Search results for: state space equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4375

Search results for: state space equations

4105 Some Algebraic Properties of Universal and Regular Covering Spaces

Authors: Ahmet Tekcan

Abstract:

Let X be a connected space, X be a space, let p : X -→ X be a continuous map and let (X, p) be a covering space of X. In the first section we give some preliminaries from covering spaces and their automorphism groups. In the second section we derive some algebraic properties of both universal and regular covering spaces (X, p) of X and also their automorphism groups A(X, p).

Keywords: covering space, universal covering, regular covering, fundamental group, automorphism group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
4104 Comparison of Two Types of Preconditioners for Stokes and Linearized Navier-Stokes Equations

Authors: Ze-Jun Hu, Ting-Zhu Huang, Ning-Bo Tan

Abstract:

To solve saddle point systems efficiently, several preconditioners have been published. There are many methods for constructing preconditioners for linear systems from saddle point problems, for instance, the relaxed dimensional factorization (RDF) preconditioner and the augmented Lagrangian (AL) preconditioner are used for both steady and unsteady Navier-Stokes equations. In this paper we compare the RDF preconditioner with the modified AL (MAL) preconditioner to show which is more effective to solve Navier-Stokes equations. Numerical experiments indicate that the MAL preconditioner is more efficient and robust, especially, for moderate viscosities and stretched grids in steady problems. For unsteady cases, the convergence rate of the RDF preconditioner is slightly faster than the MAL perconditioner in some circumstances, but the parameter of the RDF preconditioner is more sensitive than the MAL preconditioner. Moreover the convergence rate of the MAL preconditioner is still quite acceptable. Therefore we conclude that the MAL preconditioner is more competitive than the RDF preconditioner. These experiments are implemented with IFISS package. 

Keywords: Navier-Stokes equations, Krylov subspace method, preconditioner, dimensional splitting, augmented Lagrangian preconditioner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
4103 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid

Authors: Win Ko Ko, A. N. Temnov

Abstract:

The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.

Keywords: Hydrodynamic coefficients, instability region, nonlinear oscillations, resonance frequency, two-layered liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 527
4102 Thermal and Mechanical Buckling of Short and Long Functionally Graded Cylindrical Shells Using First Order Shear Deformation Theory

Authors: O. Miraliyari, M.M. Najafizadeh, A.R. Rahmani, A. Momeni Hezaveh

Abstract:

This paper presents the buckling analysis of short and long functionally graded cylindrical shells under thermal and mechanical loads. The shell properties are assumed to vary continuously from the inner surface to the outer surface of the shell. The equilibrium and stability equations are derived using the total potential energy equations, Euler equations and first order shear deformation theory assumptions. The resulting equations are solved for simply supported boundary conditions. The critical temperature and pressure loads are calculated for both short and long cylindrical shells. Comparison studies show the effects of functionally graded index, loading type and shell geometry on critical buckling loads of short and long functionally graded cylindrical shells.

Keywords: Buckling, Functionally graded materials, Short and long cylindrical shell, Thermal and mechanical loads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
4101 Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.

Keywords: Smart structure, Finite element method, State spacemodel, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
4100 Intellectual Property Implications in the Context of Space Exploration with a Focus on European Space Agency Rules and Regulations

Authors: Linda Ana Maria Ungureanu

Abstract:

This article details the manner in which European law establishes the protection and ownership rights over works created in off-world environments or in relation to space exploration. In this sense, the analysis is focused on identifying the legal treatment applicable to creative works based on the provisions regulated under the International Space Treaties, on one side, and the International Intellectual Property (IP) Treaties and subsequent EU legislation, on the other side, with a special interest on European Space Agency (ESA) Rules and Regulations. Furthermore, the article analyses the manner in which ESA regulates the ownership regime applicable for creative works, taking into account the relationship existing between the inventor/creator and ESA and the environment in which the creative work was developed. Moreover, the article sets a series of de lege ferenda proposals for the regulation of IP matters in the context of space exploration, the main purpose being to identify legal measures and steps that need to be taken in order to ensure that creative activities are fostered and understood as a significant catalyst for encouraging space exploration.

Keywords: ESA guidelines, EU legislation, intellectual property law, international IP treaties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 376
4099 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
4098 On Some Properties of Interval Matrices

Authors: K. Ganesan

Abstract:

By using a new set of arithmetic operations on interval numbers, we discuss some arithmetic properties of interval matrices which intern helps us to compute the powers of interval matrices and to solve the system of interval linear equations.

Keywords: Interval arithmetic, Interval matrix, linear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005
4097 Approximate Solution to Non-Linear Schrödinger Equation with Harmonic Oscillator by Elzaki Decomposition Method

Authors: Emad K. Jaradat, Ala’a Al-Faqih

Abstract:

Nonlinear Schrödinger equations are regularly experienced in numerous parts of science and designing. Varieties of analytical methods have been proposed for solving these equations. In this work, we construct an approximate solution for the nonlinear Schrodinger equations, with harmonic oscillator potential, by Elzaki Decomposition Method (EDM). To illustrate the effects of harmonic oscillator on the behavior wave function, nonlinear Schrodinger equation in one and two dimensions is provided. The results show that, it is more perfectly convenient and easy to apply the EDM in one- and two-dimensional Schrodinger equation.

Keywords: Non-linear Schrodinger equation, Elzaki decomposition method, harmonic oscillator, one and two- dimensional Schrodinger equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856
4096 Comparing the Efficiency of Simpson’s 1/3 and 3/8 Rules for the Numerical Solution of First Order Volterra Integro-Differential Equations

Authors: N. M. Kamoh, D. G. Gyemang, M. C. Soomiyol

Abstract:

This paper compared the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. In developing the solution, collocation approximation method was adopted using the shifted Legendre polynomial as basis function. A block method approach is preferred to the predictor corrector method for being self-starting. Experimental results confirmed that the Simpson’s 3/8 rule is more efficient than the Simpson’s 1/3 rule.

Keywords: Collocation shifted Legendre polynomials, Simpson’s rule and Volterra integro-differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
4095 Phase Noise Impact on BER in Space Communication

Authors: Ondrej Baran, Miroslav Kasal, Petr Vagner, Tomas Urbanec

Abstract:

This paper deals with the modeling and the evaluation of a multiplicative phase noise influence on the bit error ratio in a general space communication system. Our research is focused on systems with multi-state phase shift keying modulation techniques and it turns out, that the phase noise significantly affects the bit error rate, especially for higher signal to noise ratios. These results come from a system model created in Matlab environment and are shown in a form of constellation diagrams and bit error rate dependencies. The change of a user data bit rate is also considered and included into simulation results. Obtained outcomes confirm theoretical presumptions.

Keywords: Additive thermal noise, AWGN, BER, bit error rate, multiplicative phase noise, phase shift keying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4553
4094 On Fuzzy Weakly-Closed Sets

Authors: J. Mahanta, P.K. Das

Abstract:

A new class of fuzzy closed sets, namely fuzzy weakly closed set in a fuzzy topological space is introduced and it is established that this class of fuzzy closed sets lies between fuzzy closed sets and fuzzy generalized closed sets. Alongwith the study of fundamental results of such closed sets, we define and characterize fuzzy weakly compact space and fuzzy weakly closed space.

Keywords: Fuzzy weakly-closed set, fuzzy weakly-closed space, fuzzy weakly-compactness, MSC: 54A40, 54D30.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
4093 Solitary Wave Solutions for Burgers-Fisher type Equations with Variable Coefficients

Authors: Amit Goyal, Alka, Rama Gupta, C. Nagaraja Kumar

Abstract:

We have solved the Burgers-Fisher (BF) type equations, with time-dependent coefficients of convection and reaction terms, by using the auxiliary equation method. A class of solitary wave solutions are obtained, and some of which are derived for the first time. We have studied the effect of variable coefficients on physical parameters (amplitude and velocity) of solitary wave solutions. In some cases, the BF equations could be solved for arbitrary timedependent coefficient of convection term.

Keywords: Solitary wave solution, Variable coefficient Burgers- Fisher equation, Auxiliary equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
4092 A Self Adaptive Genetic Based Algorithm for the Identification and Elimination of Bad Data

Authors: A. A. Hossam-Eldin, E. N. Abdallah, M. S. El-Nozahy

Abstract:

The identification and elimination of bad measurements is one of the basic functions of a robust state estimator as bad data have the effect of corrupting the results of state estimation according to the popular weighted least squares method. However this is a difficult problem to handle especially when dealing with multiple errors from the interactive conforming type. In this paper, a self adaptive genetic based algorithm is proposed. The algorithm utilizes the results of the classical linearized normal residuals approach to tune the genetic operators thus instead of making a randomized search throughout the whole search space it is more likely to be a directed search thus the optimum solution is obtained at very early stages(maximum of 5 generations). The algorithm utilizes the accumulating databases of already computed cases to reduce the computational burden to minimum. Tests are conducted with reference to the standard IEEE test systems. Test results are very promising.

Keywords: Bad Data, Genetic Algorithms, Linearized Normal residuals, Observability, Power System State Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
4091 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters

Authors: S.A. Alqallaf, S.A. Al-Mawsawi, A. Haider

Abstract:

In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.

Keywords: UPFC, Decoupled model, Load flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
4090 Adaptive Transmission Scheme Based on Channel State in Dual-Hop System

Authors: Seung-Jun Yu, Yong-Jun Kim, Jung-In Baik, Hyoung-Kyu Song

Abstract:

In this paper, a dual-hop relay based on channel state is studied. In the conventional relay scheme, a relay uses the same modulation method without reference to channel state. But, a relay uses an adaptive modulation method with reference to channel state. If the channel state is poor, a relay eliminates latter 2 bits and uses Quadrature Phase Shift Keying (QPSK) modulation. If channel state is good, a relay modulates the received symbols with 16-QAM symbols by using 4 bits. The performance of the proposed scheme for Symbol Error Rate (SER) and throughput is analyzed.

Keywords: Adaptive transmission, channel state, dual-hop, hierarchical modulation, relay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
4089 Matrix Valued Difference Equations with Spectral Singularities

Authors: Serifenur Cebesoy, Yelda Aygar, Elgiz Bairamov

Abstract:

In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial-type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities.

Keywords: Difference Equations, Jost Functions, Asymptotics, Eigenvalues, Continuous Spectrum, Spectral Singularities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
4088 Numerical Simulation of Tidal Currents in Persian Gulf

Authors: Ameleh Aghajanloo, Moharam Dolatshahi Pirouz, Masoud Montazeri Namin

Abstract:

In this paper, a two-dimensional (2D) numerical model for the tidal currents simulation in Persian Gulf is presented. The model is based on the depth averaged equations of shallow water which consider hydrostatic pressure distribution. The continuity equation and two momentum equations including the effects of bed friction, the Coriolis effects and wind stress have been solved. To integrate the 2D equations, the Alternative Direction Implicit (ADI) technique has been used. The base of equations discritization was finite volume method applied on rectangular mesh. To evaluate the model validation, a dam break case study including analytical solution is selected and the comparison is done. After that, the capability of the model in simulation of tidal current in a real field is represented by modeling the current behavior in Persian Gulf. The tidal fluctuations in Hormuz Strait have caused the tidal currents in the area of study. Therefore, the water surface oscillations data at Hengam Island on Hormoz Strait are used as the model input data. The check point of the model is measured water surface elevations at Assaluye port. The comparison between the results and the acceptable agreement of them showed the model ability for modeling marine hydrodynamic.

Keywords: Persian Gulf, Tidal Currents, Shallow Water Equations, Finite Volumes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
4087 The Orlicz Space of the Entire Sequence Fuzzy Numbers Defined by Infinite Matrices

Authors: N.Subramanian, C.Murugesan

Abstract:

This paper is devoted to the study of the general properties of Orlicz space of entire sequence of fuzzy numbers by using infinite matrices.

Keywords: Fuzzy numbers, infinite matrix, Orlicz space, entiresequence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163
4086 Ultimately Bounded Takagi-Sugeno Fuzzy Management in Urban Traffic Stream Mechanism: Multi-Agent Modeling Approach

Authors: Reza Ghasemi, Negin Amiri Hazaveh

Abstract:

In this paper, control methodology based on the selection of the type of traffic light and the period of the green phase to accomplish an optimum balance at intersections is proposed. This balance should be flexible to the static behavior of time, and randomness in a traffic situation; the goal of the proposed method is to reduce traffic volume in transportation, the average delay for each vehicle, and control over the crash of cars. The proposed method was specifically investigated at the intersection through an appropriate timing of traffic lights by sampling a multi-agent system. It consists of a large number of intersections, each of which is considered as an independent agent that exchanges information with each other, and the stability of each agent is provided separately. The robustness against uncertainties, scalability, and stability of the closed-loop overall system are the main merits of the proposed methodology. The simulation results show that the fuzzy intelligent controller in this multi-factor system which is a Takagi-Sugeno (TS) fuzzy is more useful than scheduling in the fixed-time method and it reduces the lengths of vehicles queuing.

Keywords: Fuzzy intelligent controller, traffic-light control, multi-agent systems, state space equations, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 458
4085 Numerical Analysis of Rapid Gas Decompression in Pure Nitrogen using 1D and 3D Transient Mathematical Models of Gas Flow in Pipes

Authors: Evgeniy Burlutskiy

Abstract:

The paper presents a numerical investigation on the rapid gas decompression in pure nitrogen which is made by using the one-dimensional (1D) and three-dimensional (3D) mathematical models of transient compressible non-isothermal fluid flow in pipes. A 1D transient mathematical model of compressible thermal multicomponent fluid mixture flow in pipes is presented. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multicomponent gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. This model is successfully validated on the experimental data [1] and shows a good agreement with measurements. A 3D transient mathematical model of compressible thermal single-component gas flow in pipes, which is built by using the CFD Fluent code (ANSYS), is presented in the paper. The set of unsteady Reynolds-averaged conservation equations for gas phase is solved. Thermo-physical properties of single-component gas are calculated by solving the Real Gas Equation of State (EOS) model. The simplest case of gas decompression in pure nitrogen is simulated using both 1D and 3D models. The ability of both models to simulate the process of rapid decompression with a high order of agreement with each other is tested. Both, 1D and 3D numerical results show a good agreement between each other. The numerical investigation shows that 3D CFD model is very helpful in order to validate 1D simulation results if the experimental data is absent or limited.

Keywords: Mathematical model, Rapid Gas Decompression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
4084 Simulation of a Multi-Component Transport Model for the Chemical Reaction of a CVD-Process

Authors: J. Geiser, R. Röhle

Abstract:

In this paper we present discretization and decomposition methods for a multi-component transport model of a chemical vapor deposition (CVD) process. CVD processes are used to manufacture deposition layers or bulk materials. In our transport model we simulate the deposition of thin layers. The microscopic model is based on the heavy particles, which are derived by approximately solving a linearized multicomponent Boltzmann equation. For the drift-process of the particles we propose diffusionreaction equations as well as for the effects of heat conduction. We concentrate on solving the diffusion-reaction equation with analytical and numerical methods. For the chemical processes, modelled with reaction equations, we propose decomposition methods and decouple the multi-component models to simpler systems of differential equations. In the numerical experiments we present the computational results of our proposed models.

Keywords: Chemical reactions, chemical vapor deposition, convection-diffusion-reaction equations, decomposition methods, multi-component transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
4083 Reclaiming Pedestrian Space from Car Dominated Neighborhoods

Authors: Andreas L. Savvides

Abstract:

For a long time as a result of accommodating car traffic, planning ideologies in the past put a low priority on public space, pedestrianism and the role of city space as a meeting place for urban dwellers. In addition, according to authors such as Jan Gehl, market forces and changing architectural perceptions began to shift the focus of planning practice from the integration of public space in various pockets around the contemporary city to individual buildings. Eventually, these buildings have become increasingly more isolated and introverted and have turned their backs to the realm of the public space adjoining them. As a result of this practice, the traditional function of public space as a social forum for city dwellers has in many cases been reduced or even phased out. Author Jane Jacobs published her seminal book “The Death and Life of Great American Cities" more than fifty years ago, but her observations and predictions at the time still ring true today, where she pointed out how the dramatic increase in car traffic and its accommodation by the urban planning ideology that was brought about by the Modern movement has prompted a separation of the uses of the city. At the same time it emphasizes free standing buildings that threaten urban space and city life and result in underutilized and lifeless urban cores. In this discussion context, the aim of this paper is to showcase a reversal of just such a situation in the case of the Dasoupolis neighborhood in Strovolos, Cyprus, where enlightened urban design practice has see the reclamation of pedestrian space in a car dominated area.

Keywords: Urban Design, Public Space, Right to the City, Accessibility, Mobility

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
4082 Space Charge Distribution in 22 kV XLPE Insulated Cable by Using Pulse Electroacoustic Measurement Technique

Authors: N. Ruangkajonmathee, R. Thiamsri, B. Marungsri

Abstract:

This paper presents the experimental results on space charge distribution in cross-linked polyethylene (XLPE) insulating material for 22 kV power distribution system cable by using pulse electroacoustic measurement technique (PEA). Numbers of XLPE insulating material ribbon having thickness 60 μm taken from unused 22 kV high voltage cable were used as specimen in this study. DC electric field stress was applied to test specimen at room temperature (25°C). Four levels of electric field stress, 25 kV/mm, 50 kV/mm, 75 kV/mm and 100 kV/mm, were used. In order to investigate space charge distribution characteristic, space charge distribution characteristics were measured after applying electric field stress 15 min, 30 min and 60 min, respectively. The results show that applied time and magnitude of dc electric field stress play an important role to the formation of space charge.

Keywords: Space charge distribution, pulsed electroacoustic(PEA) technique, cross-linked polyethylene (XLPE), DC electrical fields stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3239
4081 Unsteady Boundary Layer Flow over a Stretching Sheet in a Micropolar Fluid

Authors: Roslinda Nazar, Anuar Ishak, Ioan Pop

Abstract:

Unsteady boundary layer flow of an incompressible micropolar fluid over a stretching sheet when the sheet is stretched in its own plane is studied in this paper. The stretching velocity is assumed to vary linearly with the distance along the sheet. Two equal and opposite forces are impulsively applied along the x-axis so that the sheet is stretched, keeping the origin fixed in a micropolar fluid. The transformed unsteady boundary layer equations are solved numerically using the Keller-box method for the whole transient from the initial state to final steady-state flow. Numerical results are obtained for the velocity and microrotation distributions as well as the skin friction coefficient for various values of the material parameter K. It is found that there is a smooth transition from the small-time solution to the large-time solution.

Keywords: Boundary layer, micropolar fluid, stretching surface, unsteady flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
4080 A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations

Authors: Vineet K. Srivastava, Mukesh K. Awasthi, Mohammad Tamsir

Abstract:

A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.

Keywords: Burgers’ equation, Implicit Finite-difference method, Newton’s method, Gauss elimination with partial pivoting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5887
4079 Unsupervised Texture Segmentation via Applying Geodesic Active Regions to Gaborian Feature Space

Authors: Yuan He, Yupin Luo, Dongcheng Hu

Abstract:

In this paper, we propose a novel variational method for unsupervised texture segmentation. We use a Gabor filter bank to extract texture features. Some of the filtered channels form a multidimensional Gaborian feature space. To avoid deforming contours directly in a vector-valued space we use a Gaussian mixture model to describe the statistical distribution of this space and get the boundary and region probabilities. Then a framework of geodesic active regions is applied based on them. In the end, experimental results are presented, and show that this method can obtain satisfied boundaries between different texture regions.

Keywords: Texture segmentation, Gabor filter, snakes, Geodesicactive regions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
4078 Content-Based Color Image Retrieval Based On 2-D Histogram and Statistical Moments

Authors: Khalid Elasnaoui, Brahim Aksasse, Mohammed Ouanan

Abstract:

In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.

Keywords: 2-D histogram, Statistical moments, Indexing, Similarity distance, Histograms intersection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
4077 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries

Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed

Abstract:

This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.

Keywords: Image segmentation, hierarchical analysis, 2-D histogram, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
4076 Solving of the Fourth Order Differential Equations with the Neumann Problem

Authors: Marziyeh Halimi, Roushanak Lotfikar, Simin Mansouri Borojeni

Abstract:

In this paper we considered the Neumann problem for the fourth order differential equation. First we define the weighted Sobolev space 2 Wα and generalized solution for this equation. Then we consider the existence and uniqueness of the generalized solution, as well as give the description of the spectrum and of the domain of definition of the corresponding operator.

Keywords: Neumann problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.2000 mathematic subject classification: 34A05, 34A30.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386