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Abstract—The curves, of which the square of the distance
between the two points equal to zero, are called minimal or isotropic
curves [4]. In this work, first, necessary and sufficient conditions to
be a Pseudo Helix, which is a special case of such curves, are
presented. Thereafter, it is proven that an isotropic curve’s position
vector and pseudo curvature satisfy a vector differential equation of
fourth order. Additionally, In view of solution of mentioned
equation, position vector of pseudo helices is obtained.
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I. INTRODUCTION

N the existing literature, we cannot see much works based

on the definition of minimal curves. The notion of a

minimal curve was due to E. Cartan (for details see [2]).
Thereafter, such kind curves were deeply studied by F. Semin
[4]. In recent years, U. Pekmen [3] wrote some
characterizations of minimal curves of constant breadth by
means of E. Cartan equations.

A minimal curve with constant pseudo curvature is called a
Pseudo Helix or Isotropic Helix. In this paper, first, we
present some characterizations of pseudo helices. Then, we
prove that every minimal (isotropic) curve’s E. Cartan
elements satisfy a vector differential equation by the method
of [6]. By this way, we write a parameterization for pseudo

helices in the Euclidean space £ .

II. PRELIMINARIES

Definition 1. Let X, be a complex analytic function of a

complex variable 7. Then the vector function

%= ixp )k,

p=0
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is called an imaginary curve, where X : C — C” and k , are

standard basis unit vectors of E° [3], [4].

Definition 2. The curves, of which the square of the distance
between the two points equal to zero, are called minimal or
isotropic curves [3].

Definition 3. Let § denote the arclength (see [4], [5]). A

curve is a minimal (isotropic) curve if and only if ds* =0.

Let X = X(¢) be a minimal (isotropic) curve in space with #
complex variable. Then above definitions follow that
ds® =dx® =0. For every regular point, we know that
ax o . .
= = X'(¢) # 0. Via this, it is safe to report that, isotropic
curves in space X = X(Z) satisfy the vector differential
equation

[F@f =o. @

By differentiation, we have X'(¢).X"(#) =0. And by trivial

calculus, it can be written that [)?'(t) /\)AC'"(t)]2 =0. This

means that it is also an isotropic vector which is perpendicular
to itself. Then

X'(t)AX"(t) =W.X'(t), whereby ¥ 0  (3)
can be written. By vector product with X"(¢), we
know W* = —[)TC "]2 and therefore

_, X'AX"
M=t @)
=n]2
V- [31]
For another complex variable ¢, t=f(t),
dj
j: = f # 0 we may write
dt
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_dr', )

¥ =Xf, ¥=X".(f) +X.f". The equality
() =X%"(f)" can be

where

written in the form

1 1
—[()?")Z]Zdt* =—[()?")2]Zdt. If we choose 7 such that
(X¥)* = =1, the by integration
! L
=s= - [Gny? Jeae ©)
fy

is obtained. It is called the pseudo arclength of the minimal
curve which is invariant with respect to parameter # (see [4]).

For each point X of the minimal curve, E. Cartan frame is

defined (for well-known complex number i? =-1) as
follows (see [1], [4]):

€, =X,
€, =ix",
B .- e
e3——3x + X7, where f=(X")",
-
Lo L, j+k=4, @
€, = .
0, j+k=4.
€, Ne =i€,, 5,
det(e,,e,,e;) =i

! 1
for j,k=123. s= J.— [(55")2 ]4 dt is a pseudo arclength,
1}
also invariant with respect to parameter 7. Suffice it to say
that, differentiation of () yields that

e =—ie,
e, =i(ke, +e,) (8)
e; = —ike,

where k :g is called pseudo curvature of the minimal

curve X = X(s). These equations can be used if the minimal

. 4
curve is at least of class C".
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III. CHARACTERIZATIONS OF [SOTROPIC HELICES IN THE
EUCLIDEAN SPACE

Definition 4. An isotropic curve, whose pseudo curvature is

constant, is called a Pseudo Helix or Isotropic Helix in E 3
(see [4])).

Theorem 1. Let X = X(§) be an isotropic curve with a pseudo

arclength in £°. X(s) is a pseudo helix (isotropic helix) if

and only if

d’x d’% d*x
i) det , , =0.
) (ds2 ds’ ds4)

de, d’e, d’e
i) det(—-,——",—2)=0
" (ds ds*  ds’ )

2> 3>

iii) det(@ de, d 63) =0

ds ~ ds*’ ds’

Proof.  First, let us form following differentiations with
respect to S :

=1
I

€,
X" =—ie,,
o ©)
X" =ke +e,,
x=ke —2ike,.
If X = X(s) is a pseudo helix, then we write
S P A
det(df’d?’d f)= kK0 1/=0. (0)
A S S
0 -2k 0
Conversely, let the statement (i) holds. Then
d’% d’% d*x
det(C 24X 9y k=0, i

ds®’ ds® ds*

dk .
Thus, — = 0 and k = constant. This result completes the
A

proof of (i). If we take X = él, proof of (ii) can be easily
deduced. Now, let us form

e; =—ike,,
— 2= - -
e; =ke —ike, +ke,,

& =3kk'd, — (2ik* +ik")2, + 2k &,

(12)

If X = X(s) is a pseudo helix, we have
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de, d*é, d'¢

det , ,—>)=0. 13
(ds ds’ s3) (1
Conversely, let us form the determinant
B d% d's 0 —ik 0
def* 2= 2= 0= ik "
ST e 2 -k 2k
=—ik’k =0.
, , dk
By virtue of (14), we arrive d_= 0 and
A

k = constant. Since, X = X(s) is a pseudo helix.

IV. VECTOR DIFFERENTIAL EQUATION OF FOURTH ORDER
SATISFIED BY ISOTROPIC CURVES

Theorem 2. Let X = X(S) be an isotropic curve with a

pseudo arclength in FE 3. Position vector of and pseudo

curvature X satisfy a vector differential equation of fourth
order.

Proof. Let X =X(s) be an isotropic curve with a pseudo

arclength and pseudo curvature k in FE 3, Considering E.

Cartan equations, we write that

(15)

and

(16)

Differentiating (16) with respect to s and using (15), we have

e —ke =0. 17)
Taking X = é1 , it follows that
x"—kx =0 (18)

Formula (18) proves the theorem as desired.

This differential equation is a characterization for the isotropic
curve X = X(s). It is well-known that, solving equation (18)
with elementary methods is not easy. Let us suppose that
X =X(s) = (x,(8),x,(8),x;(s)) is a pseudo helix. Then

=0,

(19)
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Therefore, we have parameterization of the pseudo helix as

S3 S2
il?+/127+}t3s+/14,

3 2

?"‘772?"‘773*9‘”749
3 2

S N
ﬂ1?+ﬂ27+ﬂ35+ﬂ4

xX=Xx(s)=|n (20)

where 4,77, and g, for 1 <i <4 are real numbers. Now,

we give the following theorem.

Theorem 3. Position vector of a pseudo helix with pseudo

arclength and pseudo curvature k in £ 3 can be composed by
the parameterization (20).
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