Search results for: malaria differential diagnosis.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1151

Search results for: malaria differential diagnosis.

971 Symbolic Analysis of Input Impedance of CMOS Floating Active Inductors with Application in Fully Differential Bandpass Amplifier

Authors: Kittipong Tripetch

Abstract:

This paper proposes a study of input impedance of 2 types of CMOS active inductors. It derives 2 input impedance formulas. The first formula is the input impedance of the grounded active inductor. The second formula is the input impedance of the floating active inductor. After that, these formulas can be used to simulate magnitude and phase response of input impedance as a function of current consumption with MATLAB. Common mode rejection ratio (CMRR) of the fully differential bandpass amplifier is derived based on superposition principle. CMRR as a function of input frequency is plotted as a function of current consumption. 

Keywords: Grounded active inductor, floating active inductor, Fully differential bandpass amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
970 Tongue Diagnosis System Based on PCA and SVM

Authors: Jin-Woong Park, Sun-Kyung Kang, Sung-Tae Jung

Abstract:

In this study, we propose a tongue diagnosis method which detects the tongue from face image and divides the tongue area into six areas, and finally generates tongue coating ratio of each area. To detect the tongue area from face image, we use ASM as one of the active shape models. Detected tongue area is divided into six areas widely used in the Korean traditional medicine and the distribution of tongue coating of the six areas is examined by SVM(Support Vector Machine). For SVM, we use a 3-dimensional vector calculated by PCA(Principal Component Analysis) from a 12-dimentional vector consisting of RGB, HIS, Lab, and Luv. As a result, we detected the tongue area stably using ASM and found that PCA and SVM helped raise the ratio of tongue coating detection.

Keywords: Active Shape Model, Principal Component Analysis, Support Vector Machine, Tongue diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
969 A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18um CMOS

Authors: Sanaz Haddadian, Rahele Hedayati

Abstract:

A 10bit, 40 MSps, sample and hold, implemented in 0.18-μm CMOS technology with 3.3V supply, is presented for application in the front-end stage of an analog-to-digital converter. Topology selection, biasing, compensation and common mode feedback are discussed. Cascode technique has been used to increase the dc gain. The proposed opamp provides 149MHz unity-gain bandwidth (wu), 80 degree phase margin and a differential peak to peak output swing more than 2.5v. The circuit has 55db Total Harmonic Distortion (THD), using the improved fully differential two stage operational amplifier of 91.7dB gain. The power dissipation of the designed sample and hold is 4.7mw. The designed system demonstrates relatively suitable response in different process, temperature and supply corners (PVT corners).

Keywords: Analog Integrated Circuit Design, Sample & Hold Amplifier and CMOS Technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4110
968 Periodic Solutions for a Third-order p-Laplacian Functional Differential Equation

Authors: Yanling Zhu, Kai Wang

Abstract:

By means of Mawhin’s continuation theorem, we study a kind of third-order p-Laplacian functional differential equation with distributed delay in the form: ϕp(x (t)) = g  t,  0 −τ x(t + s) dα(s)  + e(t), some criteria to guarantee the existence of periodic solutions are obtained.

Keywords: p–Laplacian, distributed delay, periodic solution, Mawhin's continuation theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
967 Analysis and Application of in Indirect MinimumJerk Method for Higher order Differential Equation in Dynamics Optimization Systems

Authors: V. Tawiwat, T. Amornthep, P. Pnop

Abstract:

Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper considers the indirect minimum Jerk method for higher order differential equation in dynamics optimization proposes a simple yet very interesting indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of indirect jerks are found using the dynamic optimization methods together with the numerical approximation. This case considers the linear equation of a simple system, for instance, mass, spring and damping. The simple system uses two mass connected together by springs. The boundary initial is defined the fix end time and end point. The higher differential order is solved by Galerkin-s methods weight residual. As the result, the 6th higher differential order shows the faster solving time.

Keywords: Optimization, Dynamic, Linear Systems, Jerks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
966 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: Complementary and alternative medicine, Iridology, iris, feature extraction, classification, disease prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
965 Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

Authors: Lina Wu, Ye Li, Jia Liu

Abstract:

We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.

Keywords: Differential Forms, Hölder Inequality, Liouville-type problems, p-balanced growth, p-harmonic maps, q-energy growth, tests for series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
964 On Problem of Parameters Identification of Dynamic Object

Authors: Kamil Aida-zade, C. Ardil

Abstract:

In this paper, some problem formulations of dynamic object parameters recovery described by non-autonomous system of ordinary differential equations with multipoint unshared edge conditions are investigated. Depending on the number of additional conditions the problem is reduced to an algebraic equations system or to a problem of quadratic programming. With this purpose the paper offers a new scheme of the edge conditions transfer method called by conditions shift. The method permits to get rid from differential links and multipoint unshared initially-edge conditions. The advantage of the proposed approach is concluded by capabilities of reduction of a parametric identification problem to essential simple problems of the solution of an algebraic system or quadratic programming.

Keywords: dynamic objects, ordinary differential equations, multipoint unshared edge conditions, quadratic programming, conditions shift

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
963 A Necessary Condition for the Existence of Chaos in Fractional Order Delay Differential Equations

Authors: Sachin Bhalekar

Abstract:

In this paper we propose a necessary condition for the existence of chaos in delay differential equations of fractional order. To explain the proposed theory, we discuss fractional order Liu system and financial system involving delay.

Keywords: Caputo derivative, delay, stability, chaos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631
962 Adomian Method for Second-order Fuzzy Differential Equation

Authors: Lei Wang, Sizong Guo

Abstract:

In this paper, we study the numerical method for solving second-order fuzzy differential equations using Adomian method under strongly generalized differentiability. And, we present an example with initial condition having four different solutions to illustrate the efficiency of the proposed method under strongly generalized differentiability.

Keywords: Fuzzy-valued function, fuzzy initial value problem, strongly generalized differentiability, adomian decomposition method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
961 Intuitionistic Fuzzy Multisets And Its Application in Medical Diagnosis

Authors: Shinoj T. K, Sunil Jacob John

Abstract:

In this paper a new concept named Intuitionistic Fuzzy Multiset is introduced. The basic operations on Intuitionistic Fuzzy Multisets such as union, intersection, addition, multiplication etc. are discussed. An application of Intuitionistic Fuzzy Multiset in Medical diagnosis problem using a distance function is discussed in detail.

Keywords: Intuitionistic Fuzzy set, Multiset, Intuitionistic Fuzzy Multiset

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
960 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries

Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco

Abstract:

SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.

Keywords: Forecasting, ordinary differential equations, SARS-CoV-2 epidemic, SIR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498
959 A Combined Practical Approach to Condition Monitoring of Reciprocating Compressors using IAS and Dynamic Pressure

Authors: M. Elhaj, M. Almrabet, M. Rgeai, I. Ehtiwesh

Abstract:

A Comparison and evaluation of the different condition monitoring (CM) techniques was applied experimentally on RC e.g. Dynamic cylinder pressure and crankshaft Instantaneous Angular Speed (IAS), for the detection and diagnosis of valve faults in a two - stage reciprocating compressor for a programme of condition monitoring which can successfully detect and diagnose a fault in machine. Leakage in the valve plate was introduced experimentally into a two-stage reciprocating compressor. The effect of the faults on compressor performance was monitored and the differences with the normal, healthy performance noted as a fault signature been used for the detection and diagnosis of faults. The paper concludes with what is considered to be a unique approach to condition monitoring. First, each of the two most useful techniques is used to produce a Truth Table which details the circumstances in which each method can be used to detect and diagnose a fault. The two Truth Tables are then combined into a single Decision Table to provide a unique and reliable method of detection and diagnosis of each of the individual faults introduced into the compressor. This gives accurate diagnosis of compressor faults.

Keywords: Condition Monitoring, Dynamic Pressure, Instantaneous Angular Speed, Reciprocating Compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3267
958 On the Representation of Actuator Faults Diagnosis and Systems Invertibility

Authors: Sallem F., Dahhou B., Kamoun A.

Abstract:

In this work, the main problem considered is the  detection and the isolation of the actuator fault. A new formulation of  the linear system is generated to obtain the conditions of the actuator  fault diagnosis. The proposed method is based on the representation  of the actuator as a subsystem connected with the process system in  cascade manner. The designed formulation is generated to obtain the  conditions of the actuator fault detection and isolation. Detectability  conditions are expressed in terms of the invertibility notions. An  example and a comparative analysis with the classic formulation  illustrate the performances of such approach for simple actuator fault  diagnosis by using the linear model of nuclear reactor.

 

Keywords: Actuator fault, Fault detection, left invertibility, nuclear reactor, observability, parameter intervals, system inversion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
957 Global Existence of Periodic Solutions in a Delayed Tri–neuron Network

Authors: Kejun Zhuang, Zhaohui Wen

Abstract:

In this paper, a tri–neuron network model with time delay is investigated. By using the Bendixson-s criterion for high– dimensional ordinary differential equations and global Hopf bifurcation theory for functional differential equations, sufficient conditions for existence of periodic solutions when the time delay is sufficiently large are established.

Keywords: Delay, global Hopf bifurcation, neural network, periodicsolutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
956 2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations

Authors: Abdu Masanawa Sagir

Abstract:

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ = f(x,y), a < = x < = b with associated initial or boundary conditions. The continuaous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
955 Vehicle Gearbox Fault Diagnosis Based On Cepstrum Analysis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Research on damage of gears and gear pairs using vibration signals remains very attractive, because vibration signals from a gear pair are complex in nature and not easy to interpret. Predicting gear pair defects by analyzing changes in vibration signal of gears pairs in operation is a very reliable method. Therefore, a suitable vibration signal processing technique is necessary to extract defect information generally obscured by the noise from dynamic factors of other gear pairs.This article presents the value of cepstrum analysis in vehicle gearbox fault diagnosis. Cepstrum represents the overall power content of a whole family of harmonics and sidebands when more than one family of sidebands is present at the same time. The concept for the measurement and analysis involved in using the technique are briefly outlined. Cepstrum analysis is used for detection of an artificial pitting defect in a vehicle gearbox loaded with different speeds and torques. The test stand is equipped with three dynamometers; the input dynamometer serves asthe internal combustion engine, the output dynamometers introduce the load on the flanges of the output joint shafts. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. Also, a method for fault diagnosis of gear faults is presented based on order Cepstrum. The procedure is illustrated with the experimental vibration data of the vehicle gearbox. The results show the effectiveness of Cepstrum analysis in detection and diagnosis of the gear condition.

Keywords: Cepstrum analysis, fault diagnosis, gearbox.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274
954 3.5-bit Stage of the CMOS Pipeline ADC

Authors: Gao Wei, Xu Minglu, Xu Yan, Zhang Xiaotong, Wang Xinghua

Abstract:

A 3.5-bit stage of the CMOS pipelined ADC is proposed. In this report, the main part of 3.5-bit stage ADC is introduced. How the MDAC, comparator and encoder worked and designed are shown in details. Besides, an OTA which is used in fully differential pipelined ADC was described. Using gain-boost architecture with differential amplifier, this OTA achieve high-gain and high-speed. This design was using CMOS 0.18um process and simulation in Cadence. The result of the simulation shows that the OTA has a gain up to 80dB, the unity gain bandwidth of about 1.138GHz with 2pF load.

Keywords: pipelined ADC, MDAC, operational amplifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3496
953 Application of the Central-Difference with Half- Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-Differential Equations

Authors: E. Aruchunan, J. Sulaiman

Abstract:

The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The formulation and implementation of the Full-Sweep Gauss-Seidel (FSGS) and Half- Sweep Gauss-Seidel (HSGS) methods are also presented. The HSGS method has been shown to rapid compared to the FSGS methods. Some numerical tests were illustrated to show that the HSGS method is superior to the FSGS method.

Keywords: Integro-differential equations, Linear fredholm equations, Finite difference, Quadrature formulas, Half-Sweep iteration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
952 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043
951 Solving of the Fourth Order Differential Equations with the Neumann Problem

Authors: Marziyeh Halimi, Roushanak Lotfikar, Simin Mansouri Borojeni

Abstract:

In this paper we considered the Neumann problem for the fourth order differential equation. First we define the weighted Sobolev space 2 Wα and generalized solution for this equation. Then we consider the existence and uniqueness of the generalized solution, as well as give the description of the spectrum and of the domain of definition of the corresponding operator.

Keywords: Neumann problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.2000 mathematic subject classification: 34A05, 34A30.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
950 Differential Evolution Based Optimal Choice and Location of Facts Devices in Restructured Power System

Authors: K. Balamurugan, V. Dharmalingam, R. Muralisachithanandam, R. Sankaran

Abstract:

This paper deals with the optimal choice and location of FACTS devices in deregulated power systems using Differential Evolution algorithm. The main objective of this paper is to achieve the power system economic generation allocation and dispatch in deregulated electricity market. Using the proposed method, the locations of the FACTS devices, their types and ratings are optimized simultaneously. Different kinds of FACTS devices such as TCSC and SVC are simulated in this study. Furthermore, their investment costs are also considered. Simulation results validate the capability of this new approach in minimizing the overall system cost function, which includes the investment costs of the FACTS devices and the bid offers of the market participants. The proposed algorithm is an effective and practical method for the choice and location of suitable FACTS devices in deregulated electricity market.

Keywords: FACTS Devices, Deregulated Electricity Market, Optimal Location, Differential Evolution, Mat Lab.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
949 Predicting Radiative Heat Transfer in Arbitrary Two and Three-Dimensional Participating Media

Authors: Mohammad Hadi Bordbar, Timo Hyppänen

Abstract:

The radiative exchange method is introduced as a numerical method for the simulation of radiative heat transfer in an absorbing, emitting and isotropically scattering media. In this method, the integro-differential radiative balance equation is solved by using a new introduced concept for the exchange factor. Even though the radiative source term is calculated in a mesh structure that is coarser than the structure used in computational fluid dynamics, calculating the exchange factor between different coarse elements by using differential integration elements makes the result of the method close to that of integro-differential radiative equation. A set of equations for calculating exchange factors in two and threedimensional Cartesian coordinate system is presented, and the method is used in the simulation of radiative heat transfer in twodimensional rectangular case and a three-dimensional simple cube. The result of using this method in simulating different cases is verified by comparing them with those of using other numerical radiative models.

Keywords: Exchange factor, Numerical simulation, Thermal radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
948 Self-Adaptive Differential Evolution Based Power Economic Dispatch of Generators with Valve-Point Effects and Multiple Fuel Options

Authors: R.Balamurugan, S.Subramanian

Abstract:

This paper presents the solution of power economic dispatch (PED) problem of generating units with valve point effects and multiple fuel options using Self-Adaptive Differential Evolution (SDE) algorithm. The global optimal solution by mathematical approaches becomes difficult for the realistic PED problem in power systems. The Differential Evolution (DE) algorithm is found to be a powerful evolutionary algorithm for global optimization in many real problems. In this paper the key parameters of control in DE algorithm such as the crossover constant CR and weight applied to random differential F are self-adapted. The PED problem formulation takes into consideration of nonsmooth fuel cost function due to valve point effects and multi fuel options of generator. The proposed approach has been examined and tested with the numerical results of PED problems with thirteen-generation units including valve-point effects, ten-generation units with multiple fuel options neglecting valve-point effects and ten-generation units including valve-point effects and multiple fuel options. The test results are promising and show the effectiveness of proposed approach for solving PED problems.

Keywords: Multiple fuels, power economic dispatch, selfadaptivedifferential evolution and valve-point effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
947 Mathematical Approach for Large Deformation Analysis of the Stiffened Coupled Shear Walls

Authors: M. J. Fadaee, H. Saffari, H. Khosravi

Abstract:

Shear walls are used in most of the tall buildings for carrying the lateral load. When openings for doors or windows are necessary to be existed in the shear walls, a special type of the shear walls is used called "coupled shear walls" which in some cases is stiffened by specific beams and so, called "stiffened coupled shear walls". In this paper, a mathematical method for geometrically nonlinear analysis of the stiffened coupled shear walls has been presented. Then, a suitable formulation for determining the critical load of the stiffened coupled shear walls under gravity force has been proposed. The governing differential equations for equilibrium and deformation of the stiffened coupled shear walls have been obtained by setting up the equilibrium equations and the moment-curvature relationships for each wall. Because of the complexity of the differential equation, the energy method has been adopted for approximate solution of the equations.

Keywords: Buckling load, differential equation, energy method, geometrically nonlinear analysis, mathematical method, Stiffened coupled shear walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
946 Transceiver for Differential Wave Pipe-Lined Serial Interconnect with Surfing

Authors: Bhaskar M., Venkataramani B.

Abstract:

In the literature, surfing technique has been proposed for single ended wave-pipelined serial interconnects to increase the data transfer rate. In this paper a novel surfing technique is proposed for differential wave-pipelined serial interconnects, which uses a 'Controllable inverter pair' for surfing. To evaluate the efficiency of this technique, a transceiver with transmitter, receiver, delay locked loop (DLL) along with 40mm metal 4 interconnects using the proposed surfing technique is implemented in UMC 180nm technology and their performances are studied through post layout simulations. From the study, it is observed that the proposed scheme permits 1.875 times higher data transmission rate compared to the single ended scheme whose maximum data transfer rate is 1.33 GB/s. The proposed scheme has the ability to receive the correct data even with stuck-at-faults in the complementary line.

Keywords: Controllable inverter pair, differential interconnect, serial link, surfing, wave pipelining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
945 Modeling, Simulation and Monitoring of Nuclear Reactor Using Directed Graph and Bond Graph

Authors: A. Badoud, M. Khemliche, S. Latreche

Abstract:

The main objective developed in this paper is to find a graphic technique for modeling, simulation and diagnosis of the industrial systems. This importance is much apparent when it is about a complex system such as the nuclear reactor with pressurized water of several form with various several non-linearity and time scales. In this case the analytical approach is heavy and does not give a fast idea on the evolution of the system. The tool Bond Graph enabled us to transform the analytical model into graphic model and the software of simulation SYMBOLS 2000 specific to the Bond Graphs made it possible to validate and have the results given by the technical specifications. We introduce the analysis of the problem involved in the faults localization and identification in the complex industrial processes. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new diagnosis approaches to the complex system control. The industrial systems became increasingly complex with the faults diagnosis procedures in the physical systems prove to become very complex as soon as the systems considered are not elementary any more. Indeed, in front of this complexity, we chose to make recourse to Fault Detection and Isolation method (FDI) by the analysis of the problem of its control and to conceive a reliable system of diagnosis making it possible to apprehend the complex dynamic systems spatially distributed applied to the standard pressurized water nuclear reactor.

Keywords: Bond Graph, Modeling, Simulation, Monitoring, Analytical Redundancy Relations, Pressurized Water Reactor, Directed Graph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
944 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems

Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong

Abstract:

For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.

Keywords: Differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1126
943 A Novel Method for Non-Invasive Diagnosis of Hepatitis C Virus Using Electromagnetic Signal Detection: A Multicenter International Study

Authors: Gamal Shiha, Waleed Samir, Zahid Azam, Premashis Kar, Saeed Hamid, Shiv Sarin

Abstract:

A simple, rapid and non-invasive electromagnetic sensor (C-FAST device) was- patented; for diagnosis of HCV RNA. Aim: To test the validity of the device compared to standard HCV PCR. Subjects and Methods: The first phase was done as pilot in Egypt on 79 participants; the second phase was done in five centers: one center from Egypt, two centers from Pakistan and two centers from India (800, 92 and 113 subjects respectively). The third phase was done nationally as multicenter study on (1600) participants for ensuring its representativeness. Results: When compared to PCR technique, C-FAST device revealed sensitivity 95% to 100%, specificity 95.5% to 100%, PPV 89.5% to 100%, NPV 95% to 100% and positive likelihood ratios 21.8% to 38.5%. Conclusion: It is practical evidence that HCV nucleotides emit electromagnetic signals that can be used for its identification. As compared to PCR, C-FAST is an accurate, valid and non-invasive device.

Keywords: C-FAST- a valid and reliable device, Distant cellular interaction, Electromagnetic signal detection, Non-invasive diagnosis of HCV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17982
942 Computer Aided Detection on Mammography

Authors: Giovanni Luca Masala

Abstract:

A typical definition of the Computer Aided Diagnosis (CAD), found in literature, can be: A diagnosis made by a radiologist using the output of a computerized scheme for automated image analysis as a diagnostic aid. Often it is possible to find the expression Computer Aided Detection (CAD or CADe): this definition emphasizes the intent of CAD to support rather than substitute the human observer in the analysis of radiographic images. In this article we will illustrate the application of CAD systems and the aim of these definitions. Commercially available CAD systems use computerized algorithms for identifying suspicious regions of interest. In this paper are described the general CAD systems as an expert system constituted of the following components: segmentation / detection, feature extraction, and classification / decision making. As example, in this work is shown the realization of a Computer- Aided Detection system that is able to assist the radiologist in identifying types of mammary tumor lesions. Furthermore this prototype of station uses a GRID configuration to work on a large distributed database of digitized mammographic images.

Keywords: Computer Aided Detection, Computer Aided Diagnosis, mammography, GRID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885