Search results for: transition curves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 770

Search results for: transition curves

770 Some Characterizations of Isotropic Curves In the Euclidean Space

Authors: Süha Yılmaz, Melih Turgut

Abstract:

The curves, of which the square of the distance between the two points equal to zero, are called minimal or isotropic curves [4]. In this work, first, necessary and sufficient conditions to be a Pseudo Helix, which is a special case of such curves, are presented. Thereafter, it is proven that an isotropic curve-s position vector and pseudo curvature satisfy a vector differential equation of fourth order. Additionally, In view of solution of mentioned equation, position vector of pseudo helices is obtained.

Keywords: Classical Differential Geometry, Euclidean space, Minimal Curves, Isotropic Curves, Pseudo Helix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
769 A New Implementation of Miura-Arita Algorithm for Miura Curves

Authors: A. Basiri, S. Rahmany, D. Khatibi

Abstract:

The aim of this paper is to review some of standard fact on Miura curves. We give some easy theorem in number theory to define Miura curves, then we present a new implementation of Arita algorithm for Miura curves.

Keywords: Miura curve, discrete logarithm problem, algebraic curve cryptography, Jacobian group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
768 Size Dependence of 1D Superconductivity in NbN Nanowires on Suspended Carbon Nanotubes

Authors: T. Hashimoto, N. Miki, H. Maki

Abstract:

We report the size dependence of 1D superconductivity in ultrathin (10-130 nm) nanowires produced by coating suspended carbon nanotubes with a superconducting NbN thin film. The resistance-temperature characteristic curves for samples with ≧25 nm wire width show the superconducting transition. On the other hand, for the samples with 10-nm width, the superconducting transition is not exhibited owing to the quantum size effect. The differential resistance vs. current density characteristic curves show some peak, indicating that Josephson junctions are formed in nanowires. The presence of the Josephson junctions is well explained by the measurement of the magnetic field dependence of the critical current. These understanding allow for the further expansion of the potential application of NbN, which is utilized for single photon detectors and so on.

Keywords: NbN nanowire, carbon nanotube, quantum size effect, Josephson junction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
767 Box Counting Dimension of the Union L of Trinomial Curves When α ≥ 1

Authors: Kaoutar Lamrini Uahabi, Mohamed Atounti

Abstract:

In the present work, we consider one category of curves denoted by L(p, k, r, n). These curves are continuous arcs which are trajectories of roots of the trinomial equation zn = αzk + (1 − α), where z is a complex number, n and k are two integers such that 1 ≤ k ≤ n − 1 and α is a real parameter greater than 1. Denoting by L the union of all trinomial curves L(p, k, r, n) and using the box counting dimension as fractal dimension, we will prove that the dimension of L is equal to 3/2.

Keywords: Feasible angles, fractal dimension, Minkowski sausage, trinomial curves, trinomial equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631
766 Finding More Non-Supersingular Elliptic Curves for Pairing-Based Cryptosystems

Authors: Pu Duan, Shi Cui, Choong Wah Chan

Abstract:

Finding suitable non-supersingular elliptic curves for pairing-based cryptosystems becomes an important issue for the modern public-key cryptography after the proposition of id-based encryption scheme and short signature scheme. In previous work different algorithms have been proposed for finding such elliptic curves when embedding degree k ∈ {3, 4, 6} and cofactor h ∈ {1, 2, 3, 4, 5}. In this paper a new method is presented to find more non-supersingular elliptic curves for pairing-based cryptosystems with general embedding degree k and large values of cofactor h. In addition, some effective parameters of these non-supersingular elliptic curves are provided in this paper.

Keywords: Family of group order, kth root of unity, non-supersingular elliptic curves polynomial field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
765 New DES based on Elliptic Curves

Authors: Ghada Abdelmouez M., Fathy S. Helail, Abdellatif A. Elkouny

Abstract:

It is known that symmetric encryption algorithms are fast and easy to implement in hardware. Also elliptic curves have proved to be a good choice for building encryption system. Although most of the symmetric systems have been broken, we can create a hybrid system that has the same properties of the symmetric encryption systems and in the same time, it has the strength of elliptic curves in encryption. As DES algorithm is considered the core of all successive symmetric encryption systems, we modified DES using elliptic curves and built a new DES algorithm that is hard to be broken and will be the core for all other symmetric systems.

Keywords: DES, Elliptic Curves, hybrid system, symmetricencryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
764 On the Differential Geometry of the Curves in Minkowski Space-Time II

Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut

Abstract:

In the first part of this paper [6], a method to determine Frenet apparatus of the space-like curves in Minkowski space-time is presented. In this work, the mentioned method is developed for the time-like curves in Minkowski space-time. Additionally, an example of presented method is illustrated.

Keywords: Frenet Apparatus, Time-like Curves, MinkowskiSpace-time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
763 Regionalization of IDF Curves with L-Moments for Storm Events

Authors: Noratiqah Mohd Ariff, Abdul Aziz Jemain, Mohd Aftar Abu Bakar

Abstract:

The construction of Intensity-Duration-Frequency (IDF) curves is one of the most common and useful tools in order to design hydraulic structures and to provide a mathematical relationship between rainfall characteristics. IDF curves, especially those in Peninsular Malaysia, are often built using moving windows of rainfalls. However, these windows do not represent the actual rainfall events since the duration of rainfalls is usually prefixed. Hence, instead of using moving windows, this study aims to find regionalized distributions for IDF curves of extreme rainfalls based on storm events. Homogeneity test is performed on annual maximum of storm intensities to identify homogeneous regions of storms in Peninsular Malaysia. The L-moment method is then used to regionalized Generalized Extreme Value (GEV) distribution of these annual maximums and subsequently. IDF curves are constructed using the regional distributions. The differences between the IDF curves obtained and IDF curves found using at-site GEV distributions are observed through the computation of the coefficient of variation of root mean square error, mean percentage difference and the coefficient of determination. The small differences implied that the construction of IDF curves could be simplified by finding a general probability distribution of each region. This will also help in constructing IDF curves for sites with no rainfall station.

Keywords: IDF curves, L-moments, regionalization, storm events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
762 On Frenet-Serret Invariants of Non-Null Curves in Lorentzian Space L5

Authors: Melih Turgut, José Luis López-Bonilla, Süha Yılmaz

Abstract:

The aim of this paper is to determine Frenet-Serret invariants of non-null curves in Lorentzian 5-space. First, we define a vector product of four vectors, by this way, we present a method to calculate Frenet-Serret invariants of the non-null curves. Additionally, an algebraic example of presented method is illustrated.

Keywords: Lorentzian 5-space, Frenet-Serret Invariants, Nonnull Curves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
761 Centrifuge Modeling of Monopiles Subjected to Lateral Monotonic Loading

Authors: H. R. Khodaei, M. Moradi, A. H. Tajik

Abstract:

The type of foundation commonly used today for berthing dolphins is a set of tubular steel piles with large diameters, which are known as monopiles. The design of these monopiles is based on the theories related with laterally loaded piles. One of the most common methods to analyze and design the piles subjected to lateral loads is the p-y curves. In the present study, centrifuge tests are conducted in order to obtain the p-y curves. Series of tests were designed in order to investigate the scaling laws in the centrifuge for monotonic loading. Also, two important parameters, the embedded depth L of the pile in the soil and free length e of the pile, as well as their ratios were studied via five experimental tests. Finally, the p-y curves of API are presented to be compared with the curves obtained from the tests so that the differences could be demonstrated. The results show that the p-y curves proposed by API highly overestimate the lateral load bearing capacity. It suggests that these curves need correction and modification for each site as the soil conditions change.

Keywords: Centrifuge modeling, monopile, lateral loading, p-y curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
760 The Number of Rational Points on Elliptic Curves y2 = x3 + b2 Over Finite Fields

Authors: Betül Gezer, Hacer Özden, Ahmet Tekcan, Osman Bizim

Abstract:

Let p be a prime number, Fpbe a finite field and let Qpdenote the set of quadratic residues in Fp. In the first section we givesome notations and preliminaries from elliptic curves. In the secondsection, we consider some properties of rational points on ellipticcurves Ep,b: y2= x3+ b2 over Fp, where b ∈ F*p. Recall that theorder of Ep,bover Fpis p + 1 if p ≡ 5(mod 6). We generalize thisresult to any field Fnp for an integer n≥ 2. Further we obtain someresults concerning the sum Σ[x]Ep,b(Fp) and Σ[y]Ep,b(Fp), thesum of x- and y- coordinates of all points (x, y) on Ep,b, and alsothe the sum Σ(x,0)Ep,b(Fp), the sum of points (x, 0) on Ep,b.

Keywords: Elliptic curves over finite fields, rational points on elliptic curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
759 The Number of Rational Points on Elliptic Curves and Circles over Finite Fields

Authors: Betül Gezer, Ahmet Tekcan, Osman Bizim

Abstract:

In elliptic curve theory, number of rational points on elliptic curves and determination of these points is a fairly important problem. Let p be a prime and Fp be a finite field and k ∈ Fp. It is well known that which points the curve y2 = x3 + kx has and the number of rational points of on Fp. Consider the circle family x2 + y2 = r2. It can be interesting to determine common points of these two curve families and to find the number of these common points. In this work we study this problem.

Keywords: Elliptic curves over finite fields, rational points on elliptic curves and circles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
758 Contributions to Differential Geometry of Pseudo Null Curves in Semi-Euclidean Space

Authors: Melih Turgut, Süha Yılmaz

Abstract:

In this paper, first, a characterization of spherical Pseudo null curves in Semi-Euclidean space is given. Then, to investigate position vector of a pseudo null curve, a system of differential equation whose solution gives the components of the position vector of a pseudo null curve on the Frenet axis is established by means of Frenet equations. Additionally, in view of some special solutions of mentioned system, characterizations of some special pseudo null curves are presented.

Keywords: Semi-Euclidean Space, Pseudo Null Curves, Position Vectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
757 Classification of the Bachet Elliptic Curves y2 = x3 + a3 in Fp, where p ≡ 1 (mod 6) is Prime

Authors: Nazli Yildiz İkikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul

Abstract:

In this work, we first give in what fields Fp, the cubic root of unity lies in F*p, in Qp and in K*p where Qp and K*p denote the sets of quadratic and non-zero cubic residues modulo p. Then we use these to obtain some results on the classification of the Bachet elliptic curves y2 ≡ x3 +a3 modulo p, for p ≡ 1 (mod 6) is prime.

Keywords: Elliptic curves over finite fields, quadratic residue, cubic residue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
756 Fast and Efficient Algorithms for Evaluating Uniform and Nonuniform Lagrange and Newton Curves

Authors: Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract:

Newton-Lagrange Interpolations are widely used in numerical analysis. However, it requires a quadratic computational time for their constructions. In computer aided geometric design (CAGD), there are some polynomial curves: Wang-Ball, DP and Dejdumrong curves, which have linear time complexity algorithms. Thus, the computational time for Newton-Lagrange Interpolations can be reduced by applying the algorithms of Wang-Ball, DP and Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong algorithms, first, it is necessary to convert Newton-Lagrange polynomials into Wang-Ball, DP or Dejdumrong polynomials. In this work, the algorithms for converting from both uniform and non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and Dejdumrong polynomials are investigated. Thus, the computational time for representing Newton-Lagrange polynomials can be reduced into linear complexity. In addition, the other utilizations of using CAGD curves to modify the Newton-Lagrange curves can be taken.

Keywords: Newton interpolation, Lagrange interpolation, linear complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 618
755 Identifying Areas on the Pavement Where Rain Water Runoff Affects Motorcycle Behavior

Authors: Panagiotis Lemonakis, Theodoros Αlimonakis, George Kaliabetsos, Nikos Eliou

Abstract:

It is very well known that certain vertical and longitudinal slopes have to be assured in order to achieve adequate rainwater runoff from the pavement. The selection of longitudinal slopes, between the turning points of the vertical curves that meet the afore-mentioned requirement does not ensure adequate drainage because the same condition must also be applied at the transition curves. In this way none of the pavement edges’ slopes (as well as any other spot that lie on the pavement) will be opposite to the longitudinal slope of the rotation axis. Horizontal and vertical alignment must be properly combined in order to form a road which resultant slope does not take small values and hence, checks must be performed in every cross section and every chainage of the road. The present research investigates the rain water runoff from the road surface in order to identify the conditions under which, areas of inadequate drainage are being created, to analyze the rainwater behavior in such areas, to provide design examples of good and bad drainage zones and to track down certain motorcycle types which might encounter hazardous situations due to the presence of water film between the pavement and both of their tires resulting loss of traction. Moreover, it investigates the combination of longitudinal and cross slope values in critical pavement areas. It should be pointed out that the drainage gradient is analytically calculated for the whole road width and not just for an oblique slope per chainage (combination of longitudinal grade and cross slope). Lastly, various combinations of horizontal and vertical design are presented, indicating the crucial zones of bad pavement drainage. The key conclusion of the study is that any type of motorcycle will travel for some time inside the area of improper runoff for a certain time frame which depends on the speed and the trajectory that the rider chooses along the transition curve. Taking into account that on this section the rider will have to lean his motorcycle and hence reduce the contact area of his tire with the pavement it is apparent that any variations on the friction value due to the presence of a water film may lead to serious problems regarding his safety. The water runoff from the road pavement is improved when between reverse longitudinal slopes, crest instead of sag curve is chosen and particularly when its edges coincide with the edges of the horizontal curve. Lastly, the results of the investigation have shown that the variation of the longitudinal slope involves the vertical shift of the center of the poor water runoff area. The magnitude of this area increases as the length of the transition curve increases.

Keywords: Drainage, motorcycle safety, superelevation, transition curves, vertical grade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536
754 The Elliptic Curves y2 = x3 - t2x over Fp

Authors: Ahmet Tekcan

Abstract:

Let p be a prime number, Fp be a finite field and t ∈ F*p= Fp- {0}. In this paper we obtain some properties of ellipticcurves Ep,t: y2= y2= x3- t2x over Fp. In the first sectionwe give some notations and preliminaries from elliptic curves. In the second section we consider the rational points (x, y) on Ep,t. Wegive a formula for the number of rational points on Ep,t over Fnp for an integer n ≥ 1. We also give some formulas for the sum of x?andy?coordinates of the points (x, y) on Ep,t. In the third section weconsider the rank of Et: y2= x3- t2x and its 2-isogenous curve Et over Q. We proved that the rank of Etand Etis 2 over Q. In the last section we obtain some formulas for the sums Σt∈F?panp,t for an integer n ≥ 1, where ap,t denote the trace of Frobenius.

Keywords: Elliptic curves over finite fields, rational points onelliptic curves, rank, trace of Frobenius.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
753 3D Dynamic Modeling of Transition Zones

Authors: Edina Koch, Péter Hudacsek

Abstract:

In railways transition zone is present at the boundaries of zones with different stiffness. When a train rides from an embankment onto a stiff structure, such as a bridge, tunnel or culvert, an abrupt change in the support stiffness occurs possibly inducing differential settlements. This in long term can yield to the degradation of the tracks and foundations in the transition zones. A number of techniques have been proposed or implemented to provide gradual stiffness transition at the problem zones, such as methods to ensure gradually changing pad stiffness, application of long sleepers or installation of auxiliary rails in the transition zone. Aim of the research presented in this paper is to analyze the 3D and the dynamic effects induced by the passing train over an area where significant difference in the support stiffness exists. The effects were analyzed for different arrangements associated with certain differential settlement mitigation strategies of the transition zones.

Keywords: Culvert, dynamic load, HS small model, railway transition zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
752 Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling

Authors: Salah Al-Enezi, Rashed Al-Zufairi, Naseer Ahmad

Abstract:

A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.

Keywords: Softening, high-pressure, polystyrene, CO2 diffusions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666
751 Single Feed Circularly Polarized Poly Fractal Antenna for Wireless Applications

Authors: V. V. Reddy, N. V. S. N. Sarma

Abstract:

A circularly polarized fractal boundary microstrip antenna is presented. The sides of a square patch along x- axis, yaxis are replaced with Minkowski and Koch curves correspondingly. By using the fractal curves as edges, asymmetry in the structure is created to excite two orthogonal modes for circular polarization (CP) operation. The indentation factors of the fractal curves are optimized for pure CP. The simulated results of the novel polyfractal antenna are demonstrated.

Keywords: Circular polarization, Fractal, Koch, Minkowski.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
750 An Approach to Polynomial Curve Comparison in Geometric Object Database

Authors: Chanon Aphirukmatakun, Natasha Dejdumrong

Abstract:

In image processing and visualization, comparing two bitmapped images needs to be compared from their pixels by matching pixel-by-pixel. Consequently, it takes a lot of computational time while the comparison of two vector-based images is significantly faster. Sometimes these raster graphics images can be approximately converted into the vector-based images by various techniques. After conversion, the problem of comparing two raster graphics images can be reduced to the problem of comparing vector graphics images. Hence, the problem of comparing pixel-by-pixel can be reduced to the problem of polynomial comparisons. In computer aided geometric design (CAGD), the vector graphics images are the composition of curves and surfaces. Curves are defined by a sequence of control points and their polynomials. In this paper, the control points will be considerably used to compare curves. The same curves after relocated or rotated are treated to be equivalent while two curves after different scaled are considered to be similar curves. This paper proposed an algorithm for comparing the polynomial curves by using the control points for equivalence and similarity. In addition, the geometric object-oriented database used to keep the curve information has also been defined in XML format for further used in curve comparisons.

Keywords: Bezier curve, Said-Ball curve, Wang-Ball curve, DP curve, CAGD, comparison, geometric object database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
749 Rational Points on Elliptic Curves 2 3 3y = x + a inF , where p 5(mod 6) is Prime

Authors: Gokhan Soydan, Musa Demirci, Nazli Yildiz Ikikardes, Ismail Naci Cangul

Abstract:

In this work, we consider the rational points on elliptic curves over finite fields Fp where p ≡ 5 (mod 6). We obtain results on the number of points on an elliptic curve y2 ≡ x3 + a3(mod p), where p ≡ 5 (mod 6) is prime. We give some results concerning the sum of the abscissae of these points. A similar case where p ≡ 1 (mod 6) is considered in [5]. The main difference between two cases is that when p ≡ 5 (mod 6), all elements of Fp are cubic residues.

Keywords: Elliptic curves over finite fields, rational points.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
748 The Role Played by Swift Change of the Stability Characteristic of Mean Flow in Bypass Transition

Authors: Dong Ming, Su Caihong

Abstract:

The scenario of bypass transition is generally described as follows: the low-frequency disturbances in the free-stream may generate long stream-wise streaks in the boundary layer, which later may trigger secondary instability, leading to rapid increase of high-frequency disturbances. Then possibly turbulent spots emerge, and through their merging, lead to fully developed turbulence. This description, however, is insufficient in the sense that it does not provide the inherent mechanism of transition that during the transition, a large number of waves with different frequencies and wave numbers appear almost simultaneously, producing sufficiently large Reynolds stress, so the mean flow profile can change rapidly from laminar to turbulent. In this paper, such a mechanism will be figured out from analyzing DNS data of transition.

Keywords: boundary layer, breakdown, bypass transition, stability, streak.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
747 Some Applications of Transition Matrices via Eigen Values

Authors: Adil AL-Rammahi

Abstract:

In this short paper, new properties of transition matrix were introduced. Eigen values for small order transition matrices are calculated in flexible method. For benefit of these properties applications of these properties were studied in the solution of Markov's chain via steady state vector, and information theory via channel entropy. The implemented test examples were promised for usages.

Keywords: Eigen value problem, transition matrix, state vector, information theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
746 Improved of Elliptic Curves Cryptography over a Ring

Authors: A. Chillali, A. Tadmori, M. Ziane

Abstract:

In this article we will study the elliptic curve defined over the ring An and we define the mathematical operations of ECC, which provides a high security and advantage for wireless applications compared to other asymmetric key cryptosystem.

Keywords: Elliptic Curves, Finite Ring, Cryptography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
745 Arabic Character Recognition Using Regression Curves with the Expectation Maximization Algorithm

Authors: Abdullah A. AlShaher

Abstract:

In this paper, we demonstrate how regression curves can be used to recognize 2D non-rigid handwritten shapes. Each shape is represented by a set of non-overlapping uniformly distributed landmarks. The underlying models utilize 2nd order of polynomials to model shapes within a training set. To estimate the regression models, we need to extract the required coefficients which describe the variations for a set of shape class. Hence, a least square method is used to estimate such modes. We then proceed by training these coefficients using the apparatus Expectation Maximization algorithm. Recognition is carried out by finding the least error landmarks displacement with respect to the model curves. Handwritten isolated Arabic characters are used to evaluate our approach.

Keywords: Shape recognition, Arabic handwritten characters, regression curves, expectation maximization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
744 The Reliability of the Improved e-N Method for Transition Prediction as Checked by PSE Method

Authors: Caihong Su

Abstract:

Transition prediction of boundary layers has always been an important problem in fluid mechanics both theoretically and practically, yet notwithstanding the great effort made by many investigators, there is no satisfactory answer to this problem. The most popular method available is so-called e-N method which is heavily dependent on experiments and experience. The author has proposed improvements to the e-N method, so to reduce its dependence on experiments and experience to a certain extent. One of the key assumptions is that transition would occur whenever the velocity amplitude of disturbance reaches 1-2% of the free stream velocity. However, the reliability of this assumption needs to be verified. In this paper, transition prediction on a flat plate is investigated by using both the improved e-N method and the parabolized stability equations (PSE) methods. The results show that the transition locations predicted by both methods agree reasonably well with each other, under the above assumption. For the supersonic case, the critical velocity amplitude in the improved e-N method should be taken as 0.013, whereas in the subsonic case, it should be 0.018, both are within the range 1-2%.

Keywords: Boundary layer, e-N method, PSE, Transition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
743 Positive Definite Quadratic Forms, Elliptic Curves and Cubic Congruences

Authors: Ahmet Tekcan

Abstract:

Let F(x, y) = ax2 + bxy + cy2 be a positive definite binary quadratic form with discriminant Δ whose base points lie on the line x = -1/m for an integer m ≥ 2, let p be a prime number and let Fp be a finite field. Let EF : y2 = ax3 + bx2 + cx be an elliptic curve over Fp and let CF : ax3 + bx2 + cx ≡ 0(mod p) be the cubic congruence corresponding to F. In this work we consider some properties of positive definite quadratic forms, elliptic curves and cubic congruences.

Keywords: Binary quadratic form, elliptic curves, cubic congruence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
742 Parametric Transition as a Spiral Curve and Its Application in Spur Gear Tooth with FEA

Authors: S. H. Yahaya, J. M. Ali, T.A. Abdullah

Abstract:

The exploration of this paper will focus on the Cshaped transition curve. This curve is designed by using the concept of circle to circle where one circle lies inside other. The degree of smoothness employed is curvature continuity. The function used in designing the C-curve is Bézier-like cubic function. This function has a low degree, flexible for the interactive design of curves and surfaces and has a shape parameter. The shape parameter is used to control the C-shape curve. Once the C-shaped curve design is completed, this curve will be applied to design spur gear tooth. After the tooth design procedure is finished, the design will be analyzed by using Finite Element Analysis (FEA). This analysis is used to find out the applicability of the tooth design and the gear material that chosen. In this research, Cast Iron 4.5 % Carbon, ASTM A-48 is selected as a gear material.

Keywords: Bézier-like cubic function, Curvature continuity, Cshapedtransition curve, Spur gear tooth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
741 MMU Simulation in Hardware Simulator Based-on State Transition Models

Authors: Zhang Xiuping, Yang Guowu, Zheng Desheng

Abstract:

Embedded hardware simulator is a valuable computeraided tool for embedded application development. This paper focuses on the ARM926EJ-S MMU, builds state transition models and formally verifies critical properties for the models. The state transition models include loading instruction model, reading data model, and writing data model. The properties of the models are described by CTL specification language, and they are verified in VIS. The results obtained in VIS demonstrate that the critical properties of MMU are satisfied in the state transition models. The correct models can be used to implement the MMU component in our simulator. In the end of this paper, the experimental results show that the MMU can successfully accomplish memory access requests from CPU.

Keywords: MMU, State transition, Model, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617