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Abstract— In this paper, we propose a novel time-frequency
distribution (TFD) for the analysis of multi-component signals. In 
particular, we use synthetic as well as real-life speech signals to
prove the superiority of the proposed TFD in comparison to some
existing ones. In the comparison, we consider the cross-terms
suppression and the high energy concentration of the signal around 
its instantaneous frequency (IF). 

Keywords—Cohen’s Class, Multicomponent signal, Separable 
Kernel, Speech signal, Time- frequency resolution.

I. INTRODUCTION

HE spectrogram, a smoothed version of the well-known
Wigner-Ville distribution (WVD), has been widely used

in speech applications [1], [2], [3], [4]. The spectrogram,
which is in general a cross-terms free time-frequency
distribution (TFD), suffers from the undesirable trade-off
between the time concentration and the frequency
concentration. To address the problem of cross-terms
suppression, while keeping a high time-frequency resolution,
other TFDs have been proposed. Among these, one can cite
the smoothed pseudo WVD (SPWVD) [9], the Zhao-Atlas-
Marks distribution (ZAMD) [5] and the B-distribution (BD)
[6], just to name a few. In this paper, we present a new 
distribution for the analysis of multicomponent signals. This 
distribution, inspired from the Butterworth kernel quadratic
TFD [8], has the ability of suppressing the cross-terms while 
keeping a high-resolution in the time-frequency plane. To
assess the performance of this proposed distribution, we also
propose to compare it to some existing ones known for their
cross-terms suppression property. In the comparison
examples, we use synthetic as well as real-life data from a
speech application. The comparison results show the high
performance of the proposed TFD in dealing with non-
stationary multicomponent signals.
The paper is organized as follows: In Section 2, a theoretical 
aspect of some TFR interest is presented. A proposed high
time-frequency resolution quadratic TFD is introduced in
Section 3. In Section 4, simulations and comparison examples
as well as a discussion are presented. Section 5 concludes the
paper.

II. THEORETICAL BACKGROUND FOR QUADRATIC
TFDS

Quadratic, a.k.a. bilinear or Cohen’s, time-frequency
representations are a powerful tool in the analysis of non-
stationary signals analysis such as the speech signal, ECG 
signal, and others biomedical signals. Many of these
representations are invariant to time and frequency
translations and can be considered as energy distribution in
time-frequency plane. The quadratic, or Cohen’s, class of 
TFDs can be formulated as [1,3]

dduduxux,f,t
2

*
2x

fft2j
x eC (1)

where x(t) represents the analytical form of signal under

consideration and ,x  is called the kernel of the

distribution. All the integrals are from -  to + , unless
otherwise stated. A choice of a particular kernel function
yields a particular quadratic TFD. A different expression of 
the quadratic class may be given by

dd,.,f,t eAC
tf2j

xxx (2)

where ,xA , the ambiguity function,  is given by

duux.uxf,t eA
u2j

22x (3)

Under the terms of Equation (2), we observe that the time-
frequency distribution is a two-dimensional Fourier transform
of the product of the kernel and the ambiguity function. The 
choice of a particular kernel function defines a different
distribution with its own specificities [1], [2], [3]. For
instance, the spectrogram (SP), traditionally used for the time-
frequency analysis of speech signals, is defined by selecting
the kernel as the ambiguity function of an arbitrary window
function. Another example is the Zhao-Atlas-Marks
distribution kernel [5], also called cone-shaped kernel. This
particular kernel, which ensures the time support property of 
its corresponding TFD (unlike the SP),  is defined as 

sin
g,x   (4) 

The B-distribution kernel [6], defined in the time-lag
plane, can be expressed as 

T
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tcosh
,t

2
x (5)

where is a real parameter that controls the sharpness of cut-
off of the 2-D filter in the ambiguity domain. The  values
range between zero and unity  0 <  <1 [6].
As a final example of the kernel, we can cite the Butterworth
kernel given by [7,8]

M2N2
x

1

1,

(6)

This kernel function is regarded as a general form of the
exponential kernel representations and can be considered as a 
low-pass filter in the ambiguity domain.  A  suitable  choice

of the various parameters N, M, and,  helps to remove

the cross-terms that appear in the time-frequency domain in a 
multicomponent signal analysis. 

III. PROPOSED TIME-FREQUENCY DISTRIBUTION

The adoption of a separable kernel function  defines the
pseudo smoothed Wigner-Ville (SPWV) [9] which has the 
advantage of reducing the effects of the interferences (ITs) or
cross-terms and, in the same time, having a high time-
frequency resolution. The general expression of separable
kernel is written as 

hG, (7)

and its corresponding TFD can be expressed as 

dedssxsxtsgh)f,t(SPWVD
fj2

2
*

2
(8)

Here, we propose a separable kernel, inspired from the
Butterworth kernel, to have a good trade-off between cross-
terms suppression and high time-frequency resolution. We
define the kernel as follows

M2N2
x

1

1.

1

1,

(9)

We opt for this separable configuration because it gives us the 
flexibility of controlling both the time and the frequency
resolutions independently. Using the inverse Fourier
Transform and fixing N equal to unity, N=1, we obtain the
time-lag kernel expression given by

)t(exp

1

1,t
M2x

(10)

Now, by substituting expression (9) in Equation (8), we
obtain the proposed TFD expression as 

de.

1

1)f,t(SPWVD f2j
tM2 R

(11)

Where

dssx.sxeR
*
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ts

t (12)

IV. EXAMPLES AND DISCUSSION

A speech signal, formed by multiple frequency components
(formants) generates a great number of undesired cross-terms
in time-frequency domain. It is very desirable to eliminate
these cross-terms in order to facilitate the analysis of such
signal. By selecting an appropriate kernel we can obtain less
cross-terms in the time-frequency plane; however, the design 
of such kernels is, in general, not easy. To facilitate the task,
we prefer to use separable kernels, as discussed earlier. The 
choice of the functions g(t) and  h(t) is based on the a priori
knowledge of the speech signal itself. Usually, the length of 
g(t) must be less or equal to the time of stationarity of the
signal. In [10], it was shown that for a speech signal, in the 
ambiguity plane, the interference terms can be reduced by

limiting the extent of the variable  (i.e., 0f2 ) where f0 is

the bound  between the auto terms and cross terms .It must

satisfy pitch4
1

0 ff (fpitch being the pitch frequency or 

fundamental frequency of the speech signal). Also, It is 
known that  pitch  frequency  of  a speech signal for men
varies between 80Hz< fpitch < 200 Hz. Based on these
observations, in the simulation examples, we fixed the value

 (refer to Equations (10)-(12) and the window

length to a quarter of the signal duration [1].The input speech 
signals considered in the examples were spoken in Arabic and
digitalized with 8 bits at 11KHz sampling frequency.

004.0

A.   Example 1: Signal with close components

In this first example, the synthetic signal consists of four
sinusoids, very close in pairs. The first two sinusoids have 
frequencies equal to 1000 Hz and 1200 Hz, whereas the
second  pair of sinusoids have frequencies equal to 3000Hz
and 3200 Hz, respectively. The signal length is fixed at
N=256 and the sampling frequency is fixed equal to
fs=1Hz.This model with very closely components is discussed
in order to prove the superiority of the proposed technique in
the possibility of resolving close components in the time-
frequency domain. As can be seen from Fig. 1 , the
simulations results obtained for the ZAMD, the BD and the
proposed TFD show a better performance, in terms of
frequency resolution, than the SP. Moreover, we can also
observe that the highest performance is achieved for the
proposed TFD. 
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Fig  1. Slices taken at the same instant n=65 (left) and n=129 (right)
(a) SP, (b) ZAMD,  (c) BD,  (d) Proposed TFD.

In this example, we use two different window lengths in the
evaluation of the TFDs. Namely; we use a medium size
window length (65 samples) and a large size window length
(129 samples). For each window length, we take slices of the 
TFDs at time instants n= 64 and n=129 (recall that n= 0,1,2,
..., 255). We plot the normalized amplitudes of these slices,
for each window length, in Figures 1 and 2, respectively. 
Once again, we can observe that the proposed TFD not only
can successfully separate the components but it has the best
resolution  (i.e., narrower main-lobe and smaller side-lobes)
compared to all the other considered distributions.

B. Example 2: Two crossed chirps and a constant frequency

In this example, the synthetic signal consists of two crossed 
chirps (one linearly increasing from 0.1Hz to 0.3Hz, the
second linearly decreasing from 0.3Hz to 0.1Hz) and a 
constant frequency at 0.4 Hz. A unity sampling frequency is
considered here with a signal length equal to 256. The same
TFDs, for a window length equal to nh=65, are represented in
Figure 2. 

Fig 2.  (a) SP, (b) ZAMD, (c) BD, (d) Proposed TFD. The analysis window 
length  nh=65.

Slices of these TFDs, taken at the same time instant n=64,
are shown in Figure 3 for various analysis window lengths
(i.e.,33,  65  and 129 samples).  Here again,  we  see  that  the
proposed TFD does better  than  the  other ones. Now, some
additive white Gaussian noise is added to the signal.

We consider three different cases: signal-to-noise ratio (SNR)

equal to 0 dB, 5 dB and 10 dB. In Figure 4 we plot the same
slices as above. The same conclusion can be drawn here again
with the exception that at low SNR, all the TFDs start to show
some distortions.

Fig  3.  Slices taken at the same instant  n=64 for different window lengths 
n=33 ( top) ,  nh=65 (right),   and   nh=129 (left) are displayed for  (a) SP, (b)
ZAMD,  (c)  BD,  (d) Proposed  TFD.

Fig  4. Slices taken at the same time instant n= 64 for an analysis window
length nh=65 samples and SNR equal to 0, 5, 10 dB, (a) SP, (b) ZAMD, (c)
BD, (d) Proposed TFD.

C. Example 3: Signal of vowel / a/

A real-life speech signal as vowel /a/ of length N=256 and
sampled at frequency fs=11 kHz is analyzed using SP, ZAMD,
BD and proposed SPWVD.  The results are displayed in
Figures 5 and 6. The figures show four formants located at
F1= 688Hz, F2=1167 Hz, F3=2707 Hz, and F4=3654 Hz. It
can be seen in Figure 6 that the BD and the proposed TFD
have done better frequency resolution.
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Fig  5. Vowel /a/ analyzed by  (a) SP, (b) ZAMD,(c) BD,  (d) Proposed TFD.

Fig 6. Slices taken at the same instant n=128 , (a) SP,(b) ZAMD, (c) BD,
(d) Proposed TFD, for vowel / a/.

Fig 7.  Slice taken at the same instant for vowel /a/ buried in noise  (a) SP, (b)
ZAMD, (c) BD,(d) Proposed TFD (horizontal axis shows frequency in Hz.)

D. Example 4: Signal of vowel /a/ buried in additive noise. 

The precedent real signal of vowel /a/ is corrupted by
white Gaussian noise. Slices, taken at the same time instant, of
the considered TFDs are displayed in Figure 7 for different

SNR values. It can be seen that for –3 dB and 0 dB all
distribution can’t resolve the fourth formant. we see that the
BD and proposed TFD does better than the other ones for  5 
and 10 dB.

V. CONCLUSION

In this paper, we presented a novel member of the
quadratic TFD. The kernel of this new TFD, inspired from the
Butterworth kernel, was designed in such a way to have 
separable quantities for the time and lag variables in it. It was 
shown, using generated noisy data and real-life speech 
signals, that the proposed distributions achieves a high
suppression of the cross-terms generally encountered in the
analysis of non-stationary signals. Moreover, it was noted that
this new TFD has a good resolution in the time-frequency
plane. We have also presented a qualitative comparative study
with other distributions known for their high cross-terms
suppression property. The simulation results have confirmed
the superiority of the proposed technique in terms of trade-off
between cross-terms suppression and high energy
concentration in the time-frequency domain.

REFERENCES

[1] B. Boashash,“ Time Frequency signal analysis and Processing: A 
Comprehensive Reference,” in Elsevier Publications, First edition 
2003, ISBN 0- 08- 0443354.

[2] T.A.C.M. Claasen and W.F.G Mecklenbrauker, “The Wigner
Distribution: A tool for time-frequency signal analysis,” PART I II
and III, Philips Journal of Research, Vol. 35, No 4/5, 1980.

[3] L. Cohen, “ Time frequency distribution: A review,” in Proc. of 

IEEE, Vol. 77, No. 7,  pp. 941-981, July 1989.
[4] P. Flandrin, “Temps-fréquence, ” 2 e édition revue et corrigée, Paris : 

Hermes, 1998.
[5] L. Atlas, Y. Zhao and R. J. Marks, “the use of cone-shaped kernels for

generalized time–frequency representations of non-stationary signals,”
IEEE Trans. Acoust., Speech, signal Processing. Vol 38, pp.1084-
1091, 1990.

[6] B. Barkat and B. Boashash “A High-Resolution Quadratic Time–
Frequency Distribution for Multicomponent  Signals Analysis,” IEEE

Transaction on signal processing ,Vol. 49, N0. 10, October 2001.
[7] A. Papandreou and G. Faye Boudreaux-Bratels, “Distributions for

time frequency analysis: A generalisation of Choi–Williams and the 
Butterworth distribution,” IEEE Int conf. On  Acoust. speech and 

signal Proc. ICASSP-92, Victoria, Canada, 1992.
[8] A. Papandreou and G. Faye Boudreaux-Bartels,“ Generalisation of the 

Choi–Williams and the Butterworth Distribution ,for time frequency 
analysis,” IEEE  Trans. on signal processing, Vol 41,N0 1, January
1993.

[9] E. F. Velez , R. G. Absher,  “Transient analysis of speech signal using 
the Wigner time frequency representation,” ICASSP May 

89,Glasgow, pp. 22242-2245.
[10] J. Leibrich, H. Puder, “A TF distribution for disturbed and

undisturbed speech signals and its application to  noise reduction,” 
Signal Processing 80(2000),   pp.1761-1776.

Daoud Boutana, Department of Electronic, Faculty of Sciences, University of 
Jijel, Algeria , e–mail : daoud.boutana@mail.com

Braham  Barkat , Nanyang Technological University, School of Electrical and 
Electronic Engineering, Singapore ,e–mail : ebarkat@ntu.edu.sg

Farid Marir, Department of Electronic, Faculty of Science, University of
Constantine, Algeria ,e –mail: F.Marir@yahoo.fr

World Academy of Science, Engineering and Technology
International Journal of Electronics and Communication Engineering

 Vol:1, No:2, 2007 

328International Scholarly and Scientific Research & Innovation 1(2) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ro

ni
cs

 a
nd

 C
om

m
un

ic
at

io
n 

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
2,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/8
02

.p
df




