Search results for: machine-learning algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1505

Search results for: machine-learning algorithms

1505 Machine Learning in Production Systems Design Using Genetic Algorithms

Authors: Abu Qudeiri Jaber, Yamamoto Hidehiko Rizauddin Ramli

Abstract:

To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.

Keywords: Genetic algorithms, Layout problem, Machinelearning, Production system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
1504 The Hardware Implementation of a Novel Genetic Algorithm

Authors: Zhenhuan Zhu, David Mulvaney, Vassilios Chouliaras

Abstract:

This paper presents a novel genetic algorithm, termed the Optimum Individual Monogenetic Algorithm (OIMGA) and describes its hardware implementation. As the monogenetic strategy retains only the optimum individual, the memory requirement is dramatically reduced and no crossover circuitry is needed, thereby ensuring the requisite silicon area is kept to a minimum. Consequently, depending on application requirements, OIMGA allows the investigation of solutions that warrant either larger GA populations or individuals of greater length. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of existing hardware GA implementations. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space.

Keywords: Genetic algorithms, hardware-based machinelearning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
1503 Evolutionary Approach for Automated Discovery of Censored Production Rules

Authors: Kamal K. Bharadwaj, Basheer M. Al-Maqaleh

Abstract:

In the recent past, there has been an increasing interest in applying evolutionary methods to Knowledge Discovery in Databases (KDD) and a number of successful applications of Genetic Algorithms (GA) and Genetic Programming (GP) to KDD have been demonstrated. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski & Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations, in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the 'If P Then D' part of the CPR expresses important information, while the Unless C part acts only as a switch and changes the polarity of D to ~D. This paper presents a classification algorithm based on evolutionary approach that discovers comprehensible rules with exceptions in the form of CPRs. The proposed approach has flexible chromosome encoding, where each chromosome corresponds to a CPR. Appropriate genetic operators are suggested and a fitness function is proposed that incorporates the basic constraints on CPRs. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Keywords: Censored Production Rule, Data Mining, MachineLearning, Evolutionary Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
1502 Initializing K-Means using Genetic Algorithms

Authors: Bashar Al-Shboul, Sung-Hyon Myaeng

Abstract:

K-Means (KM) is considered one of the major algorithms widely used in clustering. However, it still has some problems, and one of them is in its initialization step where it is normally done randomly. Another problem for KM is that it converges to local minima. Genetic algorithms are one of the evolutionary algorithms inspired from nature and utilized in the field of clustering. In this paper, we propose two algorithms to solve the initialization problem, Genetic Algorithm Initializes KM (GAIK) and KM Initializes Genetic Algorithm (KIGA). To show the effectiveness and efficiency of our algorithms, a comparative study was done among GAIK, KIGA, Genetic-based Clustering Algorithm (GCA), and FCM [19].

Keywords: Clustering, Genetic Algorithms, K-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
1501 A Novel Genetic Algorithm Designed for Hardware Implementation

Authors: Zhenhuan Zhu, David Mulvaney, Vassilios Chouliaras

Abstract:

A new genetic algorithm, termed the 'optimum individual monogenetic genetic algorithm' (OIMGA), is presented whose properties have been deliberately designed to be well suited to hardware implementation. Specific design criteria were to ensure fast access to the individuals in the population, to keep the required silicon area for hardware implementation to a minimum and to incorporate flexibility in the structure for the targeting of a range of applications. The first two criteria are met by retaining only the current optimum individual, thereby guaranteeing a small memory requirement that can easily be stored in fast on-chip memory. Also, OIMGA can be easily reconfigured to allow the investigation of problems that normally warrant either large GA populations or individuals many genes in length. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of a range of existing hardware GA implementations.

Keywords: Genetic algorithms, genetic hardware, machinelearning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023
1500 Congestion Control for Internet Media Traffic

Authors: Mohammad A. Talaat, Magdi A. Koutb, Hoda S. Sorour

Abstract:

In this paper we investigated a number of the Internet congestion control algorithms that has been developed in the last few years. It was obviously found that many of these algorithms were designed to deal with the Internet traffic merely as a train of consequent packets. Other few algorithms were specifically tailored to handle the Internet congestion caused by running media traffic that represents audiovisual content. This later set of algorithms is considered to be aware of the nature of this media content. In this context we briefly explained a number of congestion control algorithms and hence categorized them into the two following categories: i) Media congestion control algorithms. ii) Common congestion control algorithms. We hereby recommend the usage of the media congestion control algorithms for the reason of being media content-aware rather than the other common type of algorithms that blindly manipulates such traffic. We showed that the spread of such media content-aware algorithms over Internet will lead to better congestion control status in the coming years. This is due to the observed emergence of the era of digital convergence where the media traffic type will form the majority of the Internet traffic.

Keywords: Congestion Control, Media Traffic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
1499 Performance Comparison of Parallel Sorting Algorithms on the Cluster of Workstations

Authors: Lai Lai Win Kyi, Nay Min Tun

Abstract:

Sorting appears the most attention among all computational tasks over the past years because sorted data is at the heart of many computations. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. Many parallel sorting algorithms have been investigated for a variety of parallel computer architectures. In this paper, three parallel sorting algorithms have been implemented and compared in terms of their overall execution time. The algorithms implemented are the odd-even transposition sort, parallel merge sort and parallel rank sort. Cluster of Workstations or Windows Compute Cluster has been used to compare the algorithms implemented. The C# programming language is used to develop the sorting algorithms. The MPI (Message Passing Interface) library has been selected to establish the communication and synchronization between processors. The time complexity for each parallel sorting algorithm will also be mentioned and analyzed.

Keywords: Cluster of Workstations, Parallel sorting algorithms, performance analysis, parallel computing and MPI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
1498 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering.

Keywords: Clustering, method, algorithm, hierarchical, survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3376
1497 Visualization of Searching and Sorting Algorithms

Authors: Bremananth R, Radhika.V, Thenmozhi.S

Abstract:

Sequences of execution of algorithms in an interactive manner using multimedia tools are employed in this paper. It helps to realize the concept of fundamentals of algorithms such as searching and sorting method in a simple manner. Visualization gains more attention than theoretical study and it is an easy way of learning process. We propose methods for finding runtime sequence of each algorithm in an interactive way and aims to overcome the drawbacks of the existing character systems. System illustrates each and every step clearly using text and animation. Comparisons of its time complexity have been carried out and results show that our approach provides better perceptive of algorithms.

Keywords: Algorithms, Searching, Sorting, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
1496 Making Computer Learn Color

Authors: Rinaldo Christian Tanumara, Ming Xie

Abstract:

Color categorization is shared among members in a society. This allows communication of color, especially when using natural language such as English. Hence sociable robot, to live coexist with human in human society, must also have the shared color categorization. To achieve this, many works have been done relying on modeling of human color perception and mathematical complexities. In contrast, in this work, the computer as brain of the robot learns color categorization through interaction with humans without much mathematical complexities.

Keywords: Color categorization, color learning, machinelearning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
1495 Investigation on Novel Based Metaheuristic Algorithms for Combinatorial Optimization Problems in Ad Hoc Networks

Authors: C. Rajan, N. Shanthi, C. Rasi Priya, K. Geetha

Abstract:

Routing in MANET is extremely challenging because of MANETs dynamic features, its limited bandwidth, frequent topology changes caused by node mobility and power energy consumption. In order to efficiently transmit data to destinations, the applicable routing algorithms must be implemented in mobile ad-hoc networks. Thus we can increase the efficiency of the routing by satisfying the Quality of Service (QoS) parameters by developing routing algorithms for MANETs. The algorithms that are inspired by the principles of natural biological evolution and distributed collective behavior of social colonies have shown excellence in dealing with complex optimization problems and are becoming more popular. This paper presents a survey on few meta-heuristic algorithms and naturally-inspired algorithms.

Keywords: Ant colony optimization, genetic algorithm, Naturally-inspired algorithms and particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2701
1494 Selective Mutation for Genetic Algorithms

Authors: Sung Hoon Jung

Abstract:

In this paper, we propose a selective mutation method for improving the performances of genetic algorithms. In selective mutation, individuals are first ranked and then additionally mutated one bit in a part of their strings which is selected corresponding to their ranks. This selective mutation helps genetic algorithms to fast approach the global optimum and to quickly escape local optima. This results in increasing the performances of genetic algorithms. We measured the effects of selective mutation with four function optimization problems. It was found from extensive experiments that the selective mutation can significantly enhance the performances of genetic algorithms.

Keywords: Genetic algorithm, selective mutation, function optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
1493 An Exploratory Environment for Concurrency Control Algorithms

Authors: Jinhua Guo

Abstract:

Designing, implementing, and debugging concurrency control algorithms in a real system is a complex, tedious, and errorprone process. Further, understanding concurrency control algorithms and distributed computations is itself a difficult task. Visualization can help with both of these problems. Thus, we have developed an exploratory environment in which people can prototype and test various versions of concurrency control algorithms, study and debug distributed computations, and view performance statistics of distributed systems. In this paper, we describe the exploratory environment and show how it can be used to explore concurrency control algorithms for the interactive steering of distributed computations.

Keywords: Consistency, Distributed Computing, InteractiveSteering, Simulation, Visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
1492 Genetic Algorithms with Oracle for the Traveling Salesman Problem

Authors: Robin Gremlich, Andreas Hamfelt, Héctor de Pereda, Vladislav Valkovsky

Abstract:

By introducing the concept of Oracle we propose an approach for improving the performance of genetic algorithms for large-scale asymmetric Traveling Salesman Problems. The results have shown that the proposed approach allows overcoming some traditional problems for creating efficient genetic algorithms.

Keywords: Genetic algorithms, Traveling Salesman Problem, optimal decision distribution, oracle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
1491 New Algorithms for Finding Short Reset Sequences in Synchronizing Automata

Authors: Adam Roman

Abstract:

Finding synchronizing sequences for the finite automata is a very important problem in many practical applications (part orienters in industry, reset problem in biocomputing theory, network issues etc). Problem of finding the shortest synchronizing sequence is NP-hard, so polynomial algorithms probably can work only as heuristic ones. In this paper we propose two versions of polynomial algorithms which work better than well-known Eppstein-s Greedy and Cycle algorithms.

Keywords: Synchronizing words, reset sequences, Černý Conjecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
1490 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems

Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras

Abstract:

The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.

Keywords: MOEAs, Multiobjective optimization, ZDT test functions, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
1489 Comparative Study of Scheduling Algorithms for LTE Networks

Authors: Samia Dardouri, Ridha Bouallegue

Abstract:

Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.

Keywords: LTE, Multimedia flows, Scheduling algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4810
1488 A Family of Affine Projection Adaptive Filtering Algorithms With Selective Regressors

Authors: Mohammad Shams Esfand Abadi, Nader Hadizadeh Kashani, Vahid Mehrdad

Abstract:

In this paper we present a general formalism for the establishment of the family of selective regressor affine projection algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-RAPA), the SR partial rank algorithm (SR-PRA), the SR binormalized data reusing least mean squares (SR-BNDR-LMS), and the SR normalized LMS with orthogonal correction factors (SR-NLMS-OCF) algorithms are established by this general formalism. We demonstrate the performance of the presented algorithms through simulations in acoustic echo cancellation scenario.

Keywords: Adaptive filter, affine projection, selective regressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
1487 Angular-Coordinate Driven Radial Tree Drawing

Authors: Farshad Ghassemi Toosi, Nikola S. Nikolov

Abstract:

We present a visualization technique for radial drawing of trees consisting of two slightly different algorithms. Both of them make use of node-link diagrams for visual encoding. This visualization creates clear drawings without edge crossing. One of the algorithms is suitable for real-time visualization of large trees, as it requires minimal recalculation of the layout if leaves are inserted or removed from the tree; while the other algorithm makes better utilization of the drawing space. The algorithms are very similar and follow almost the same procedure but with different parameters. Both algorithms assign angular coordinates for all nodes which are then converted into 2D Cartesian coordinates for visualization. We present both algorithms and discuss how they compare to each other.

Keywords: Radial Tree Drawing, Real-Time Visualization, Angular Coordinates, Large Trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
1486 A Comparative Study of Page Ranking Algorithms for Information Retrieval

Authors: Ashutosh Kumar Singh, Ravi Kumar P

Abstract:

This paper gives an introduction to Web mining, then describes Web Structure mining in detail, and explores the data structure used by the Web. This paper also explores different Page Rank algorithms and compare those algorithms used for Information Retrieval. In Web Mining, the basics of Web mining and the Web mining categories are explained. Different Page Rank based algorithms like PageRank (PR), WPR (Weighted PageRank), HITS (Hyperlink-Induced Topic Search), DistanceRank and DirichletRank algorithms are discussed and compared. PageRanks are calculated for PageRank and Weighted PageRank algorithms for a given hyperlink structure. Simulation Program is developed for PageRank algorithm because PageRank is the only ranking algorithm implemented in the search engine (Google). The outputs are shown in a table and chart format.

Keywords: Web Mining, Web Structure, Web Graph, LinkAnalysis, PageRank, Weighted PageRank, HITS, DistanceRank, DirichletRank,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834
1485 Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement

Authors: V. K. Banga, R. Kumar, Y. Singh

Abstract:

In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimization algorithm is presented and discussed. The result are compared only GA and Fuzzy GA. This paper describes genetic algorithms, which is designed to optimize robot movement and trajectory. Though the model represents is a general model for redundant structures and could represent any n-link structures. The result is a complete trajectory planning with Fuzzy logic and Genetic algorithms demonstrating the flexibility of this technique of artificial intelligence.

Keywords: Inverse kinematics, Genetic algorithms (GAs), Fuzzy logic (FL), Trajectory planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
1484 Fractal Dimension: An Index to Quantify Parameters in Genetic Algorithms

Authors: Mahmoud R. Shaghaghian

Abstract:

Genetic Algorithms (GAs) are direct searching methods which require little information from design space. This characteristic beside robustness of these algorithms makes them to be very popular in recent decades. On the other hand, while this method is employed, there is no guarantee to achieve optimum results. This obliged designer to run such algorithms more than one time to achieve more reliable results. There are many attempts to modify the algorithms to make them more efficient. In this paper, by application of fractal dimension (particularly, Box Counting Method), the complexity of design space are established for determination of mutation and crossover probabilities (Pm and Pc). This methodology is followed by a numerical example for more clarification. It is concluded that this modification will improve efficiency of GAs and make them to bring about more reliable results especially for design space with higher fractal dimensions.

Keywords: Genetic Algorithm, Fractal Dimension, BoxCounting Method, Weierstrass-Mandelbrot function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
1483 Affine Projection Adaptive Filter with Variable Regularization

Authors: Young-Seok Choi

Abstract:

We propose two affine projection algorithms (APA) with variable regularization parameter. The proposed algorithms dynamically update the regularization parameter that is fixed in the conventional regularized APA (R-APA) using a gradient descent based approach. By introducing the normalized gradient, the proposed algorithms give birth to an efficient and a robust update scheme for the regularization parameter. Through experiments we demonstrate that the proposed algorithms outperform conventional R-APA in terms of the convergence rate and the misadjustment error.

Keywords: Affine projection, regularization, gradient descent, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
1482 Improved Artificial Immune System Algorithm with Local Search

Authors: Ramin Javadzadeh., Zahra Afsahi, MohammadReza Meybodi

Abstract:

The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithms

Keywords: Artificial immune system, Cellular Automata, Cellular learning automata, Cellular learning automata, , Local search, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
1481 Investigation on Bio-Inspired Population Based Metaheuristic Algorithms for Optimization Problems in Ad Hoc Networks

Authors: C. Rajan, K. Geetha, C. Rasi Priya, R. Sasikala

Abstract:

Nature is a great source of inspiration for solving complex problems in networks. It helps to find the optimal solution. Metaheuristic algorithm is one of the nature-inspired algorithm which helps in solving routing problem in networks. The dynamic features, changing of topology frequently and limited bandwidth make the routing, challenging in MANET. Implementation of appropriate routing algorithms leads to the efficient transmission of data in mobile ad hoc networks. The algorithms that are inspired by the principles of naturally-distributed/collective behavior of social colonies have shown excellence in dealing with complex optimization problems. Thus some of the bio-inspired metaheuristic algorithms help to increase the efficiency of routing in ad hoc networks. This survey work presents the overview of bio-inspired metaheuristic algorithms which support the efficiency of routing in mobile ad hoc networks.

Keywords: Ant colony optimization algorithm, Genetic algorithm, naturally inspired algorithms and particle swarm optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3610
1480 Application of Genetic Algorithms to Feature Subset Selection in a Farsi OCR

Authors: M. Soryani, N. Rafat

Abstract:

Dealing with hundreds of features in character recognition systems is not unusual. This large number of features leads to the increase of computational workload of recognition process. There have been many methods which try to remove unnecessary or redundant features and reduce feature dimensionality. Besides because of the characteristics of Farsi scripts, it-s not possible to apply other languages algorithms to Farsi directly. In this paper some methods for feature subset selection using genetic algorithms are applied on a Farsi optical character recognition (OCR) system. Experimental results show that application of genetic algorithms (GA) to feature subset selection in a Farsi OCR results in lower computational complexity and enhanced recognition rate.

Keywords: Feature Subset Selection, Genetic Algorithms, Optical Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
1479 Making Data Structures and Algorithms more Understandable by Programming Sudoku the Human Way

Authors: Roelien Goede

Abstract:

Data Structures and Algorithms is a module in most Computer Science or Information Technology curricula. It is one of the modules most students identify as being difficult. This paper demonstrates how programming a solution for Sudoku can make abstract concepts more concrete. The paper relates concepts of a typical Data Structures and Algorithms module to a step by step solution for Sudoku in a human type as opposed to a computer oriented solution.

Keywords: Data Structures, Algorithms, Sudoku, ObjectOriented Programming, Programming Teaching, Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3097
1478 Learning Human-Like Color Categorization through Interaction

Authors: Rinaldo Christian Tanumara, Ming Xie, Chi Kit Au

Abstract:

Human perceives color in categories, which may be identified using color name such as red, blue, etc. The categorization is unique for each human being. However despite the individual differences, the categorization is shared among members in society. This allows communication among them, especially when using color name. Sociable robot, to live coexist with human and become part of human society, must also have the shared color categorization, which can be achieved through learning. Many works have been done to enable computer, as brain of robot, to learn color categorization. Most of them rely on modeling of human color perception and mathematical complexities. Differently, in this work, the computer learns color categorization through interaction with humans. This work aims at developing the innate ability of the computer to learn the human-like color categorization. It focuses on the representation of color categorization and how it is built and developed without much mathematical complexity.

Keywords: Color categorization, color learning, machinelearning, color naming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
1477 Comparative Analysis of Different Page Ranking Algorithms

Authors: S. Prabha, K. Duraiswamy, J. Indhumathi

Abstract:

Search engine plays an important role in internet, to retrieve the relevant documents among the huge number of web pages. However, it retrieves more number of documents, which are all relevant to your search topics. To retrieve the most meaningful documents related to search topics, ranking algorithm is used in information retrieval technique. One of the issues in data miming is ranking the retrieved document. In information retrieval the ranking is one of the practical problems. This paper includes various Page Ranking algorithms, page segmentation algorithms and compares those algorithms used for Information Retrieval. Diverse Page Rank based algorithms like Page Rank (PR), Weighted Page Rank (WPR), Weight Page Content Rank (WPCR), Hyperlink Induced Topic Selection (HITS), Distance Rank, Eigen Rumor, Distance Rank Time Rank, Tag Rank, Relational Based Page Rank and Query Dependent Ranking algorithms are discussed and compared.

Keywords: Information Retrieval, Web Page Ranking, search engine, web mining, page segmentations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4288
1476 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets

Authors: Najmeh Abedzadeh, Matthew Jacobs

Abstract:

An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.

Keywords: IDS, intrusion detection system, imbalanced datasets, sampling algorithms, big data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125