**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**33030

##### The Number of Rational Points on Elliptic Curves and Circles over Finite Fields

**Authors:**
Betül Gezer,
Ahmet Tekcan,
Osman Bizim

**Abstract:**

**Keywords:**
Elliptic curves over finite fields,
rational points on
elliptic curves and circles.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1079856

**References:**

[1] G.E. Andrews. Number Theory. Dover Pub., 1971.

[2] L.E. Dickson. Criteria for irreducibility of functions in a finite field. Bull, Amer. Math. Soc. 13(1906), 1-8.

[3] B. Gezer, H. ├ûzden, A. Tekcan and O. Bizim. The Number of Rational Points on Elliptic Curves y2 = x3+b2 over Finite Fields. IInternational Journal of Mathematics Sciences 1(3)(2007), 178-184.

[4] L.J. Mordell. On the Rational Solutions of the Indeterminate Equations of the Third and Fourth Degrees. Proc. Cambridge Philos. Soc. 21(1922), 179-192.

[5] R. Schoof. Counting Points on Elliptic Curves Over Finite Fields. Journal de Theorie des Nombres de Bordeaux, 7(1995), 219-254.

[6] J.H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, 1986.

[7] J.H. Silverman and J. Tate. Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics, Springer, 1992.

[8] T. Skolem. Zwei Satze ├╝ber kubische Kongruenzen. Norske Vid. Selsk. Forhdl. 10(1937) 89-92.

[9] T. Skolem. On a certain connection between the discriminant of a polynomial and the number of its irreducible factors mod p. Norsk Math. Tidsskr. 34(1952) 81-85.

[10] L. Stickelberger. ├£ber eine neue Eigenschaft der Diskriminanten alge- braischer Zahlkörper. Verhand. I, Internat. Math. Kongress Z┬¿urich, 1897, pp. 182-193.

[11] Z.H. Sun. Cubic and quartic congruences modulo a prime. Journal of Number Theory 102(2003), 41-89.

[12] Z.H. Sun. Cubic residues and binary quadratic forms. Journal of Number Theory, to be printed.

[13] A. Tekcan. The Elliptic Curves y2 = x3 − t2x over Fp. International Journal of Mathematics Sciences 1(3)(2007), 165-171.

[14] J.P. Tignol. Galois Theory of Algebraic Equations. World Scientific Publishing Co., Singapore, New Jersey, 2001, pp. 38-107.

[15] L.C. Washington. Elliptic Curves, Number Theory and Cryptography. Chapman&Hall/CRC, Boca London, New York, Washington DC, 2003.

[16] A. Wiles. Modular Elliptic Curves and Fermat-s Last Theorem. Ann. of Math. 141(3)(1995), 443-551.