Search results for: liquid crystals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 646

Search results for: liquid crystals

526 Long-Term On-Chip Storage and Release of Liquid Reagents for Diagnostic Lab-on-a-Chip Applications

Authors: D. Czurratis, Y. Beyl, S. Zinober, R. Zengerle, F. Lärmer

Abstract:

A new concept for long-term reagent storage for Labon- a-Chip (LoC) devices is described. Here we present a polymer multilayer stack with integrated stick packs for long-term storage of several liquid reagents, which are necessary for many diagnostic applications. Stick packs are widely used in packaging industry for storing solids and liquids for long time. The storage concept fulfills two main requirements: First, a long-term storage of reagents in stick packs without significant losses and interaction with surroundings, second, on demand releasing of liquids, which is realized by pushing a membrane against the stick pack through pneumatic pressure. This concept enables long-term on-chip storage of liquid reagents at room temperature and allows an easy implementation in different LoC devices.

Keywords: Lab-on-a-Chip, long-term storage, reagent storage, stick pack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3005
525 Amplification of Compression Waves in Clean and Bubbly Liquid

Authors: Robert I. Nigmatulin, Raisa Kh. Bolotnova, Nailya K. Vakhitova, Andrey S. Topolnikov, Svetlana I. Konovalova, Nikolai A. Makhota

Abstract:

The theoretical investigation is carried out to describe the effect of increase of pressure waves amplitude in clean and bubbly liquid. The goal of the work is to capture the regime of multiple magnification of acoustic and shock waves in the liquid, which enables to get appropriate conditions to enlarge collapses of micro-bubbles. The influence of boundary conditions and frequency of the governing acoustic field is studied for the case of the cylindrical acoustic resonator. It has been observed the formation of standing waves with large amplitude at resonant frequencies. The interaction of the compression wave with gas and vapor bubbles is investigated for the convergent channel. It is shown theoretically that the chemical reactions, which occur inside gas bubbles, provide additional impulse to the wave, that affect strongly on the collapses of the vapor bubbles

Keywords: acoustics, cavitation, detonation, shock waves

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
524 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags

Authors: Elias Akoury

Abstract:

Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.

Keywords: Lanthanide Tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
523 Bipolar Square Wave Pulses for Liquid Food Sterilization using Cascaded H-Bridge Multilevel Inverter

Authors: Hanifah Jambari, Naziha A. Azli, M. Afendi M. Piah

Abstract:

This paper presents the generation of bipolar square wave pulses with characteristics that are suitable for liquid food sterilization using a Cascaded H-bridge Multilevel Inverter (CHMI). Bipolar square waves pulses have been reported as stable for a longer time during the sterilization process with minimum heat emission and increased efficiency. The CHMI allows the system to produce bipolar square wave pulses and yielding high output voltage without using a transformer while fulfilling the pulse requirements for effective liquid food sterilization. This in turn can reduce power consumption and cost of the overall liquid food sterilization system. The simulation results have shown that pulses with peak output voltage of 2.4 kV, pulse width of between 1 2s and 1 ms at frequencies of 50 Hz and 100 Hz can be generated by a 7-level CHMI. Results from the experimental set-up based on a 5-level CHMI has indicated the potential of the proposed circuit in producing bipolar square wave output pulses with peak values that depends on the DC source level supplied to the CHMI modules, pulse width of between 12.5 2s and 1 ms at frequencies of 50 Hz and 100 Hz.

Keywords: pulsed electric field, multilevel inverter, bipolarsquare wave, food sterilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
522 Simulation Studies of Solid-Particle and Liquid-Drop Erosion of NiAl Alloy

Authors: Rong Liu, Kuiying Chen, Ju Chen, Jingrong Zhao, Ming Liang

Abstract:

This article presents modeling studies of NiAl alloy under solid-particle erosion and liquid-drop erosion. In the solid-particle erosion simulation, attention is paid to the oxide scale thickness variation on the alloy in high-temperature erosion environments. The erosion damage is assumed to be deformation wear and cutting wear mechanisms, incorporating the influence of the oxide scale on the eroded surface; thus the instantaneous oxide thickness is the result of synergetic effect of erosion and oxidation. For liquid-drop erosion, special interest is in investigating the effects of drop velocity and drop size on the damage of the target surface. The models of impact stress wave, mean depth of penetration, and maximum depth of erosion rate (Max DER) are employed to develop various maps for NiAl alloy, including target thickness vs. drop size (diameter), rate of mean depth of penetration (MDRP) vs. drop impact velocity, and damage threshold velocity (DTV) vs. drop size.

Keywords: Liquid-drop erosion, NiAl alloy, oxide scale thickness, solid-particle erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
521 Substructure Method for Thermal-Stress Analysis of Liquid-Propellant Rocket Engine Combustion Chamber

Authors: Olga V. Korotkaya

Abstract:

This article is devoted to an important problem of calculation of deflected mode of the combustion chamber and the nozzle end of a new liquid-propellant rocket cruise engine. A special attention is given to the methodology of calculation. Three operating modes are considered. The analysis has been conducted in ANSYS software. The methods of conducted research are mathematical modeling, substructure method, cyclic symmetry, finite element method. The calculation has been carried out to order of S.P. Korolev Rocket and Space Corporation «Energia». The main results are practical. Proposed methodology and created models would be able to use for a wide range of strength problems.

Keywords: Combustion chamber, cyclic symmetry, finite element method, liquid-propellant rocket engine, nozzle end, substructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038
520 Solid-Liquid-Polymer Mixed Matrix Membrane Using Liquid Additive Adsorbed on Activated Carbon Dispersed in Polymeric Membrane for CO2/CH4 Separation

Authors: P. Chultheera, T. Rirksomboon, S. Kulprathipanja, C. Liu, W. Chinsirikul, N. Kerddonfag

Abstract:

Gas separation by selective transport through polymeric membranes is one of the rapid growing branches of membrane technology. However, the tradeoff between the permeability and selectivity is one of the critical challenges encountered by pure polymer membranes, which in turn limits their large-scale application. To enhance gas separation performances, mixed matrix membranes (MMMs) have been developed. In this study, MMMs were prepared by a solution-coating method and tested for CO2/CH4 separation through permeability and selectivity using a membrane testing unit at room temperature and a pressure of 100 psig. The fabricated MMMs were composed of silicone rubber dispersed with the activated carbon individually absorbed with polyethylene glycol (PEG) as a liquid additive. PEG emulsified silicone rubber MMMs showed superior gas separation on cellulose acetate membrane with both high permeability and selectivity compared with silicone rubber membrane and alone support membrane. However, the MMMs performed limited stability resulting from the undesirable PEG leakage. To stabilize the MMMs, PEG was then incorporated into activated carbon by adsorption. It was found that the incorporation of solid and liquid was effective to improve the separation performance of MMMs.

Keywords: Mixed matrix membrane, membrane, CO2/CH4 separation, activated carbon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
519 Heat Treatment of Aluminum Alloy 7449

Authors: Suleiman E. Al-lubani, Mohammad E. Matarneh, Hussien M. Al-Wedyan, Ala M. Rayes

Abstract:

Aluminum alloy has an extensive range of industrial application due to its consistent mechanical properties and structural integrity. The heat treatment by precipitation technique affected the Magnesium, Silicon Manganese and copper crystals dissolved in the Aluminum alloy. The crystals dislocated to precipitate on the crystal’s boundaries of the Aluminum alloy when given a thermal energy increased its hardness. In this project various times and temperature were varied to find out the best combination of these variables to increase the precipitation of the metals on the Aluminum crystal’s boundaries which will lead to get the highest hardness. These specimens are then tested for their hardness and tensile strength. It is noticed that when the temperature increases, the precipitation increases and consequently the hardness increases. A threshold temperature value (264C0) of Aluminum alloy should not be reached due to the occurrence of recrystalization which causes the crystal to grow. This recrystalization process affected the ductility of the alloy and decrease hardness. In addition, and while increasing the temperature the alloy’s mechanical properties will decrease. The mechanical properties, namely tensile and hardness properties are investigated according to standard procedures. In this research, different temperature and time have been applied to increase hardening.The highest hardness at 100°c in 6 hours equals to 207.31 HBR, while at the same temperature and time the lowest elongation equals to 146.5.

Keywords: Aluminum alloy, recrystalization process, heat treatment, hardness properties, precipitation, intergranular breakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4021
518 Magnetohydrodynamic Damping of Natural Convection Flows in a Rectangular Enclosure

Authors: M. Battira, R. Bessaih

Abstract:

We numerically study the three-dimensional magnetohydrodynamics (MHD) stability of oscillatory natural convection flow in a rectangular cavity, with free top surface, filled with a liquid metal, having an aspect ratio equal to A=L/H=5, and subjected to a transversal temperature gradient and a uniform magnetic field oriented in x and z directions. The finite volume method was used in order to solve the equations of continuity, momentum, energy, and potential. The stability diagram obtained in this study highlights the dependence of the critical value of the Grashof number Grcrit , with the increase of the Hartmann number Ha for two orientations of the magnetic field. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a magnetic field and shows that the flow stability is more important when the direction of magnetic field is longitudinal than when the direction is transversal.

Keywords: Natural convection, Magnetic field, Oscillatory, Cavity, Liquid metal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
517 Investigation of Droplet Size Produced in Two-Phase Gravity Separators

Authors: Kul Pun, F. A. Hamad, T. Ahmed, J. O. Ugwu, J. Eyers, G. Lawson, P. A. Russell

Abstract:

Determining droplet size and distribution is essential when determining the separation efficiency of a two/three-phase separator. This paper investigates the effect of liquid flow and oil pad thickness on the droplet size at the lab scale. The findings show that increasing the inlet flow rates of the oil and water results in size reduction of the droplets and increasing the thickness of the oil pad increases the size of the droplets. The data were fitted with a simple Gaussian model, and the parameters of mean, standard deviation, and amplitude were determined. Trends have been obtained for the fitted parameters as a function of the Reynolds number, which suggest a way forward to better predict the starting parameters for population models when simulating separation using CFD packages. The key parameter to predict to fix the position of the Gaussian distribution was found to be the mean droplet size.

Keywords: Two-phase separator, average bubble droplet, bubble size distribution, liquid-liquid phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254
516 Molecular Dynamics Simulation of Lubricant Adsorption and Thermal Depletion Instability

Authors: Bei Li, Qiu B. Chen, Chee H. Wong

Abstract:

In this work, we incorporated a quartic bond potential into a coarse-grained bead-spring model to study lubricant adsorption on a solid surface as well as depletion instability. The surface tension density and the number density profiles were examined to verify the solid-liquid and liquid-vapor interfaces during heat treatment. It was found that both the liquid-vapor interfacial thickness and the solid-vapor separation increase with the temperatureT* when T*is below the phase transition temperature Tc *. At high temperatures (T*>Tc *), the solid-vapor separation decreases gradually as the temperature increases. In addition, we evaluated the lubricant weight and bond loss profiles at different temperatures. It was observed that the lubricant desorption is favored over decomposition and is the main cause of the lubricant failure at the head disk interface in our simulations.

Keywords: Depletion instability, Lubricant film, Thermal adsorption, Molecular dynamics (MD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
515 The Effects of a Thin Liquid Layer on the Hydrodynamic Machine Rotor

Authors: Jaroslav Krutil, František Pochylý, Simona Fialová, Vladimír Habán

Abstract:

A mathematical model of the additional effects of the liquid in the hydrodynamic gap is presented in the paper. An incompressible viscous fluid is considered. Based on computational modeling are determined the matrices of mass, stiffness and damping. The mathematical model is experimentally verified.

Keywords: Computational modeling, mathematical model, hydrodynamic gap, matrices of mass, stiffness and damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
514 Spectroscopic Determination of Functionalized Active Principles from Coleus aromaticus Benth Leaf Extract Using Ionic Liquids

Authors: Zharama M. Llarena

Abstract:

Green chemistry for plant extraction of active principles is the main interest of many researchers concerned with climate change. While classical organic solvents are detrimental to our environment, greener alternatives to ionic liquids are very promising for sustainable organic chemistry. This study focused on the determination of functional groups observed in the main constituents from the ionic liquid extracts of Coleus aromaticus Benth leaves using FT-IR Spectroscopy. Moreover, this research aimed to determine the best ionic liquid that can separate functionalized plant constituents from the leaves Coleus aromaticus Benth using Fourier Transform Infrared Spectroscopy. Coleus aromaticus Benth leaf extract in different ionic liquids, elucidated pharmacologically important functional groups present in major constituents of the plant, namely, rosmarinic acid, caffeic acid and chlorogenic acid. In connection to distinctive appearance of functional groups in the spectrum and highest % transmittance, potassium chloride-glycerol is the best ionic liquid for green extraction.

Keywords: Coleus aromaticus, ionic liquid, rosmarinic acid, caffeic acid, chlorogenic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
513 Isobaric Vapor-Liquid Equilibrium Data for Binary Mixtures of n-Butylamine and Triethylamine with Cumene at 97.3 kPa

Authors: Baljinder K. Gill, V. K. Rattan, Seema Kapoor

Abstract:

Isobaric vapor-liquid equilibrium measurements are reported for the binary mixtures of n-Butylamine and Triethylamine with Cumene at 97.3 kPa. The measurements have been performed using a vapor recirculating type (modified Othmer's) equilibrium still. The binary mixture of n-Butylamine + Cumene shows positive deviation from ideality. Triethylamine + Cumene mixture shows negligible deviation from ideality. None of the systems form an azeotrope. The activity coefficients have been calculated taking into consideration the vapor phase nonideality. The data satisfy the thermodynamic consistency test of Herington. The activity coefficients have been satisfactorily correlated by means of the Margules, NRTL, and Black equations. The activity coefficient values obtained by the UNIFAC model are also reported.

Keywords: Binary mixture, cumene, n-butylamine, triethylamine, vapor-liquid equilibrium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
512 Hydrodynamic Simulation of Co-Current and Counter Current of Column Distillation Using Euler Lagrange Approach

Authors: H. Troudi, M. Ghiss, Z. Tourki, M. Ellejmi

Abstract:

Packed columns of liquefied petroleum gas (LPG) consists of separating the liquid mixture of propane and butane to pure gas components by the distillation phenomenon. The flow of the gas and liquid inside the columns is operated by two ways: The co-current and the counter current operation. Heat, mass and species transfer between phases represent the most important factors that influence the choice between those two operations. In this paper, both processes are discussed using computational CFD simulation through ANSYS-Fluent software. Only 3D half section of the packed column was considered with one packed bed. The packed bed was characterized in our case as a porous media. The simulations were carried out at transient state conditions. A multi-component gas and liquid mixture were used out in the two processes. We utilized the Euler-Lagrange approach in which the gas was treated as a continuum phase and the liquid as a group of dispersed particles. The heat and the mass transfer process was modeled using multi-component droplet evaporation approach. The results show that the counter-current process performs better than the co-current, although such limitations of our approach are noted. This comparison gives accurate results for computations times higher than 2 s, at different gas velocity and at packed bed porosity of 0.9.

Keywords: Co-current, counter current, Euler Lagrange model, heat transfer, mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
511 Investigation on Performance and Emission Characteristics of CI Engine Fuelled with Producer Gas and Esters of Hingan (Balanites)Oil in Dual Fuel Mode

Authors: Samir J. Deshmukh, Lalit B. Bhuyar, Shashank B. Thakre

Abstract:

Partial combustion of biomass in the gasifier generates producer gas that can be used for heating purposes and as supplementary or sole fuel in internal combustion engines. In this study, the virgin biomass obtained from hingan shell is used as the feedstock for gasifier to generate producer gas. The gasifier-engine system is operated on diesel and on esters of vegetable oil of hingan in liquid fuel mode operation and then on liquid fuel and producer gas combination in dual fuel mode operation. The performance and emission characteristics of the CI engine is analyzed by running the engine in liquid fuel mode operation and in dual fuel mode operation at different load conditions with respect to maximum diesel savings in the dual fuel mode operation. It was observed that specific energy consumption in the dual fuel mode of operation is found to be in the higher side at all load conditions. The brake thermal efficiency of the engine using diesel or hingan oil methyl ester (HOME) is higher than that of dual fuel mode operation. A diesel replacement in the tune of 60% in dual fuel mode is possible with the use of hingan shell producer gas. The emissions parameters such CO, HC, NOx, CO2 and smoke are higher in the case of dual fuel mode of operation as compared to that of liquid fuel mode.

Keywords: Esters, performance, producer gas, vegetable oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
510 Mathematical Modelling of Venturi Scrubber for Ammonia Absorption

Authors: S.Mousavian, D.Ashouri, M.abdolahi, M.H.Vakili, Y.Rahnama

Abstract:

In this study, the dispersed model is used to predict gas phase concentration, liquid drop concentration. The venturi scrubber efficiency is calculated by gas phase concentration. The modified model has been validated with available experimental data of Johnstone, Field and Tasler for a range of throat gas velocities, liquid to gas ratios and particle diameters and is used to study the effect of some design parameters on collection efficiency.

Keywords: Ammonia, Modelling, Purge gas, Removal efficiency, Venturi scrubber

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
509 The Effect of CPU Location in Total Immersion of Microelectronics

Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson

Abstract:

Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.

Keywords: CPU location, data centre cooling, heat sink in enclosures, Immersed microelectronics, turbulent natural convection in enclosures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
508 A Two-Step, Temperature-Staged Direct Coal Liquefaction Process

Authors: Reyna Singh, David Lokhat, Milan Carsky

Abstract:

The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal remains an abundant resource. The aim of this work was to produce a high value hydrocarbon liquid product using a Direct Coal Liquefaction (DCL) process at, relatively mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated in a dual reactor lab-scale pilot plant facility. The objectives included maximising thermal dissolution of the coal in the presence of tetralin as the hydrogen donor solvent in the first stage with 2:1 and 3:1 solvent: coal ratios. Subsequently, in the second stage, hydrogen saturation, in particular, hydrodesulphurization (HDS) performance was assessed. Two commercial hydrotreating catalysts were investigated viz. NickelMolybdenum (Ni-Mo) and Cobalt-Molybdenum (Co-Mo). GC-MS results identified 77 compounds and various functional groups present in the first and second stage liquid product. In the first stage 3:1 ratios and liquid product yields catalysed by magnetite were favoured. The second stage product distribution showed an increase in the BTX (Benzene, Toluene, Xylene) quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, Ni-Mo had an improved performance over Co-Mo. Co-Mo is selective to a higher concentration of cyclohexane. For 16 days on stream each, Ni-Mo had a higher activity than Co-Mo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated. 

Keywords: Catalyst, coal, liquefaction, temperature-staged.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
507 Effects of Chitosan as the Growth Stimulator for Grammatophyllum speciosum in Vitro Culture

Authors: Sopalun K., Thammasiri K., Ishikawa K.

Abstract:

The effects of chitosan, a biodegradable polymer, were studied in Grammatophyllum speciosum protocorm-like bodies (PLBs) in vitro culture. The chitosan concentration of 0, 5, 10, 15, 20, 25, 50 or 100 mg/l were supplemented in half-strength Murashige and Skoog (1/2 MS) liquid or on agar media containing 2% (w/v) sucrose. The results showed that liquid medium supplemented with 15 mg/l chitosan showed the highest relative growth rate (7-fold increase) of PLBs. On 1/2 MS agar medium supplemented with 25 mg/l chitosan gave the highest relative growth rate (4-fold increase). The relative growth rate of G. speciosum PLBs on agar medium was significantly lower than that in liquid medium. Moreover, chitosan, supplemented to agar medium promoted shoot formation but not rooting. However, supplementation at too high a level, such as 100 mg/l can inhibit growth and kill PLBs.

Keywords: Chitosan, Grammatophyllum speciosum, Growth stimulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3406
506 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing

Authors: C. Lanzerstorfer

Abstract:

Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.

Keywords: Twin-fluid nozzles, operation data, condition monitoring, flow equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
505 Closed Form Optimal Solution of a Tuned Liquid Column Damper Responding to Earthquake

Authors: A. Farshidianfar, P. Oliazadeh

Abstract:

In this paper the vibration behaviors of a structure equipped with a tuned liquid column damper (TLCD) under a harmonic type of earthquake loading are studied. However, due to inherent nonlinear liquid damping, it is no doubt that a great deal of computational effort is required to search the optimum parameters of the TLCD, numerically. Therefore by linearization the equation of motion of the single degree of freedom structure equipped with the TLCD, the closed form solutions of the TLCD-structure system are derived. To find the reliability of the analytical method, the results have been compared with other researcher and have good agreement. Further, the effects of optimal design parameters such as length ratio and mass ratio on the performance of the TLCD for controlling the responses of a structure are investigated by using the harmonic type of earthquake excitation. Finally, the Citicorp Center which has a very flexible structure is used as an example to illustrate the design procedure for the TLCD under the earthquake excitation.

Keywords: Closed form solution, Earthquake excitation, TLCD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
504 Selective Separation of Lead and Mercury Ions from Synthetic Produced Water via a Hollow Fiber Supported Liquid Membrane

Authors: S. Suren, U. Pancharoen

Abstract:

A double module hollow fiber supported liquid membrane (HFSLM) was applied to selectively separate lead and mercury ions from dilute synthetic produced water. The experiments were investigated on several variables: types of extractants (D2EHPA, Cyanex 471, Aliquat 336, and TOA), concentration of the selected extractant and operating time. The results clearly showed that the double module HFSLM could selectively separate Pb(II) and Hg(II) in feed solution at a very low concentration to less than the regulatory discharge limit of 0.2 and 0.005 mg/L issued by the Ministry of Industry and the Ministry of Natural Resource Environment, Thailand. The highest extractions of lead and mercury ions from synthetic produced water were 96% and 100% using 0.03 M D2EHPA and 0.06 M Aliquat 336 as the extractant for the first and second modules.

Keywords: Hollow fiber, Lead ions, Liquid membrane, Mercury ions, Selective separation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
503 Effects of Upflow Liquid Velocity on Performance of Expanded Granular Sludge Bed (EGSB) System

Authors: Seni Karnchanawong, Wachara Phajee

Abstract:

The effects of upflow liquid velocity (ULV) on performance of expanded granular sludge bed (EGSB) system were investigated. The EGSB reactor, made from galvanized steel pipe 0.10 m diameter and 5 m height, had been used to treat piggery wastewater, after passing through acidification tank. It consisted of 39.3 l working volume in reaction zone and 122 l working volume in sedimentation zone, at the upper part. The reactor was seeded with anaerobically digested sludge and operated at the ULVs of 4, 8, 12 and 16 m/h, consecutively, corresponding to organic loading rates of 9.6 – 13.0 kg COD/ (m3.d). The average COD concentrations in the influent were 9,601 – 13,050 mg/l. The COD removal was not significantly different, i.e. 93.0% - 94.0%, except at ULV 12 m/h where SS in the influent was exceptionally high so that VSS washout had occurred, leading to low COD removal. The FCOD and VFA concentrations in the effluent of all experiments were not much different, indicating the same range of treatment performance. The biogas production decreased at higher ULV and ULV of 4 m/h is suggested as design criterion for EGSB system.

Keywords: Expanded granular sludge bed system, piggery wastewater, upflow liquid velocity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738
502 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm

Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad

Abstract:

Cubic equations of state like Redlich–Kwong (RK)  EOS have been proved to be very reliable tools in the prediction of  phase behavior. Despite their good performance in compositional  calculations, they usually suffer from weaknesses in the predictions  of saturated liquid density. In this research, RK equation was  modified. The result of this study show that modified equation has  good agreement with experimental data.

 

Keywords: Equation of state, modification, ammonia, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2714
501 Phase Behavior and Structure Properties of Supported Lipid Monolayers and Bilayers in Interaction with Silica Nanoparticles

Authors: Ndeye Rokhaya Faye, Ibtissem Gammoudi, Fabien Moroté, Christine Grauby-Heywang, TouriaCohen-Bouhacina

Abstract:

In this study we investigate silica nanoparticle (SiO2- NP) effects on the structure and phase properties of supported lipid monolayers and bilayers, coupling surface pressure measurements, fluorescence microscopy and atomic force microscopy. SiO2-NPs typically in size range of 10nm to 100 nm in diameter are tested. Our results suggest first that lipid molecules organization depends to their nature. Secondly, lipid molecules in the vinicity of big aggregates nanoparticles organize in liquid condensed phase whereas small aggregates are localized in both fluid liquid-expanded (LE) and liquid-condenced (LC). We demonstrated also by atomic force microscopy that by measuring friction forces it is possible to get information as if nanoparticle aggregates are recovered or not by lipid monolayers and bilayers.

Keywords: Atomic force microscopy, fluorescence microscopy, Langmuir films, silica nanoparticles, supported membrane models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
500 Physical Conserved Quantities for the Axisymmetric Liquid, Free and Wall Jets

Authors: Rehana Naz, D. P. Mason, Fazal Mahomed

Abstract:

A systematic way to derive the conserved quantities for the axisymmetric liquid jet, free jet and wall jet using conservation laws is presented. The flow in axisymmetric jets is governed by Prandtl-s momentum boundary layer equation and the continuity equation. The multiplier approach is used to construct a basis of conserved vectors for the system of two partial differential equations for the two velocity components. The basis consists of two conserved vectors. By integrating the corresponding conservation laws across the jet and imposing the boundary conditions, conserved quantities are derived for the axisymmetric liquid and free jet. The multiplier approach applied to the third-order partial differential equation for the stream function yields two local conserved vectors one of which is a non-local conserved vector for the system. One of the conserved vectors gives the conserved quantity for the axisymmetric free jet but the conserved quantity for the wall jet is not obtained from the second conserved vector. The conserved quantity for the axisymmetric wall jet is derived from a non-local conserved vector of the third-order partial differential equation for the stream function. This non-local conserved vector for the third-order partial differential equation for the stream function is obtained by using the stream function as multiplier.

Keywords: Axisymmetric jet, liquid jet, free jet, wall jet, conservation laws, conserved quantity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
499 Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section

Authors: Malcolm R Davidson, Ram P. Bharti, Petar Liovic, Dalton J.E. Harvie

Abstract:

The electrokinetic flow resistance (electroviscous effect) is predicted for steady state, pressure-driven liquid flow at low Reynolds number in a microfluidic contraction of rectangular cross-section. Calculations of the three dimensional flow are performed in parallel using a finite volume numerical method. The channel walls are assumed to carry a uniform charge density and the liquid is taken to be a symmetric 1:1 electrolyte. Predictions are presented for a single set of flow and electrokinetic parameters. It is shown that the magnitude of the streaming potential gradient and the charge density of counter-ions in the liquid is greater than that in corresponding two-dimensional slit-like contraction geometry. The apparent viscosity is found to be very close to the value for a rectangular channel of uniform cross-section at the chosen Reynolds number (Re = 0.1). It is speculated that the apparent viscosity for the contraction geometry will increase as the Reynolds number is reduced.

Keywords: Contraction, Electroviscous, Microfluidic, Numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
498 An Investigation on Vegetable Oils as Potential Insulating Liquid

Authors: C. Kocatepe, E. Taslak, C. F. Kumru, O. Arıkan

Abstract:

While choosing insulating oil, characteristic features such as thermal cooling, endurance, efficiency and being environment-friendly should be considered. Mineral oils are referred as petroleum-based oil. In this study, vegetable oils investigated as an alternative insulating liquid to mineral oil. Dissipation factor, breakdown voltage, relative dielectric constant and resistivity changes with the frequency and voltage of mineral, rapeseed and nut oils were measured. Experimental studies were performed according to ASTM D924 and IEC 60156 standards.

Keywords: Breakdown voltage, dielectric dissipation factor, mineral oil, vegetable oils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
497 Computational Fluid Dynamics Simulation of Gas-Liquid Phase Stirred Tank

Authors: Thiyam Tamphasana Devi, Bimlesh Kumar

Abstract:

A Computational Fluid Dynamics (CFD) technique has been applied to simulate the gas-liquid phase in double stirred tank of Rushton impeller. Eulerian-Eulerian model was adopted to simulate the multiphase with standard correlation of Schiller and Naumann for drag co-efficient. The turbulence was modeled by using standard k-ε turbulence model. The present CFD model predicts flow pattern, local gas hold-up, and local specific area. It also predicts local kLa (mass transfer rate) for single impeller. The predicted results were compared with experimental and CFD results of published literature. The predicted results are slightly over predicted with the experimental results; however, it is in reasonable agreement with other simulated results of published literature.

Keywords: Eulerian-Eulerian, gas-hold up, gas-liquid phase, local mass transfer rate, local specific area, Rushton Impeller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143