of total income experienced significantly more housing cycles and the associated housing boom-bust cycles were more violent. Finally, the model is used to study the impact of rental subsidies and help-to-buy schemes on rational housing bubbles. Rental subsidies are found to contribute to the control of housing bubbles, whereas help-to- buy scheme makes the economy more bubble-prone.

Keywords: housing bubbles, housing booms and busts, preference for housing services, expenditure shares for housing services, rental and purchase subsidies

Procedia PDF Downloads 300
34 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 66
33 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Viktor M. Denisov

Abstract:

A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.

Keywords: guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture

Procedia PDF Downloads 430
32 OPEN-EmoRec-II-A Multimodal Corpus of Human-Computer Interaction

Authors: Stefanie Rukavina, Sascha Gruss, Steffen Walter, Holger Hoffmann, Harald C. Traue

Abstract:

OPEN-EmoRecII is an open multimodal corpus with experimentally induced emotions. In the first half of the experiment, emotions were induced with standardized picture material and in the second half during a human-computer interaction (HCI), realized with a wizard-of-oz design. The induced emotions are based on the dimensional theory of emotions (valence, arousal and dominance). These emotional sequences - recorded with multimodal data (mimic reactions, speech, audio and physiological reactions) during a naturalistic-like HCI-environment one can improve classification methods on a multimodal level. This database is the result of an HCI-experiment, for which 30 subjects in total agreed to a publication of their data including the video material for research purposes. The now available open corpus contains sensory signal of: video, audio, physiology (SCL, respiration, BVP, EMG Corrugator supercilii, EMG Zygomaticus Major) and mimic annotations.

Keywords: open multimodal emotion corpus, annotated labels, intelligent interaction

Procedia PDF Downloads 417
31 Multilingual Females and Linguistic Change: A Quantitative and Qualitative Sociolinguistic Case Study of Minority Speaker in Southeast Asia

Authors: Stefanie Siebenhütter

Abstract:

Men and women use minority and majority languages differently and with varying confidence levels. This paper contrasts gendered differences in language use with socioeconomic status and age factors of minority language speakers in Southeast Asia. Language use and competence are conditioned by the variable of gender. Potential reasons for this variation by examining gendered language awareness and sociolinguistic attitudes will be given. Moreover, it is analyzed whether women in multilingual minority speakers’ society function as 'leaders of linguistic change', as represented in Labov’s sociolinguistic model. It is asked whether the societal role expectations in collectivistic cultures influence the model of linguistic change. The findings reveal speaking preferences and suggest predictions on the prospective language use, which is a stable situation of multilingualism. The study further exhibits differences between male and females identity-forming processes and shows why females are the leaders of (socio-) linguistic change.

Keywords: gender, identity construction, multilingual minorities, linguistic change, social networks

Procedia PDF Downloads 160
30 Socioeconomic Status and Gender Influence on Linguistic Change: A Case Study on Language Competence and Confidence of Multilingual Minority Language Speakers

Authors: Stefanie Siebenhütter

Abstract:

Male and female speakers use language differently and with varying confidence levels. This paper contrasts gendered differences in language use with socioeconomic status and age factors. It specifically examines how Kui minority language use and competence are conditioned by the variable of gender and discusses potential reasons for this variation by examining gendered language awareness and sociolinguistic attitudes. Moreover, it discusses whether women in Kui society function as 'leaders of linguistic change', as represented in Labov’s sociolinguistic model. It discusses whether societal role expectations in collectivistic cultures influence the model of linguistic change. The findings reveal current Kui speaking preferences and give predictions on the prospective language use, which is a stable situation of multilingualism because the current Kui speakers will socialize and teach the prospective Kui speakers in the near future. It further confirms that Lao is losing importance in Kui speaker’s (female’s) daily life.

Keywords: gender, identity construction, language change, minority language, multilingualism, sociolinguistics, social Networks

Procedia PDF Downloads 178
29 Multiple Identity Construction among Multilingual Minorities: A Quantitative Sociolinguistic Case Study

Authors: Stefanie Siebenhütter

Abstract:

This paper aims to reveal criterions involved in the process of identity-forming among multilingual minority language speakers in Northeastern Thailand and in the capital Bangkok. Using sociolinguistic interviews and questionnaires, it is asked which factors are important for speakers and how they define their identity by their interactions socially as well as linguistically. One key question to answer is how sociolinguistic factors may force or diminish the process of forming social identity of multilingual minority speakers. However, the motivation for specific language use is rarely overt to the speaker’s themselves as well as to others. Therefore, identifying the intentions included in the process of identity construction is to approach by scrutinizing speaker’s behavior and attitudes. Combining methods used in sociolinguistics and social psychology allows uncovering the tools for identity construction that ethnic Kui uses to range themselves within a multilingual setting. By giving an overview of minority speaker’s language use in context of the specific border near multilingual situation and asking how speakers construe identity within this spatial context, the results exhibit some of the subtle and mostly unconscious criterions involved in the ongoing process of identity construction.

Keywords: social identity, identity construction, minority language, multilingualism, social networks, social boundaries

Procedia PDF Downloads 268
28 Price to Earnings Growth (PEG) Predicting Future Returns Better than the Price to Earnings (PE) Ratio

Authors: Lindrianasari Stefanie, Aminah Khairudin

Abstract:

This study aims to provide empirical evidence regarding the ability of Price to Earnings Ratio and PEG Ratio in predicting future stock returns issuers. The samples used in this study are stocks that go into LQ45. The main contribution is to assign empirical evidence if the PEG Ratio can provide optimum return compared to Price to Earnings Ratio. This study used a sample of the entire company into the group LQ45 with the period of observation. The data used is limited to the financial statements of a company incorporated in LQ45 period July 2013-July 2014, using the financial statements and the position of the company's closing stock price at the end of 2010 as a reference benchmark for the growth of the company's stock price compared to the closing price of 2013. This study found that the method of PEG Ratio can outperform the method of PE ratio in predicting future returns on the stock portfolio of LQ45.

Keywords: price to earnings growth, price to earnings ratio, future returns, stock price

Procedia PDF Downloads 413
27 The Communication Library DIALOG for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

Modern experiments in high energy physics impose great demands on the reliability, the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on the development and deployment of the new communication library DIALOG for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum rate of the experiment. The DIALOG library is a communication system both for distributed and mixed environments, it provides a network transparent inter-process communication layer. Using the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG library presents an alternative to the previously used DIM library. The DIALOG library was fully incorporated to all processes in the iFDAQ during the run 2016. From the software point of view, it might be considered as a significant improvement of iFDAQ in comparison with the previous run. To extend the possibilities of debugging, the online monitoring of communication among processes via DIALOG GUI is a desirable feature. In the paper, we present the DIALOG library from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and comparison with the DIM library with respect to the iFDAQ requirements is provided.

Keywords: data acquisition system, DIALOG library, DIM library, FPGA, Qt framework, TCP/IP

Procedia PDF Downloads 317
26 Informal Governance as Response to Institutional Paralysis

Authors: Stefanie Kasparek

Abstract:

The United Nations Security Council (UNSC) is probably the most recognized international security organization. It is also profoundly misunderstood and undervalued in its effort to promote peace and security. With the rising involvement of non-state actors and the way states fight wars, international governance has become increasingly complex. However, the formal UNSC agenda has long remained static, reflecting states' unwillingness to entertain more conflicts. Nevertheless, resolutions remain the scholarly measure of states' interests and policies, neglecting the significant share of issues the Council entertains informally. This project builds on a rational institutionalism framework. It provides a systematic analysis of how and under what conditions states use informal governance instead of, or in combination with, formal rules at the agenda-setting stage of the policy process. Data for this project comes from elite interviews and a newly created dataset on governance choices. The results show that counter existing arguments, weaker states successfully circumvent formal institutional roadblocks and use informal governance mechanisms to pursue vital interests, thereby countering institutional restrictions and power asymmetries present informal governance settings.

Keywords: agenda-setting, decision-making, international governance, UNSC

Procedia PDF Downloads 200
25 Modeling and Experimental Verification of Crystal Growth Kinetics in Glass Forming Alloys

Authors: Peter K. Galenko, Stefanie Koch, Markus Rettenmayr, Robert Wonneberger, Evgeny V. Kharanzhevskiy, Maria Zamoryanskaya, Vladimir Ankudinov

Abstract:

We analyze the structure of undercooled melts, crystal growth kinetics and amorphous/crystalline microstructure of rapidly solidifying glass-forming Pd-based and CuZr-based alloys. A dendrite growth model is developed using a combination of the kinetic phase-field model and mesoscopic sharp interface model. The model predicts features of crystallization kinetics in alloys from thermodynamically controlled growth (governed by the Gibbs free energy change on solidification) to the kinetically limited regime (governed by atomic attachment-detachment processes at the solid/liquid interface). Comparing critical undercoolings observed in the crystallization kinetics with experimental data on melt viscosity, atomistic simulation's data on liquid microstructure and theoretically predicted dendrite growth velocity allows us to conclude that the dendrite growth kinetics strongly depends on the cluster structure changes of the melt. The obtained data of theoretical and experimental investigations are used for interpretation of microstructure of samples processed in electro-magnetic levitator on board International Space Station in the frame of the project "MULTIPHAS" (European Space Agency and German Aerospace Center, 50WM1941) and "KINETIKA" (ROSKOSMOS).

Keywords: dendrite, kinetics, model, solidification

Procedia PDF Downloads 120
24 The DAQ Debugger for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

In general, state-of-the-art Data Acquisition Systems (DAQ) in high energy physics experiments must satisfy high requirements in terms of reliability, efficiency and data rate capability. This paper presents the development and deployment of a debugging tool named DAQ Debugger for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. Utilizing a hardware event builder, the iFDAQ is designed to be able to readout data at the average maximum rate of 1.5 GB/s of the experiment. In complex softwares, such as the iFDAQ, having thousands of lines of code, the debugging process is absolutely essential to reveal all software issues. Unfortunately, conventional debugging of the iFDAQ is not possible during the real data taking. The DAQ Debugger is a tool for identifying a problem, isolating the source of the problem, and then either correcting the problem or determining a way to work around it. It provides the layer for an easy integration to any process and has no impact on the process performance. Based on handling of system signals, the DAQ Debugger represents an alternative to conventional debuggers provided by most integrated development environments. Whenever problem occurs, it generates reports containing all necessary information important for a deeper investigation and analysis. The DAQ Debugger was fully incorporated to all processes in the iFDAQ during the run 2016. It helped to reveal remaining software issues and improved significantly the stability of the system in comparison with the previous run. In the paper, we present the DAQ Debugger from several insights and discuss it in a detailed way.

Keywords: DAQ Debugger, data acquisition system, FPGA, system signals, Qt framework

Procedia PDF Downloads 284
23 A Multi-Omic Assessment of Biomass and Pigment Accumulation in Nitrogen Deplete Conditions in Scenedesmus 46B-D3

Authors: Galen Dennis, Lukas Dahlin, Michael Guarnieri, Stefanie Van Wychen, Shawn Starkenburg, Matthew Posewitz, Colin Kruse

Abstract:

Scenedesmus 46B-D3 was identified in 2021 by screening a culture collection produced by the Posewitz lab at the Colorado School of Mines. The strain was found to continue accumulating biomass in a nitrogen-depleted state, which is a rare and technologically promising trait in microalgae. As the culture grows, a shift from nitrogen-replete to depleted conditions is indicated by arrested cell division and the accumulation of lipids, polysaccharides and photoprotective pigments. The latter trait gives stationary phase cultures a deep red color due to the presence of the high-value beta-ketocarotenoids, canthaxanthin and astaxanthin. The combination of continued photosynthesis post-nitrogen depletion and the accumulation of valuable pigments makes S. 46B-D3 of interest from a fundamental and industrial perspective, respectively. This project reports the results of a multi-omic study examining changes in the proteome and transcriptome in nitrogen-replete and deplete conditions. In addition, it characterizes the pigment composition of S. 46B-D3 across its growth curve and the method of cell division within the strain. These results indicate that upon sensing nitrogen scarcity, S. 46B-D3 efficiently recycles and repurposes nitrogen away from cell division and towards energy storage through the accumulation of lipids and polysaccharides. The accumulation of photoprotective pigments also prevents damage to and serves as an additional carbon sink for the cell’s light system.

Keywords: pigments, photosynthesis, proteomics, transcriptomics

Procedia PDF Downloads 12
22 An Overview of Technology Availability to Support Remote Decentralized Clinical Trials

Authors: Simone Huber, Bianca Schnalzer, Baptiste Alcalde, Sten Hanke, Lampros Mpaltadoros, Thanos G. Stavropoulos, Spiros Nikolopoulos, Ioannis Kompatsiaris, Lina Pérez- Breva, Vallivana Rodrigo-Casares, Jaime Fons-Martínez, Jeroen de Bruin

Abstract:

Developing new medicine and health solutions and improving patient health currently rely on the successful execution of clinical trials, which generate relevant safety and efficacy data. For their success, recruitment and retention of participants are some of the most challenging aspects of protocol adherence. Main barriers include: i) lack of awareness of clinical trials; ii) long distance from the clinical site; iii) the burden on participants, including the duration and number of clinical visits and iv) high dropout rate. Most of these aspects could be addressed with a new paradigm, namely the Remote Decentralized Clinical Trials (RDCTs). Furthermore, the COVID-19 pandemic has highlighted additional advantages and challenges for RDCTs in practice, allowing participants to join trials from home and not depend on site visits, etc. Nevertheless, RDCTs should follow the process and the quality assurance of conventional clinical trials, which involve several processes. For each part of the trial, the Building Blocks, existing software and technologies were assessed through a systematic search. The technology needed to perform RDCTs is widely available and validated but is yet segmented and developed in silos, as different software solutions address different parts of the trial and at various levels. The current paper is analyzing the availability of technology to perform RDCTs, identifying gaps and providing an overview of Basic Building Blocks and functionalities that need to be covered to support the described processes.

Keywords: architectures and frameworks for health informatics systems, clinical trials, information and communications technology, remote decentralized clinical trials, technology availability

Procedia PDF Downloads 218
21 Adjusting Electricity Demand Data to Account for the Impact of Loadshedding in Forecasting Models

Authors: Migael van Zyl, Stefanie Visser, Awelani Phaswana

Abstract:

The electricity landscape in South Africa is characterized by frequent occurrences of loadshedding, a measure implemented by Eskom to manage electricity generation shortages by curtailing demand. Loadshedding, classified into stages ranging from 1 to 8 based on severity, involves the systematic rotation of power cuts across municipalities according to predefined schedules. However, this practice introduces distortions in recorded electricity demand, posing challenges to accurate forecasting essential for budgeting, network planning, and generation scheduling. Addressing this challenge requires the development of a methodology to quantify the impact of loadshedding and integrate it back into metered electricity demand data. Fortunately, comprehensive records of loadshedding impacts are maintained in a database, enabling the alignment of Loadshedding effects with hourly demand data. This adjustment ensures that forecasts accurately reflect true demand patterns, independent of loadshedding's influence, thereby enhancing the reliability of electricity supply management in South Africa. This paper presents a methodology for determining the hourly impact of load scheduling and subsequently adjusting historical demand data to account for it. Furthermore, two forecasting models are developed: one utilizing the original dataset and the other using the adjusted data. A comparative analysis is conducted to evaluate forecast accuracy improvements resulting from the adjustment process. By implementing this methodology, stakeholders can make more informed decisions regarding electricity infrastructure investments, resource allocation, and operational planning, contributing to the overall stability and efficiency of South Africa's electricity supply system.

Keywords: electricity demand forecasting, load shedding, demand side management, data science

Procedia PDF Downloads 62
20 Self-Assembled Laser-Activated Plasmonic Substrates for High-Throughput, High-Efficiency Intracellular Delivery

Authors: Marinna Madrid, Nabiha Saklayen, Marinus Huber, Nicolas Vogel, Christos Boutopoulos, Michel Meunier, Eric Mazur

Abstract:

Delivering material into cells is important for a diverse range of biological applications, including gene therapy, cellular engineering and imaging. We present a plasmonic substrate for delivering membrane-impermeable material into cells at high throughput and high efficiency while maintaining cell viability. The substrate fabrication is based on an affordable and fast colloidal self-assembly process. When illuminated with a femtosecond laser, the light interacts with the electrons at the surface of the metal substrate, creating localized surface plasmons that form bubbles via energy dissipation in the surrounding medium. These bubbles come into close contact with the cell membrane to form transient pores and enable entry of membrane-impermeable material via diffusion. We use fluorescence microscopy and flow cytometry to verify delivery of membrane-impermeable material into HeLa CCL-2 cells. We show delivery efficiency and cell viability data for a range of membrane-impermeable cargo, including dyes and biologically relevant material such as siRNA. We estimate the effective pore size by determining delivery efficiency for hard fluorescent spheres with diameters ranging from 20 nm to 2 um. To provide insight to the cell poration mechanism, we relate the poration data to pump-probe measurements of micro- and nano-bubble formation on the plasmonic substrate. Finally, we investigate substrate stability and reusability by using scanning electron microscopy (SEM) to inspect for damage on the substrate after laser treatment. SEM images show no visible damage. Our findings indicate that self-assembled plasmonic substrates are an affordable tool for high-throughput, high-efficiency delivery of material into mammalian cells.

Keywords: femtosecond laser, intracellular delivery, plasmonic, self-assembly

Procedia PDF Downloads 531
19 Dynamic Mechanical Analysis of Supercooled Water in Nanoporous Confinement and Biological Systems

Authors: Viktor Soprunyuk, Wilfried Schranz, Patrick Huber

Abstract:

In the present work, we show that Dynamic Mechanical Analysis (DMA) with a measurement frequency range f= 0.2 - 100 Hz is a rather powerful technique for the study of phase transitions (freezing and melting) and glass transitions of water in geometrical confinement. Inserting water into nanoporous host matrices, like e.g. Gelsil (size of pores 2.6 nm and 5 nm) or Vycor (size of pores 10 nm) allows one to study size effects occurring at the nanoscale conveniently in macroscopic bulk samples. One obtains valuable insight concerning confinement induced changes of the dynamics by measuring the temperature and frequency dependencies of the complex Young's modulus Y* for various pore sizes. Solid-liquid transitions or glass-liquid transitions show up in a softening or the real part Y' of the complex Young's modulus, yet with completely different frequency dependencies. Analysing the frequency dependent imaginary part of the Young´s modulus in the glass transition regions for different pore sizes we find a clear-cut 1/d-dependence of the calculated glass transition temperatures which extrapolates to Tg(1/d=0)=136 K, in agreement with the traditional value of water. The results indicate that the main role of the pore diameter is the relative amount of water molecules that are near an interface within a length scale of the order of the dynamic correlation length x. Thus we argue that the observed strong pore size dependence of Tg is an interfacial effect, rather than a finite size effect. We obtained similar signatures of Y* near glass transitions in different biological objects (fruits, vegetables, and bread). The values of the activation energies for these biological materials in the region of glass transition are quite similar to the values of the activation energies of supercooled water in the nanoporous confinement in this region. The present work was supported by the Austrian Science Fund (FWF, project Nr. P 28672 – N36).

Keywords: biological systems, liquids, glasses, amorphous systems, nanoporous materials, phase transition

Procedia PDF Downloads 240
18 Molecular Dissection of Late Flowering under a Photoperiod-Insensitive Genetic Background in Soybean

Authors: Fei Sun, Meilan Xu, Jianghui Zhu, Maria Stefanie Dwiyanti, Cheolwoo Park, Fanjiang Kong, Baohui Liu, Tetsuya Yamada, Jun Abe

Abstract:

Reduced or lack of sensitivity to long daylengths is a key character for soybean, a short-day crop, to adapt to higher latitudinal environments. However, the photoperiod-insensitivity often results in a reduction of the duration of vegetative growth and final yield. To overcome this limitation, a photoperiod insensitive line (RIL16) was developed in this study that delayed flowering from the recombinant inbred population derived from a cross between a photoperiod-insensitive cultivar AGS292 and a late-flowering Thai cultivar K3. Expression analyses under SD and LD conditions revealed that the expression levels of FLOWERING LOCUS T (FT) orthologues, FT2a and FT5a, were lowered in RIL16 relative to AGS292, although the expression of E1, a soybean-specific suppressor for FTs, was inhibited in both conditions. A soybean orthologue of TARGET OF EAT1 (TOE1), another suppressor of FT, showed an upregulated expression in RIL16, which appeared to reflect a lower expression of miR172a. Our data suggest that the delayed flowering of RIL16 most likely is controlled by genes involved in an age-dependent pathway in flowering. The QTL analysis based on 1,125 SNPs obtained from Restriction Site Associated DNA Sequencing revealed two major QTLs for flowering dates in Chromosome 16 and two minor QTLs in Chromosome 4, all of which accounted for 55% and 48% of the whole variations observed in natural day length and artificially-induced long day length conditions, respectively. The intervals of the major QTLs harbored FT2a and FT5a, respectively, on the basis of annotated genes in the Williams 82 reference genome. Sequencing analysis further revealed a nonsynonymous mutation in FT2a and an SNP in the 3′ UTR region of FT5a. A further study may elucidate a detailed mechanism underlying the QTL for late flowering. The alleles from K3 at the two QTLs can be used singly or in combination to retain an appropriate duration of vegetative growth to maximize the final yield of photoperiod-insensitive soybeans.

Keywords: FT genes, miR72a, photoperiod-insensitive, soybean flowering

Procedia PDF Downloads 221
17 Comparison of Peri- and Post-Operative Outcomes of Three Left Atrial Incisions: Conventional Direct, Transseptal and Superior Septal Left Atriotomy

Authors: Estelle Démoulin, Dionysios Adamopoulos, Tornike Sologashvili, Mathieu Van Steenberghe, Jalal Jolou, Haran Burri, Christoph Huber, Mustafa Cikirikcioglu

Abstract:

Background & objective: Mitral valve surgeries are mainly performed by median sternotomy with conventional direct atriotomy. Good exposure to the mitral valve is challenging, especially for acute pathologies, where left atrium dilation does not occur. Other atriotomies, such as transseptal or superior septal, are used as they allow better access and visualization. Peri- and postoperative outcomes of these three different left atriotomies were compared. Methods: Patients undergoing mitral valve surgery between January 2010 and December 2020 were included and divided into three groups: group 1 (conventional direct, n=115), group 2 (transseptal, n=33) and group 3 (superior septal, n=59). To improve the sampling size, all patients underwent mitral valve surgery with or without associated procedures (CABG, aortic-tricuspid surgery, Maze procedure). The study protocol was approved by SwissEthics. Results: No difference was shown for the etiology of mitral valve disease, except endocarditis, which was more frequent in group 3 (p = 0.014). Elective surgeries and isolated mitral valve surgery were more frequent in group 1 (p = 0.008, p = 0.011) and aortic clamping and cardiopulmonary bypass were shorter (p = 0.002, p<0.001). Group 3 had more emergency procedures (p = 0.011) and longer lengths of intensive care unit and hospital stay (p = 0.000, p = 0.003). There was no difference in permanent pacemaker implantation, postoperative complications and mortality between the groups. Conclusion: Mitral valve surgeries can be safely performed using those three left atriotomies. Conventional direct may lead to shorter aortic clamping and cardiopulmonary bypass times. Superior septal is mostly used for acute pathologies, and it does not increase postoperative arrhythmias and permanent pacemaker implantation. However, intensive care unit and hospital lengths of stay were found to be longer in this group. In our opinion, this outcome is more related to the pathology and type of surgery than the incision itself.

Keywords: Mitral valve surgery, cardiac surgery, atriotomy, Operative outcomes

Procedia PDF Downloads 77
16 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes

Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert

Abstract:

The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.

Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry

Procedia PDF Downloads 89
15 Real-World Vehicle to Grid: Case Study on School Buses in New England

Authors: Aaron Huber, Manoj Karwa

Abstract:

Floods, heat waves, drought, wildfires, tornadoes and other environmental disasters are a snapshot of looming national problems that can create increasing demands on the national grid. With nearly 500,000 school buses on the road and the environmental protection agency (EPA) providing nearly $1B for electric school buses, there is a solution for this national issue. Bidirectional batteries in electric school buses enable a future proof solution to sustain the power grid during adverse environmental conditions and other periods of high demand. School buses have larger batteries than standard electric vehicles. When they are not transporting students, these buses can spend peak solar hours parked and plugged into bi-directional direct current fast chargers (DCFC). A partnership with Highland Electric, Proterra and Rhombus enabled over 7 MWh of energy servicing Massachusetts and Vermont grids. The buses were part of a vehicle to grid (V2G) program with National Grid and Green Mountain Power that can charge an average American home for one month with a single bus. V2G infrastructure enables school systems to future proof their charging strategies, strengthen their local grids and can create additional revenue streams with their EV fleets. A bidirectional ecosystem with Highland, Proterra and Rhombus can enable grid resiliency or the ability to withstand power outages caused by excessive demands, natural disasters or rogue nation's attacks with no loss of service. A fleet of school buses is a standalone resilient asset that can be accessed across a city to keep its citizens safe without having any toxic fumes. Nearly 95% of all school buses across USA are powered by diesel internal combustion engines. Diesel exhaust has been classified as a human carcinogen, and it can lead to and exacerbate respiratory conditions. Bidirectional school buses and chargers enable energy justice by providing backup power in case of emergencies or high demand for marginalized communities and aim to make energy more accessible, affordable, clean, and democratically managed.

Keywords: V2G, vehicle to grid, electric buses, eBuses, DC fast chargers, DCFC

Procedia PDF Downloads 77
14 Multiscale Modeling of Damage in Textile Composites

Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese

Abstract:

Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.

Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites

Procedia PDF Downloads 354
13 Investigation of Poly P-Dioxanone as Promising Biodegradable Polymer for Short-Term Medical Application

Authors: Stefanie Ficht, Lukas Schübel, Magdalena Kleybolte, Markus Eblenkamp, Jana Steger, Dirk Wilhelm, Petra Mela

Abstract:

Although 3D printing as transformative technology has become of increasing interest in the medical field and the demand for biodegradable polymers has developed to a considerable extent, there are only a few additively manufactured, biodegradable implants on the market. Additionally, the sterilization of such implants and its side effects on degradation have still not been sufficiently studied. Within this work, thermosensitive poly p-dioxanone (PPDO) samples were printed with fused filament fabrication (FFF) and investigated. Subsequently, H₂O₂ plasma and gamma radiation were used as low-temperature sterilization techniques and compared among each other and the control group (no sterilization). In order to assess the effect of different sterilization on the degradation behavior of PPDO, the samples were immersed in phosphate-buffered solution (PBS) over 28 days, and surface morphology, thermal properties, molecular weight, inherent viscosity, and mechanical properties were examined at regular time intervals. The study demonstrates that PPDO was printed with great success and that thermal properties, molecular weight (Mw), and inherent viscosity (IV) were not significantly affected by the printing process itself. H₂O₂ plasma sterilization did not significantly harm the thermosensitive polymer, while gamma radiation lowered IV and Mw statistically significantly compared to the control group (p < 0.001). During immersion in PBS, a decrease in Mw and mechanical strength occurred for all samples. However, gamma sterilized samples were affected to a much higher extent compared to the two other sample groups both in final values and timeline. This was confirmed by scanning electron microscopy showing no changes of surface morphology of (non-sterilized) control samples, first microcracks appearing on plasma sterilized samples after two weeks while being present on gamma sterilized samples already immediately after radiation to then further deteriorate over immersion duration. To conclude, we demonstrated that FFF and H₂O₂ plasma sterilization are well suited for processing thermosensitive, biodegradable polymers used for the development of innovative short-term medical applications.

Keywords: additive manufacturing, sterilization, biodegradable, thermosensitive, medical application

Procedia PDF Downloads 121
12 Effects of Macroprudential Policies on BankLending and Risks

Authors: Stefanie Behncke

Abstract:

This paper analyses the effects of different macroprudential policy measures that have recently been implemented in Switzerland. Among them is the activation and the increase of the countercyclical capital buffer (CCB) and a tightening of loan-to-value (LTV) requirements. These measures were introduced to limit systemic risks in the Swiss mortgage and real estate markets. They were meant to affect mortgage growth, mortgage risks, and banks’ capital buffers. Evaluation of their quantitative effects provides insights for Swiss policymakers when reassessing their policy. It is also informative for policymakers in other countries who plan to introduce macroprudential instruments. We estimate the effects of the different macroprudential measures with a Differences-in-Differences estimator. Banks differ with respect to the relative importance of mortgages in their portfolio, their riskiness, and their capital buffers. Thus, some of the banks were more affected than others by the CCB, while others were more affected by the LTV requirements. Our analysis is made possible by an unusually informative bank panel data set. It combines data on newly issued mortgage loans and quantitative risk indicators such as LTV and loan-to-income (LTI) ratios with supervisory information on banks’ capital and liquidity situation and balance sheets. Our results suggest that the LTV cap of 90% was most effective. The proportion of new mortgages with a high LTV ratio was significantly reduced. This result does not only apply to the 90% LTV, but also to other threshold values (e.g. 80%, 75%) suggesting that the entire upper part of the LTV distribution was affected. Other outcomes such as the LTI distribution, the growth rates of mortgages and other credits, however, were not significantly affected. Regarding the activation and the increase of the CCB, we do not find any significant effects: neither LTV/LTI risk parameters nor mortgage and other credit growth rates were significantly reduced. This result may reflect that the size of the CCB (1% of relevant residential real estate risk-weighted assets at activation, respectively 2% at the increase) was not sufficiently high enough to trigger a distinct reaction between the banks most likely to be affected by the CCB and those serving as controls. Still, it might be have been effective in increasing the resilience in the overall banking system. From a policy perspective, these results suggest that targeted macroprudential policy measures can contribute to financial stability. In line with findings by others, caps on LTV reduced risk taking in Switzerland. To fully assess the effectiveness of the CCB, further experience is needed.

Keywords: banks, financial stability, macroprudential policy, mortgages

Procedia PDF Downloads 362
11 A Look into Surgical Site Infections: Impact of Collective Interventions

Authors: Lisa Bennett, Cynthia Walters, Cynthia Argani, Andy Satin, Geeta Sood, Kerri Huber, Lisa Grubb, Woodrow Noble, Melissa Eichelberger, Darlene Zinalabedini, Eric Ausby, Jeffrey Snyder, Kevin Kirchoff

Abstract:

Background: Surgical site infections (SSIs) within the obstetric population pose a variety of complications, creating clinical and personal challenges for the new mother and her neonate during the postpartum period. Our journey to achieve compliance with the SSI core measure for cesarean sections revealed many opportunities to improve these outcomes. Objective: Achieve and sustain core measure compliance keeping surgical site infection rates below the national benchmark pooled mean of 1.8% in post-operative patients, who delivered via cesarean section at the Johns Hopkins Bayview Medical Center. Methods: A root cause analysis was performed and revealed several environmental, pharmacologic, and clinical practice opportunities for improvement. A multidisciplinary approach led by the OB Safety Nurse, OB Medical Director, and Infectious Disease Department resulted in the implementation of fourteen interventions over a twenty-month period. Interventions included: post-operative dressing changes, standardizing operating room attire, broadening pre-operative antibiotics, initiating vaginal preps, improving operating room terminal cleaning, testing air quality, and re-educating scrub technicians on technique. Results: Prior to the implementation of our interventions, the SSI quarterly rate in Obstetrics peaked at 6.10%. Although no single intervention resulted in dramatic improvement, after implementation of all fourteen interventions, the quarterly SSI rate has subsequently ranged from to 0.0% to 2.70%. Significance: Taking an introspective look at current practices can reveal opportunities for improvement which previously were not considered. Collectively the benefit of these interventions has shown a significant decrease in surgical site infection rates. The impact of this quality improvement project highlights the synergy created when members of the multidisciplinary team work in collaboration to improve patient safety, and achieve a high quality of care.

Keywords: cesarean section, surgical site infection, collaboration and teamwork, patient safety, quality improvement

Procedia PDF Downloads 482
10 Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets

Authors: Ece Cigdem Mutlu, Burak Alakent

Abstract:

Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts.

Keywords: average run length, M-estimators, quality control, robust estimators

Procedia PDF Downloads 191
9 Enhancing Nursing Students’ Communication Using TeamSTEPPS to Improve Patient Safety

Authors: Stefanie Santorsola, Natasha Frank

Abstract:

Improving healthcare safety necessitates examining current trends and beliefs about safety and devising strategies to improve. Errors in healthcare continue to increase and be experienced by patients, which is preventable and directly correlated to a breakdown in healthcare communication. TeamSTEPPS is an evidence-based process designed to improve the quality and safety of healthcare by improving communication and team processes. Communication is at the core of effective team collaboration and is vital for patient safety. TeamSTEPPS offers insights and strategies for improving communication and teamwork and reducing preventable errors to create a safer healthcare environment for patients. The academic, clinical, and educational environment for nursing students is vital in preparing them for professional practice by providing them with foundational knowledge and abilities. This environment provides them with a prime opportunity to learn about errors and the importance of effective communication to enhance patient safety, as nursing students are often unprepared to deal with errors. Proactively introducing and discussing errors through a supportive culture during the nursing student’s academic beginnings has the potential to carry key concepts into practice to improve and enhance patient safety. TeamSTEPPS has been used globally and has collectively positively impacted improvements in patient safety and teamwork. A workshop study was introduced in winter 2023 of registered practical nurses (RPN) students bridging to the baccalaureate nursing program; the majority of the RPNs in the bridging program were actively employed in a variety of healthcare facilities during the semester. The workshop study did receive academic institution ethics board approval, and participants signed a consent form prior to participating in the study. The premise of the workshop was to introduce TeamSTEPPS and a variety of strategies to these students and have students keep a reflective journal to incorporate the presented communication strategies in their practicum setting and keep a reflective journal on the effect and outcomes of the strategies in the healthcare setting. Findings from the workshop study supported the objective of the project, resulting in students verbalizing notable improvements in team functioning in the healthcare environment resulting from the incorporation of enhanced communication strategies from TeamSTEPPS that they were introduced to in the workshop study. Implication for educational institutions is the potential of further advancing the safety literacy and abilities of nursing students in preparing them for entering the workforce and improving safety for patients.

Keywords: teamstepps, education, patient safety, communication

Procedia PDF Downloads 62
8 Revealing the Nitrogen Reaction Pathway for the Catalytic Oxidative Denitrification of Fuels

Authors: Michael Huber, Maximilian J. Poller, Jens Tochtermann, Wolfgang Korth, Andreas Jess, Jakob Albert

Abstract:

Aside from the desulfurisation, the denitrogenation of fuels is of great importance to minimize the environmental impact of transport emissions. The oxidative reaction pathway of organic nitrogen in the catalytic oxidative denitrogenation could be successfully elucidated. This is the first time such a pathway could be traced in detail in non-microbial systems. It was found that the organic nitrogen is first oxidized to nitrate, which is subsequently reduced to molecular nitrogen via nitrous oxide. Hereby, the organic substrate serves as a reducing agent. The discovery of this pathway is an important milestone for the further development of fuel denitrogenation technologies. The United Nations aims to counteract global warming with Net Zero Emissions (NZE) commitments; however, it is not yet foreseeable when crude oil-based fuels will become obsolete. In 2021, more than 50 million barrels per day (mb/d) were consumed for the transport sector alone. Above all, heteroatoms such as sulfur or nitrogen produce SO₂ and NOx during combustion in the engines, which is not only harmful to the climate but also to health. Therefore, in refineries, these heteroatoms are removed by hy-drotreating to produce clean fuels. However, this catalytic reaction is inhibited by the basic, nitrogenous reactants (e.g., quinoline) as well as by NH3. The ion pair of the nitrogen atom forms strong pi-bonds to the active sites of the hydrotreating catalyst, which dimin-ishes its activity. To maximize the desulfurization and denitrogenation effectiveness in comparison to just extraction and adsorption, selective oxidation is typically combined with either extraction or selective adsorption. The selective oxidation produces more polar compounds that can be removed from the non-polar oil in a separate step. The extraction step can also be carried out in parallel to the oxidation reaction, as a result of in situ separation of the oxidation products (ECODS; extractive catalytic oxidative desulfurization). In this process, H8PV5Mo7O40 (HPA-5) is employed as a homogeneous polyoxometalate (POM) catalyst in an aqueous phase, whereas the sulfur containing fuel components are oxidized after diffusion from the organic fuel phase into the aqueous catalyst phase, to form highly polar products such as H₂SO₄ and carboxylic acids, which are thereby extracted from the organic fuel phase and accumulate in the aqueous phase. In contrast to the inhibiting properties of the basic nitrogen compounds in hydrotreating, the oxidative desulfurization improves with simultaneous denitrification in this system (ECODN; extractive catalytic oxidative denitrogenation). The reaction pathway of ECODS has already been well studied. In contrast, the oxidation of nitrogen compounds in ECODN is not yet well understood and requires more detailed investigations.

Keywords: oxidative reaction pathway, denitrogenation of fuels, molecular catalysis, polyoxometalate

Procedia PDF Downloads 181
7 Characterization of Dota-Girentuximab Conjugates for Radioimmunotherapy

Authors: Tais Basaco, Stefanie Pektor, Josue A. Moreno, Matthias Miederer, Andreas Türler

Abstract:

Radiopharmaceuticals based in monoclonal anti-body (mAb) via chemical linkers have become a potential tool in nuclear medicine because of their specificity and the large variability and availability of therapeutic radiometals. It is important to identify the conjugation sites and number of attached chelator to mAb to obtain radioimmunoconjugates with required immunoreactivity and radiostability. Girentuximab antibody (G250) is a potential candidate for radioimmunotherapy of clear cell carcinomas (RCCs) because it is reactive with CAIX antigen, a transmembrane glycoprotein overexpressed on the cell surface of most ( > 90%) (RCCs). G250 was conjugated with the bifunctional chelating agent DOTA (1,4,7,10-Tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid) via a benzyl-thiocyano group as a linker (p-SCN-Bn-DOTA). DOTA-G250 conjugates were analyzed by size exclusion chromatography (SE-HPLC) and by electrophoresis (SDS-PAGE). The potential site-specific conjugation was identified by liquid chromatography–mass spectrometry (LC/MS-MS) and the number of linkers per molecule of mAb was calculated using the molecular weight (MW) measured by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The average number obtained in the conjugates in non-reduced conditions was between 8-10 molecules of DOTA per molecule of mAb. The average number obtained in the conjugates in reduced conditions was between 1-2 and 3-4 molecules of DOTA per molecule of mAb in the light chain (LC) and heavy chain (HC) respectively. Potential DOTA modification sites of the chelator were identified in lysine residues. The biological activity of the conjugates was evaluated by flow cytometry (FACS) using CAIX negative (SKRC-18) and CAIX positive (SKRC-52). The DOTA-G250 conjugates were labelled with 177Lu with a radiochemical yield > 95% reaching specific activities of 12 MBq/µg. The stability in vitro of different types of radioconstructs was analyzed in human serum albumin (HSA). The radiostability of 177Lu-DOTA-G250 at high specific activity was increased by addition of sodium ascorbate after the labelling. The immunoreactivity was evaluated in vitro and in vivo. Binding to CAIX positive cells (SK-RC-52) at different specific activities was higher for conjugates with less DOTA content. Protein dose was optimized in mice with subcutaneously growing SK-RC-52 tumors using different amounts of 177Lu- DOTA-G250.

Keywords: mass spectrometry, monoclonal antibody, radiopharmaceuticals, radioimmunotheray, renal cancer

Procedia PDF Downloads 309