Search results for: signals
682 A New Approaches for Seismic Signals Discrimination
Authors: M. Benbrahim, K. Benjelloun, A. Ibenbrahim, M. Kasmi, E. Ardil
Abstract:
The automatic discrimination of seismic signals is an important practical goal for the earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present new techniques for seismic signals classification: local, regional and global discrimination. These techniques were tested on seismic signals from the data base of the National Geophysical Institute of the Centre National pour la Recherche Scientifique et Technique (Morocco) by using the Moroccan software for seismic signals analysis.
Keywords: Seismic signals, local discrimination, regionaldiscrimination, global discrimination, Moroccan software for seismicsignals analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557681 Determination of Optimum Length of Framesand Number of Vectors to Compress ECG Signals
Authors: Rafet Akdeniz, Pınar Tüfekçi, B.Sıddık Yarman
Abstract:
In this study, to compress ECG signals, KLT (Karhunen- Loeve Transform) method has been used. The purpose of this method is to perform effective ECG coding by a correlation between the length of frames and the number of vectors of ECG signals.Keywords: ECG Compression, EKG Compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485680 Signals from the Rocks
Authors: Ernst D. Schmitter
Abstract:
There is increasing evidence that earthquakes produce electromagnetic signals observable at the surface in the extremely low to very low freqency (ELF - VLF) range often in advance to the main event. These precursors are candidates for prediction purposes. Laboratory experiments con´¼ürm that material under load emits an electromagnetic signature, the detailed generation mechanisms how- ever are not well understood yet.Keywords: Earthquakes, ELF, EM signals from material under load, signal propagation in conductors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614679 Classification of Radio Communication Signals using Fuzzy Logic
Authors: Zuzana Dideková, Beata Mikovičová
Abstract:
Characterization of radio communication signals aims at automatic recognition of different characteristics of radio signals in order to detect their modulation type, the central frequency, and the level. Our purpose is to apply techniques used in image processing in order to extract pertinent characteristics. To the single analysis, we add several rules for checking the consistency of hypotheses using fuzzy logic. This allows taking into account ambiguity and uncertainty that may remain after the extraction of individual characteristics. The aim is to improve the process of radio communications characterization.Keywords: fuzzy classification, fuzzy inference system, radio communication signals, telecommunications
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971678 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.
Keywords: Sound Detection, Impulsive Signal, Background Noise, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334677 Change Detection and Non Stationary Signals Tracking by Adaptive Filtering
Authors: Mounira RouaÐùnia, Noureddine Doghmane
Abstract:
In this paper we consider the problem of change detection and non stationary signals tracking. Using parametric estimation of signals based on least square lattice adaptive filters we consider for change detection statistical parametric methods using likelihood ratio and hypothesis tests. In order to track signals dynamics, we introduce a compensation procedure in the adaptive estimation. This will improve the adaptive estimation performances and fasten it-s convergence after changes detection.Keywords: Change detection, Hypothesis test, likelihood ratioleast square lattice adaptive filters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634676 Recognition of Isolated Speech Signals using Simplified Statistical Parameters
Authors: Abhijit Mitra, Bhargav Kumar Mitra, Biswajoy Chatterjee
Abstract:
We present a novel scheme to recognize isolated speech signals using certain statistical parameters derived from those signals. The determination of the statistical estimates is based on extracted signal information rather than the original signal information in order to reduce the computational complexity. Subtle details of these estimates, after extracting the speech signal from ambience noise, are first exploited to segregate the polysyllabic words from the monosyllabic ones. Precise recognition of each distinct word is then carried out by analyzing the histogram, obtained from these information.Keywords: Isolated speech signals, Block overlapping technique, Positive peaks, Histogram analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427675 Blind Source Separation based on the Estimation for the Number of the Blind Sources under a Dynamic Acoustic Environment
Authors: Takaaki Ishibashi
Abstract:
Independent component analysis can estimate unknown source signals from their mixtures under the assumption that the source signals are statistically independent. However, in a real environment, the separation performance is often deteriorated because the number of the source signals is different from that of the sensors. In this paper, we propose an estimation method for the number of the sources based on the joint distribution of the observed signals under two-sensor configuration. From several simulation results, it is found that the number of the sources is coincident to that of peaks in the histogram of the distribution. The proposed method can estimate the number of the sources even if it is larger than that of the observed signals. The proposed methods have been verified by several experiments.Keywords: blind source separation, independent component analysys, estimation for the number of the blind sources, voice activity detection, target extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302674 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time
Authors: Jyh-Da Wei, Hsin-Chen Tsai
Abstract:
This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417673 Classification of Right and Left-Hand Movement Using Multi-Resolution Analysis Method
Authors: Nebi Gedik
Abstract:
The aim of the brain-computer interface studies on electroencephalogram (EEG) signals containing motor imagery is to extract the effective features that will provide the highest possible classification accuracy for the detection of the desired motor movement. However, achieving this goal is difficult as the most suitable frequency band and time frame vary from subject to subject. In this study, the classification success of the two-feature data obtained from raw EEG signals and the coefficients of the multi-resolution analysis method applied to the EEG signals were analyzed comparatively. The method was applied to several EEG channels (C3, Cz and C4) signals obtained from the EEG data set belonging to the publicly available BCI competition III.
Keywords: Motor imagery, EEG, wave atom transform, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589672 Evaluating Spectral Relationships between Signals by Removing the Contribution of a Common, Periodic Source A Partial Coherence-based Approach
Authors: Antonio Mauricio F. L. Miranda de Sá
Abstract:
Partial coherence between two signals removing the contribution of a periodic, deterministic signal is proposed for evaluating the interrelationship in multivariate systems. The estimator expression was derived and shown to be independent of such periodic signal. Simulations were used for obtaining its critical value, which were found to be the same as those for Gaussian signals, as well as for evaluating the technique. An Illustration with eletroencephalografic (EEG) signals during photic stimulation is also provided. The application of the proposed technique in both simulation and real EEG data indicate that it seems to be very specific in removing the contribution of periodic sources. The estimate independence of the periodic signal may widen partial coherence application to signal analysis, since it could be used together with simple coherence to test for contamination in signals by a common, periodic noise source.
Keywords: Partial coherence, periodic input, spectral analysis, statistical signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464671 Piecewise Interpolation Filter for Effective Processing of Large Signal Sets
Authors: Anatoli Torokhti, Stanley Miklavcic
Abstract:
Suppose KY and KX are large sets of observed and reference signals, respectively, each containing N signals. Is it possible to construct a filter F : KY → KX that requires a priori information only on few signals, p N, from KX but performs better than the known filters based on a priori information on every reference signal from KX? It is shown that the positive answer is achievable under quite unrestrictive assumptions. The device behind the proposed method is based on a special extension of the piecewise linear interpolation technique to the case of random signal sets. The proposed technique provides a single filter to process any signal from the arbitrarily large signal set. The filter is determined in terms of pseudo-inverse matrices so that it always exists.Keywords: Wiener filter, filtering of stochastic signals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412670 Lower Bound of Time Span Product for a General Class of Signals in Fractional Fourier Domain
Authors: Sukrit Shankar, Chetana Shanta Patsa, Jaydev Sharma
Abstract:
Fractional Fourier Transform is a generalization of the classical Fourier Transform which is often symbolized as the rotation in time- frequency plane. Similar to the product of time and frequency span which provides the Uncertainty Principle for the classical Fourier domain, there has not been till date an Uncertainty Principle for the Fractional Fourier domain for a generalized class of finite energy signals. Though the lower bound for the product of time and Fractional Fourier span is derived for the real signals, a tighter lower bound for a general class of signals is of practical importance, especially for the analysis of signals containing chirps. We hence formulate a mathematical derivation that gives the lower bound of time and Fractional Fourier span product. The relation proves to be utmost importance in taking the Fractional Fourier Transform with adaptive time and Fractional span resolutions for a varied class of complex signals.
Keywords: Fractional Fourier Transform, uncertainty principle, Fractional Fourier Span, amplitude, phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192669 Wavelet Compression of ECG Signals Using SPIHT Algorithm
Authors: Mohammad Pooyan, Ali Taheri, Morteza Moazami-Goudarzi, Iman Saboori
Abstract:
In this paper we present a novel approach for wavelet compression of electrocardiogram (ECG) signals based on the set partitioning in hierarchical trees (SPIHT) coding algorithm. SPIHT algorithm has achieved prominent success in image compression. Here we use a modified version of SPIHT for one dimensional signals. We applied wavelet transform with SPIHT coding algorithm on different records of MIT-BIH database. The results show the high efficiency of this method in ECG compression.
Keywords: ECG compression, wavelet, SPIHT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398668 Control Signal from EOG Analysis and Its Application
Authors: Myoung Ro Kim, Gilwon Yoon
Abstract:
A game using electro-oculography (EOG) as control signal was introduced in this study. Various EOG signals are generated by eye movements. Even though EOG is a quite complex type of signal, distinct and separable EOG signals could be classified from horizontal and vertical, left and right eye movements. Proper signal processing was incorporated since EOG signal has very small amplitude in the order of micro volts and contains noises influenced by external conditions. Locations of the electrodes were set to be above and below as well as left and right positions of the eyes. Four control signals of up, down, left and right were generated. A microcontroller processed signals in order to simulate a DDR game. A LCD display showed arrows falling down with four different head directions. This game may be used as eye exercise for visual concentration and acuity. Our proposed EOG control signal can be utilized in many other applications of human machine interfaces such as wheelchair, computer keyboard and home automation.
Keywords: DDR game, EOG, eye movement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4795667 Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier
Authors: I. Omerhodzic, S. Avdakovic, A. Nuhanovic, K. Dizdarevic
Abstract:
In this paper, a wavelet-based neural network (WNN) classifier for recognizing EEG signals is implemented and tested under three sets EEG signals (healthy subjects, patients with epilepsy and patients with epileptic syndrome during the seizure). First, the Discrete Wavelet Transform (DWT) with the Multi-Resolution Analysis (MRA) is applied to decompose EEG signal at resolution levels of the components of the EEG signal (δ, θ, α, β and γ) and the Parseval-s theorem are employed to extract the percentage distribution of energy features of the EEG signal at different resolution levels. Second, the neural network (NN) classifies these extracted features to identify the EEGs type according to the percentage distribution of energy features. The performance of the proposed algorithm has been evaluated using in total 300 EEG signals. The results showed that the proposed classifier has the ability of recognizing and classifying EEG signals efficiently.
Keywords: Epilepsy, EEG, Wavelet transform, Energydistribution, Neural Network, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975666 Learning an Overcomplete Dictionary using a Cauchy Mixture Model for Sparse Decay
Authors: E. S. Gower, M. O. J. Hawksford
Abstract:
An algorithm for learning an overcomplete dictionary using a Cauchy mixture model for sparse decomposition of an underdetermined mixing system is introduced. The mixture density function is derived from a ratio sample of the observed mixture signals where 1) there are at least two but not necessarily more mixture signals observed, 2) the source signals are statistically independent and 3) the sources are sparse. The basis vectors of the dictionary are learned via the optimization of the location parameters of the Cauchy mixture components, which is shown to be more accurate and robust than the conventional data mining methods usually employed for this task. Using a well known sparse decomposition algorithm, we extract three speech signals from two mixtures based on the estimated dictionary. Further tests with additive Gaussian noise are used to demonstrate the proposed algorithm-s robustness to outliers.Keywords: expectation-maximization, Pitman estimator, sparsedecomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948665 Discrimination of Seismic Signals Using Artificial Neural Networks
Authors: Mohammed Benbrahim, Adil Daoudi, Khalid Benjelloun, Aomar Ibenbrahim
Abstract:
The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.Keywords: Seismic signals, Wavelets, Dimensionality reduction, Artificial neural networks, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634664 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case
Authors: Elif Derya UBEYLI, Inan GULER
Abstract:
A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.
Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509663 Monitoring of Belt-Drive Defects Using the Vibration Signals and Simulation Models
Authors: A. Nabhan, Mohamed R. El-Sharkawy, A. Rashed
Abstract:
The main aim of this paper is to dedicate the belt drive system faults like cogs missing, misalignment and belt worm using vibration analysis technique. Experimentally, the belt drive test-rig is equipped to measure vibrations signals under different operating conditions. Finite element 3D model of belt drive system is created and vibration response analyzed using commercial finite element software ABAQUS/CAE. Root mean square (RMS) and Crest Factor will serve as indicators of average amplitude of envelope analysis signals. The vibration signals pattern obtained from the simulation model and experimental data have the same characteristics. It can be concluded that each case of the RMS is more effective in detecting the defect for acceleration response. While Crest Factor parameter has a response with the displacement and velocity of vibration signals. Also it can be noticed that the model has difficulty in completing the solution when the misalignment angle is higher than 1 degree.
Keywords: Simulation model, misalignment, cogs missing and vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888662 An Effective Noise Resistant FM Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave (FMCW) radar extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a backpropagation (BP) neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise, accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal to-noise ratio of the sign signals.
Keywords: Frequency modulated continuous wave radar, ICEEMDAN, BP Neural Network, vital signs signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 478661 Analysing and Classifying VLF Transients
Authors: Ernst D. Schmitter
Abstract:
Monitoring lightning electromagnetic pulses (sferics) and other terrestrial as well as extraterrestrial transient radiation signals is of considerable interest for practical and theoretical purposes in astro- and geophysics as well as meteorology. Managing a continuous flow of data, automation of the analysis and classification process is important. Features based on a combination of wavelet and statistical methods proved efficient for this task and serve as input into a radial basis function network that is trained to discriminate transient shapes from pulse like to wave like. We concentrate on signals in the Very Low Frequency (VLF, 3 -30 kHz) range in this paper, but the developed methods are independent of this specific choice.
Keywords: Transient signals, statistics, wavelets, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880660 On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart
Authors: O. Ikpotokin
Abstract:
In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.
Keywords: Bootstrap control limit, p-value method, out-of-control signals, p-value, quality characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012659 A proposed High-Resolution Time-Frequency Distribution for the Analysis of Multicomponent and Speech Signals
Authors: D. Boutana, B. Barkat , F. Marir
Abstract:
In this paper, we propose a novel time-frequency distribution (TFD) for the analysis of multi-component signals. In particular, we use synthetic as well as real-life speech signals to prove the superiority of the proposed TFD in comparison to some existing ones. In the comparison, we consider the cross-terms suppression and the high energy concentration of the signal around its instantaneous frequency (IF).
Keywords: Cohen's Class, Multicomponent signal, SeparableKernel, Speech signal, Time- frequency resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869658 A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies
Authors: X. Z. Gao, S. J. Ovaska, X. Wang
Abstract:
Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.Keywords: Predictive filtering, fuzzy logic, sinusoidal signals, time-varying frequencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493657 Discrimination of Alcoholic Subjects using Second Order Autoregressive Modelling of Brain Signals Evoked during Visual Stimulus Perception
Authors: Ramaswamy Palaniappan
Abstract:
In this paper, a second order autoregressive (AR) model is proposed to discriminate alcoholics using single trial gamma band Visual Evoked Potential (VEP) signals using 3 different classifiers: Simplified Fuzzy ARTMAP (SFA) neural network (NN), Multilayer-perceptron-backpropagation (MLP-BP) NN and Linear Discriminant (LD). Electroencephalogram (EEG) signals were recorded from alcoholic and control subjects during the presentation of visuals from Snodgrass and Vanderwart picture set. Single trial VEP signals were extracted from EEG signals using Elliptic filtering in the gamma band spectral range. A second order AR model was used as gamma band VEP exhibits pseudo-periodic behaviour and second order AR is optimal to represent this behaviour. This circumvents the requirement of having to use some criteria to choose the correct order. The averaged discrimination errors of 2.6%, 2.8% and 11.9% were given by LD, MLP-BP and SFA classifiers. The high LD discrimination results show the validity of the proposed method to discriminate between alcoholic subjects.Keywords: Linear Discriminant, Neural Network, VisualEvoked Potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612656 Effect of Chromatic Dispersion on Optical Generation of Tunable Millimeter-Wave Signals
Authors: M. R. Salehi, S. Khosroabadi
Abstract:
In this paper, the optical generation of three bands of continuously tunable millimeter-wave signals using an optical phase modulator (OPM) and a polarization state rotation filter (PSRF) as an optical notch filter is analyzed. The effect of the chromatic dispersion on millimeter-wave signals is presented.Keywords: Optical generation, millimeter-wave, optical notchfilter , chromatic dispersion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863655 Exploiting Non Circularity for Angle Estimation in Bistatic MIMO Radar Systems
Authors: Ebregbe David, Deng Weibo
Abstract:
The traditional second order statistics approach of using only the hermitian covariance for non circular signals, does not take advantage of the information contained in the complementary covariance of these signals. Radar systems often use non circular signals such as Binary Phase Shift Keying (BPSK) signals. Their noncicular property can be exploited together with the dual centrosymmetry of the bistatic MIMO radar system to improve angle estimation performance. We construct an augmented matrix from the received data vectors using both the positive definite hermitian covariance matrix and the complementary covariance matrix. The Unitary ESPRIT technique is then applied to the signal subspace of the augmented covariance matrix for automatically paired Direction-of-arrival (DOA) and Direction-of-Departure (DOD) angle estimates. The number of targets that can be detected is twice that obtainable with the conventional ESPRIT approach. Simulation results show the effectiveness of this method in terms of increase in resolution and the number of targets that can be detected.
Keywords: Bistatic MIMO Radar, Unitary Esprit, Non circular signals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918654 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission
Authors: Ramin Khamedi, Isa Ahmadi
Abstract:
In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).
Keywords: Dual Phase Steel, Deformation, Acoustic Emission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541653 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle
Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores, Valentin Soloiu
Abstract:
This work describes a system that uses electromyography (EMG) signals obtained from muscle sensors and an Artificial Neural Network (ANN) for signal classification and pattern recognition that is used to control a small unmanned aerial vehicle using specific arm movements. The main objective of this endeavor is the development of an intelligent interface that allows the user to control the flight of a drone beyond direct manual control. The sensor used were the MyoWare Muscle sensor which contains two EMG electrodes used to collect signals from the posterior (extensor) and anterior (flexor) forearm, and the bicep. The collection of the raw signals from each sensor was performed using an Arduino Uno. Data processing algorithms were developed with the purpose of classifying the signals generated by the arm’s muscles when performing specific movements, namely: flexing, resting, and motion of the arm. With these arm motions roll control of the drone was achieved. MATLAB software was utilized to condition the signals and prepare them for the classification. To generate the input vector for the ANN and perform the classification, the root mean square and the standard deviation were processed for the signals from each electrode. The neuromuscular information was trained using an ANN with a single 10 neurons hidden layer to categorize the four targets. The result of the classification shows that an accuracy of 97.5% was obtained. Afterwards, classification results are used to generate the appropriate control signals from the computer to the drone through a Wi-Fi network connection. These procedures were successfully tested, where the drone responded successfully in real time to the commanded inputs.
Keywords: Biosensors, electromyography, Artificial Neural Network, Arduino, drone flight control, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556