Search results for: moving heat source.
3018 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source
Authors: Z. Veselý, M. Honner, J. Mach
Abstract:
The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. Complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts.Keywords: Computer simulation, unsteady model, heat treatment, complex boundary condition, moving heat source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20383017 Analytic and Finite Element Solutions for Temperature Profiles in Welding using Varied Heat Source Models
Authors: Djarot B. Darmadi, John Norrish, Anh Kiet Tieu
Abstract:
Solutions for the temperature profile around a moving heat source are obtained using both analytic and finite element (FEM) methods. Analytic and FEM solutions are applied to study the temperature profile in welding. A moving heat source is represented using both point heat source and uniform distributed disc heat source models. Analytic solutions are obtained by solving the partial differential equation for energy conservation in a solid, and FEM results are provided by simulating welding using the ANSYS software. Comparison is made for quasi steady state conditions. The results provided by the analytic solutions are in good agreement with results obtained by FEM.Keywords: Analytic solution, FEM, Temperature profile, HeatSource Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22203016 Numerical Investigation of Non Fourier Heat Conduction in a Semi-infinite Body due to a Moving Concentrated Heat Source Composed with Radiational Boundary Condition
Authors: M. Akbari, S. Sadodin
Abstract:
In this paper, the melting of a semi-infinite body as a result of a moving laser beam has been studied. Because the Fourier heat transfer equation at short times and large dimensions does not have sufficient accuracy; a non-Fourier form of heat transfer equation has been used. Due to the fact that the beam is moving in x direction, the temperature distribution and the melting pool shape are not asymmetric. As a result, the problem is a transient threedimensional problem. Therefore, thermophysical properties such as heat conductivity coefficient, density and heat capacity are functions of temperature and material states. The enthalpy technique, used for the solution of phase change problems, has been used in an explicit finite volume form for the hyperbolic heat transfer equation. This technique has been used to calculate the transient temperature distribution in the semi-infinite body and the growth rate of the melt pool. In order to validate the numerical results, comparisons were made with experimental data. Finally, the results of this paper were compared with similar problem that has used the Fourier theory. The comparison shows the influence of infinite speed of heat propagation in Fourier theory on the temperature distribution and the melt pool size.Keywords: Non-Fourier, Enthalpy technique, Melt pool, Radiational boundary condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19803015 Convective Heat Transfer of Internal Electronic Components in a Headlight Geometry
Authors: Jan Langebach, Peter Fischer, Christian Karcher
Abstract:
A numerical study is presented on convective heat transfer in enclosures. The results are addressed to automotive headlights containing new-age light sources like Light Emitting Diodes (LED). The heat transfer from the heat source (LED) to the enclosure walls is investigated for mixed convection as interaction of the forced convection flow from an inlet and an outlet port and the natural convection at the heat source. Unlike existing studies, inlet and outlet port are thermally coupled and do not serve to remove hot fluid. The input power of the heat source is expressed by the Rayleigh number. The internal position of the heat source, the aspect ratio of the enclosure, and the inclination angle of one wall are varied. The results are given in terms of the global Nusselt number and the enclosure Nusselt number that characterize the heat transfer from the source and from the interior fluid to the enclosure walls, respectively. It is found that the heat transfer from the source to the fluid can be maximized if the source is placed in the main stream from the inlet to the outlet port. In this case, the Reynolds number and heat source position have the major impact on the heat transfer. A disadvantageous position has been found where natural and forced convection compete each other. The overall heat transfer from the source to the wall increases with increasing Reynolds number as well as with increasing aspect ratio and decreasing inclination angle. The heat transfer from the interior fluid to the enclosure wall increases upon decreasing the aspect ratio and increasing the inclination angle. This counteracting behaviour is caused by the variation of the area of the enclosure wall. All mixed convection results are compared to the natural convection limit.Keywords: Enclosure, heat source, heat transfer, mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17903014 Performance Improvement of a Supersonic External Compression Inlet by Heat Source Addition
Authors: Mohammad Reza Soltani, Mohammad Farahani, Javad Sepahi Younsi
Abstract:
Heat source addition to the axisymmetric supersonic inlet may improve the performance parameters, which will increase the inlet efficiency. In this investigation the heat has been added to the flow field at some distance ahead of an axisymmetric inlet by adding an imaginary thermal source upstream of cowl lip. The effect of heat addition on the drag coefficient, mass flow rate and the overall efficiency of the inlet have been investigated. The results show that heat addition causes flow separation, hence to prevent this phenomena, roughness has been added on the spike surface. However, heat addition reduces the drag coefficient and the inlet mass flow rate considerably. Furthermore, the effects of position, size, and shape on the inlet performance were studied. It is found that the thermal source deflects the flow streamlines. By improper location of the thermal source, the optimum condition has been obtained. For the optimum condition, the drag coefficient is considerably reduced and the inlet mass flow rate and its efficiency have been increased slightly. The optimum shape of the heat source is obtained too.Keywords: Drag coefficient, heat source, performanceparameters, supersonic inlet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22903013 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient
Authors: Anjanna Matta, P. A. L. Narayana
Abstract:
An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleigh number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.Keywords: Linear stability analysis, heat source, porous medium, mass flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17203012 Ground Heat Exchanger Modeling Developed for Energy Flows of an Incompressible Fluid
Authors: Paul Christodoulides, Georgios Florides, Panayiotis Pouloupatis, Vassilios Messaritis, Lazaros Lazari
Abstract:
Ground-source heat pumps achieve higher efficiencies than conventional air-source heat pumps because they exchange heat with the ground that is cooler in summer and hotter in winter than the air environment. Earth heat exchangers are essential parts of the ground-source heat pumps and the accurate prediction of their performance is of fundamental importance. This paper presents the development and validation of a numerical model through an incompressible fluid flow, for the simulation of energy and temperature changes in and around a U-tube borehole heat exchanger. The FlexPDE software is used to solve the resulting simultaneous equations that model the heat exchanger. The validated model (through a comparison with experimental data) is then used to extract conclusions on how various parameters like the U-tube diameter, the variation of the ground thermal conductivity and specific heat and the borehole filling material affect the temperature of the fluid.Keywords: U-tube borehole, energy flow, incompressible fluid, numerical model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20053011 Numerical Simulation of Convective Heat Transfer and Fluid Flow through Porous Media with Different Moving and Heated Walls
Authors: Laith Jaafer Habeeb
Abstract:
The present study is concerned with the free convective two dimensional flow and heat transfer, within the framework of Boussinesq approximation, in anisotropic fluid filled porous rectangular enclosure subjected to end-to-end temperature difference have been investigated using Lattice Boltzmann method fornon-Darcy flow model. Effects of the moving lid direction (top, bottom, left, and right wall moving in the negative and positive x&ydirections), number of moving walls (one or two opposite walls), the sliding wall velocity, and four different constant temperatures opposite walls cases (two surfaces are being insulated and the twoother surfaces areimposed to be at constant hot and cold temperature)have been conducted. The results obtained are discussed in terms of the Nusselt number, vectors, contours, and isotherms.Keywords: Numerical simulation, lid-driven cavity flow, saturated porous medium, different velocity and heated walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26073010 A Second Law Assessment of Organic Rankine Cycle Depending on Source Temperature
Authors: Kyoung Hoon Kim
Abstract:
Organic Rankine Cycle (ORC) has potential in reducing fossil fuels and relaxing environmental problems. In this work performance analysis of ORC is conducted based on the second law of thermodynamics for recovery of low temperature heat source from 100oC to 140oC using R134a as the working fluid. Effects of system parameters such as turbine inlet pressure or source temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as net work production or exergy efficiency. Results show that the net work or exergy efficiency has a peak with respect to the turbine inlet pressure when the source temperature is low, however, increases monotonically with increasing turbine inlet pressure when the source temperature is high.
Keywords: Organic Rankine cycle (ORC), low temperature heat source, exergy, source temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18803009 Free Convection in an Infinite Porous Dusty Medium Induced by Pulsating Point Heat Source
Authors: K. Kannan, V. Venkataraman
Abstract:
Free convection effects and heat transfer due to a pulsating point heat source embedded in an infinite, fluid saturated, porous dusty medium are studied analytically. Both velocity and temperature fields are discussed in the form of series expansions in the Rayleigh number, for both the fluid and particle phases based on the mean heat generation rate from source and on the permeability of the porous dusty medium. This study is carried out by assuming the Rayleigh number small and the validity of Darcy-s law. Analytical expressions for both phases are obtained for second order mean in both velocity and temperature fields and evolution of different wave patterns are observed in the fluctuating part. It has been observed that, at the vicinity of the origin, the second order mean flow is influenced only by relaxation time of dust particles and not by dust concentration.
Keywords: Pulsating point heat source, azimuthal velocity, porous dusty medium, Darcy's law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13633008 Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling
Authors: Elhameh Narimani, Mikhail Sorin, Philippe Micheau, Hakim Nesreddine
Abstract:
Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.
Keywords: Coefficient of performance, ejector refrigeration system, exergy efficiency, heat exchangers modeling, moving boundary method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5513007 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously
Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen
Abstract:
Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.
Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO2 cycle, transcritical CO2 cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10753006 Mobile Robot Path Planning in a 2-Dimentional Mesh
Authors: Doraid Dalalah
Abstract:
A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.Keywords: Mobile robot, Path Planning, Mesh, Potential field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19273005 Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink
Authors: Bandaris Shankar, Yohannes Yirga
Abstract:
In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.
Keywords: Manetohydrodynamics, nanofluid, non-uniform heat source/sink, unsteady.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32233004 Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB
Authors: Tapano Kumar Hotta, S P Venkateshan
Abstract:
Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources.Keywords: Discrete heat source, mixed convection, natural convection, vertical channel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20623003 Performance Analysis of Absorption Power Cycle under Different Source Temperatures
Authors: Kyoung Hoon Kim
Abstract:
The absorption power generation cycle based on the ammonia-water mixture has attracted much attention for efficient recovery of low-grade energy sources. In this paper a thermodynamic performance analysis is carried out for a Kalina cycle using ammonia-water mixture as a working fluid for efficient conversion of low-temperature heat source in the form of sensible energy. The effects of the source temperature on the system performance are extensively investigated by using the thermodynamic models. The results show that the source temperature as well as the ammonia mass fraction affects greatly on the thermodynamic performance of the cycle.
Keywords: Ammonia-water mixture, Kalina cycle, low-grade heat source, source temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24643002 Free Convective Heat Transfer in an Enclosure Filled with Porous Media with and without Insulated Moving Wall
Authors: Laith Jaafer Habeeb
Abstract:
The present work is concerned with the free convective two dimensional flow and heat transfer, in isotropic fluid filled porous rectangular enclosure with differentially heated walls for steady state incompressible flow have been investigated for non- Darcy flow model. Effects of Darcy number (0.0001 £Da£ 10), Rayleigh number (10 £Ra£ 5000), and aspect ratio (0.25 £AR£ 4), for a range of porosity (0.4 £e£ 0.9) with and without moving lower wall have been studied. The cavity was insulated at the lower and upper surfaces. The right and left heated surfaces allows convective transport through the porous medium, generating a thermal stratification and flow circulations. It was found that the Darcy number, Rayleigh number, aspect ratio, and porosity considerably influenced characteristics of flow and heat transfer mechanisms. The results obtained are discussed in terms of the Nusselt number, vectors, contours, and isotherms.Keywords: Numerical study, moving-wall cavity flow, saturated porous medium, different Darcy and Rayleigh numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20653001 Radiation Effects on the Unsteady MHD Free Convection Flow Past in an Infinite Vertical Plate with Heat Source
Authors: Tusharkanta Das, Tumbanath Samantara, Sukanta Kumar Sahoo
Abstract:
Unsteady effects of MHD free convection flow past in an infinite vertical plate with heat source in presence of radiation with reference to all critical parameters that appear in field equations are studied in this paper. The governing equations are developed by usual Boussinesq’s approximation. The problem is solved by using perturbation technique. The results are obtained for velocity, temperature, Nusselt number and skin-friction. The effects of magnetic parameter, prandtl number, Grashof number, permeability parameter, heat source/sink parameter and radiation parameter are discussed on flow characteristics and shown by means of graphs and tables.
Keywords: Heat transfer, radiation, MHD, free convection, porous medium, suction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8803000 Thermal Modelling and Experimental Comparison for a Moving Pantograph Strip
Authors: Nicolas Delcey, Philippe Baucour, Didier Chamagne, Geneviève Wimmer, Auditeau Gérard, Bausseron Thomas, Bouger Odile, Blanvillain Gérard
Abstract:
This paper proposes a thermal study of the catenary/pantograph interface for a train in motion. A 2.5D complex model of the pantograph strip has been defined and created by a coupling between a 1D and a 2D model. Experimental and simulation results are presented and with a comparison allow validating the 2.5D model. Some physical phenomena are described and presented with the help of the model such as the stagger motion thermal effect, particular heats and the effect of the material characteristics. Finally it is possible to predict the critical thermal configuration during a train trip.Keywords: 2.5D modelling, pantograph/catenary liaison, sliding contact, Joule effect, moving heat source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11152999 Acoustic Source Localization Based On the Extended Kalman Filter for an Underwater Vehicle with a Pair of Hydrophones
Authors: ByungHoon Kang, Jeawook Shin, Ju-man Song, Hyun-Taek Choi, PooGyeon Park
Abstract:
In this study, we consider a special situation that only a pair of hydrophone on a moving underwater vehicle is available to localize a fixed acoustic source of far distance. The trigonometry can be used in this situation by using two different DOA of different locations. Notice that the distance between the two locations should be measured. Therefore, we assume that the vehicle is sailing straightly and the moving distance for each unit time is measured continuously. However, the accuracy of the localization using the trigonometry is highly dependent to the accuracy of DOAs and measured moving distances. Therefore, we proposed another method based on the extended Kalman filter that gives more robust and accurate localization result.
Keywords: Localization, acoustic, underwater, extended Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21972998 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement
Authors: Maatoug Hassine, Mourad Hrizi
Abstract:
In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.Keywords: Geometric inverse source problem, heat equation, topological sensitivity, topological optimization, Kohn-Vogelius formulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11192997 Effects of Viscous Dissipation and Concentration Based Internal Heat Source on Convective Instability in a Porous Medium with Throughflow
Authors: N. Deepika, P. A. L. Narayana
Abstract:
Linear stability analysis of double diffusive convection in a horizontal porous layer saturated with fluid is examined by considering the effects of viscous dissipation, concentration based internal heat source and vertical throughflow. The basic steady state solution for Governing equations is derived. Linear stability analysis has been implemented numerically by using shooting and Runge-kutta methods. Critical thermal Rayleigh number Rac is obtained for various values of solutal Rayleigh number Sa, vertical Peclet number Pe, Gebhart number Ge, Lewis number Le and measure of concentration based internal heat source γ. It is observed that Ge has destabilizing effect for upward throughflow and stabilizing effect for downward throughflow. And γ has considerable destabilizing effect for upward throughflow and insignificant destabilizing effect for downward throughflow.Keywords: Porous medium, concentration based internal heat source, vertical throughflow, viscous dissipation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16342996 Energy and Economic Analysis of Heat Recovery from Boiler Exhaust Flue Gas
Authors: Kemal Comakli, Meryem Terhan
Abstract:
In this study, the potential of heat recovery from waste flue gas was examined in 60 MW district heating system of a university, and fuel saving was aimed by using the recovered heat in the system as a source again. Various scenarios are intended to make use of waste heat. For this purpose, actual operation data of the system were taken. Besides, the heat recovery units that consist of heat exchangers such as flue gas condensers, economizers or air pre-heaters were designed theoretically for each scenario. Energy analysis of natural gas-fired boiler’s exhaust flue gas in the system, and economic analysis of heat recovery units to predict payback periods were done. According to calculation results, the waste heat loss ratio from boiler flue gas in the system was obtained as average 16%. Thanks to the heat recovery units, thermal efficiency of the system can be increased, and fuel saving can be provided. At the same time, a huge amount of green gas emission can be decreased by installing the heat recovery units.
Keywords: Heat recovery from flue gas, energy analysis of flue gas, economical analysis, payback period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28522995 Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins
Authors: F. A. Gdhaidh, K. Hussain, H. S. Qi
Abstract:
A numerical study of natural convection heat transfer in water filled cavity has been examined in 3-Dfor single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5∗37.5mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15 - 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68°C when the heat input was at 40W that is much lower than the recommended computer chips limit temperature of no more than 85°C and hence the performance of the CPU is enhanced.
Keywords: Chips limit temperature, closed enclosure, natural convection, parallel plate, single phase liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29882994 A Comparative Study of Vapour Compression Heat Pump Systems under Air to Air and Air to Water Mode
Authors: Kemal Çomakli, Uğur Çakir
Abstract:
This research evaluated and compared the thermodynamic performance of heat pump systems which can be run under two different modes as air to air and air to water by using only one compressor. To achieve this comparison an experimental performance study was made on a traditional vapor compressed heat pump system that can be run air to air mode and air to water mode by help of a valve. The experiments made under different thermal conditions. Thermodynamic performance of the systems are presented and compared with each other for different working conditions.
Keywords: Air source heat pump, Energy Analysis, Heat Pump
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16882993 Influence of Thermal Cycle on Temperature Dependent Process Parameters Involved in GTA Welded High Carbon Steel Joints
Authors: J. Dutta, Narendranath S.
Abstract:
In this research article a comprehensive investigation has been carried out to determine the effect of thermal cycle on temperature dependent process parameters developed during gas tungsten arc (GTA) welding of high carbon (AISI 1090) steel butt joints. An experiment based thermal analysis has been performed to obtain the thermal history. We have focused on different thermophysical properties such as thermal conductivity, heat transfer coefficient and cooling rate. Angular torch model has been utilized to find out the surface heat flux and its variation along the fusion zone as well as along the longitudinal direction from fusion boundary. After welding and formation of weld pool, heat transfer coefficient varies rapidly in the vicinity of molten weld bead and heat affected zone. To evaluate the heat transfer coefficient near the fusion line and near the rear end of the plate (low temperature region), established correlation has been implemented and has been compared with empirical correlation which is noted as coupled convective and radiation heat transfer coefficient. Change in thermal conductivity has been visualized by analytical model of moving point heat source. Rate of cooling has been estimated by using 2-dimensional mathematical expression of cooling rate and it has shown good agreement with experimental temperature cycle. Thermophysical properties have been varied randomly within 0 -10s time span.
Keywords: Thermal history, Gas tungsten arc welding, Butt joint, High carbon steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27702992 Influence of Flash Temperature on Exergetical Performance of Organic Flash Cycle
Authors: Kyoung Hoon Kim, Chul Ho Han
Abstract:
Organic Flash Cycle (OFC) has potential of improving efficiency for recovery of low temperature heat sources mainly due to reducing temperature mismatch in the heat exchanger. In this work exergetical performance analysis of ORC is conducted for recovery of low grade heat source. Effects of system parameters such as flash evaporation temperature or heating temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as exergy efficiency. Results show that exergy efficiency has a peak with respect to the flash temperature, and the optimum flash temperature increases with the heating temperature. The component where the largest exergy destruction occurs varies with the flash temperature or heating temperature.
Keywords: Organic flash cycle (OFC), low grade heat source, exergy, anergy, flash temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19092991 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads
Authors: Jia-Jang Wu
Abstract:
The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.Keywords: Moving load, moving substructure, dynamic responses, forced vibration responses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14072990 Some Studies on Temperature Distribution Modeling of Laser Butt Welding of AISI 304 Stainless Steel Sheets
Authors: N. Siva Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy
Abstract:
In this research work, investigations are carried out on Continuous Wave (CW) Nd:YAG laser welding system after preliminary experimentation to understand the influencing parameters associated with laser welding of AISI 304. The experimental procedure involves a series of laser welding trials on AISI 304 stainless steel sheets with various combinations of process parameters like beam power, beam incident angle and beam incident angle. An industrial 2 kW CW Nd:YAG laser system, available at Welding Research Institute (WRI), BHEL Tiruchirappalli, is used for conducting the welding trials for this research. After proper tuning of laser beam, laser welding experiments are conducted on AISI 304 grade sheets to evaluate the influence of various input parameters on weld bead geometry i.e. bead width (BW) and depth of penetration (DOP). From the laser welding results, it is noticed that the beam power and welding speed are the two influencing parameters on depth and width of the bead. Three dimensional finite element simulation of high density heat source have been performed for laser welding technique using finite element code ANSYS for predicting the temperature profile of laser beam heat source on AISI 304 stainless steel sheets. The temperature dependent material properties for AISI 304 stainless steel are taken into account in the simulation, which has a great influence in computing the temperature profiles. The latent heat of fusion is considered by the thermal enthalpy of material for calculation of phase transition problem. A Gaussian distribution of heat flux using a moving heat source with a conical shape is used for analyzing the temperature profiles. Experimental and simulated values for weld bead profiles are analyzed for stainless steel material for different beam power, welding speed and beam incident angle. The results obtained from the simulation are compared with those from the experimental data and it is observed that the results of numerical analysis (FEM) are in good agreement with experimental results, with an overall percentage of error estimated to be within ±6%.
Keywords: Laser welding, Butt weld, 304 SS, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49872989 Moving Area Filter to Detect Object in Video Sequence from Moving Platform
Authors: Sallama Athab, Hala Bahjat
Abstract:
Detecting object in video sequence is a challenging mission for identifying, tracking moving objects. Background removal considered as a basic step in detected moving objects tasks. Dual static cameras placed in front and rear moving platform gathered information which is used to detect objects. Background change regarding with speed and direction moving platform, so moving objects distinguished become complicated. In this paper, we propose framework allows detection moving object with variety of speed and direction dynamically. Object detection technique built on two levels the first level apply background removal and edge detection to generate moving areas. The second level apply Moving Areas Filter (MAF) then calculate Correlation Score (CS) for adjusted moving area. Merging moving areas with closer CS and marked as moving object. Experiment result is prepared on real scene acquired by dual static cameras without overlap in sense. Results showing accuracy in detecting objects compared with optical flow and Mixture Module Gaussian (MMG), Accurate ratio produced to measure accurate detection moving object.
Keywords: Background Removal, Correlation, Mixture Module Gaussian, Moving Platform, Object Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120