Search results for: higher order shear deformation theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9475

Search results for: higher order shear deformation theory

9475 Flexure of Cantilever Thick Beams Using Trigonometric Shear Deformation Theory

Authors: Yuwaraj M. Ghugal, Ajay G. Dahake

Abstract:

A trigonometric shear deformation theory for flexure of thick beams, taking into account transverse shear deformation effects, is developed. The number of variables in the present theory is same as that in the first order shear deformation theory. The sinusoidal function is used in displacement field in terms of thickness coordinate to represent the shear deformation effects. The noteworthy feature of this theory is that the transverse shear stresses can be obtained directly from the use of constitutive relations with excellent accuracy, satisfying the shear stress free conditions on the top and bottom surfaces of the beam. Hence, the theory obviates the need of shear correction factor. Governing differential equations and boundary conditions are obtained by using the principle of virtual work. The thick cantilever isotropic beams are considered for the numerical studies to demonstrate the efficiency of the. Results obtained are discussed critically with those of other theories.

Keywords: Trigonometric shear deformation, thick beam, flexure, principle of virtual work, equilibrium equations, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3092
9474 Flexure of Simply Supported Thick Beams Using Refined Shear Deformation Theory

Authors: Yuwaraj M. Ghugal, Ajay G. Dahake

Abstract:

A trigonometric shear deformation theory for flexure of thick beams, taking into account transverse shear deformation effects, is developed. The number of variables in the present theory is same as that in the first order shear deformation theory. The sinusoidal function is used in displacement field in terms of thickness coordinate to represent the shear deformation effects. The noteworthy feature of this theory is that the transverse shear stresses can be obtained directly from the use of constitutive relations with excellent accuracy, satisfying the shear stress free conditions on the top and bottom surfaces of the beam. Hence, the theory obviates the need of shear correction factor. Governing differential equations and boundary conditions are obtained by using the principle of virtual work. The thick simply supported isotropic beams are considered for the numerical studies to demonstrate the efficiency of the results obtained is discussed critically with those of other theories.

Keywords: Trigonometric shear deformation, thick beam, flexure, principle of virtual work, equilibrium equations, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
9473 Stability of Functionally Graded Beams with Piezoelectric Layers Based on the First Order Shear Deformation Theory

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

Stability of functionally graded beams with piezoelectric layers subjected to axial compressive load that is simply supported at both ends is studied in this paper. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter, functionally graded index and piezoelectric thickness on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Stability, Functionally graded beam, First order shear deformation theory, Piezoelectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
9472 Analytical Study and Modeling of Free Vibrations of Functionally Graded Plates Using a Higher Shear Deformation Theory

Authors: A. Meftah, D. Zarga, M. Yahiaoui

Abstract:

In this paper, we have used an analytical method to analyze the vibratory behavior of plates in materials with gradient of properties, simply supported, proposing a refined non polynomial theory. The number of unknown functions involved in this theory is only four, as compared to five in the case of other higher shear deformation theories. The transverse shearing effects are studied according to the thickness of the plate. The motion equations for the FGM plates are obtained by the Hamilton principle application, the solutions are obtained using the Navier method, and then the fundamental frequencies are found, solving an eigenvalue equation system, the results of this analysis are presented and compared to those available in the literature.

Keywords: FGM plates, Navier method, vibratory behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656
9471 Free Vibration Analysis of Functionally Graded Beams

Authors: Gholam Reza Koochaki

Abstract:

This work presents the highly accurate numerical calculation of the natural frequencies for functionally graded beams with simply supported boundary conditions. The Timoshenko first order shear deformation beam theory and the higher order shear deformation beam theory of Reddy have been applied to the functionally graded beams analysis. The material property gradient is assumed to be in the thickness direction. The Hamilton-s principle is utilized to obtain the dynamic equations of functionally graded beams. The influences of the volume fraction index and thickness-to-length ratio on the fundamental frequencies are discussed. Comparison of the numerical results for the homogeneous beam with Euler-Bernoulli beam theory results show that the derived model is satisfactory.

Keywords: Functionally graded beam, Free vibration, Hamilton's principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
9470 The Survey of the Buckling Effect of Laminated Plate under the Thermal Load using Complex Finite Strip Method

Authors: A.R.Nezamabadi, M.Mansouri Gavari, S.Mansouri, M.Mansouri Gavari

Abstract:

This article considers the positional buckling of composite thick plates under thermal loading . For this purpose , the complex finite strip method is used . In analysis of complex finite strip, harmonic complex function in longitudinal direction , cubic functions in transversal direction and parabola distribution of transverse shear strain in thickness of thick plate based on higherorder shear deformation theory are used . In given examples , the effect of angles of stratification , number of layers , dimensions ratio and length – to – thick ratio across critical temperature are considered.

Keywords: Thermal buckling , Thick plate , Complex finite strip , Higher – order shear deformation theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
9469 Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings

Authors: Mohammad Talha, B. N. Singh

Abstract:

This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.

Keywords: Functionally graded material, higher order shear deformation theory, finite element method, independent field variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
9468 The Effects of Various Boundary Conditions on Thermal Buckling of Functionally Graded Beamwith Piezoelectric Layers Based on Third order Shear Deformation Theory

Authors: O. Miraliyari

Abstract:

This article attempts to analyze functionally graded beam thermal buckling along with piezoelectric layers applying based on the third order shearing deformation theory considering various boundary conditions. The beam properties are assumed to vary continuously from the lower surface to the upper surface of the beam. The equilibrium equations are derived using the total potential energy equations, Euler equations, piezoelectric material constitutive equations and third order shear deformation theory assumptions. In order to fulfill such an aim, at first functionally graded beam with piezoelectric layers applying the third order shearing deformation theory along with clamped -clamped boundary conditions are thoroughly analyzed, and then following making sure of the correctness of all the equations, the very same beam is analyzed with piezoelectric layers through simply-simply and simply-clamped boundary conditions. In this article buckling critical temperature for functionally graded beam is derived in two different ways, without piezoelectric layer and with piezoelectric layer and the results are compared together. Finally, all the conclusions obtained will be compared and contrasted with the same samples in the same and distinguished conditions through tables and charts. It would be noteworthy that in this article, the software MAPLE has been applied in order to do the numeral calculations.

Keywords: Thermal buckling, functionally graded beam, piezoelectric layer, various boundary conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
9467 Clamped-clamped Boundary Conditions for Analysis Free Vibration of Functionally Graded Cylindrical Shell with a Ring based on Third Order Shear Deformation Theory

Authors: M.Pourmahmoud, M.Salmanzadeh, M.Mehrani, M.R.Isvandzibaei

Abstract:

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
9466 Stability of Homogeneous Smart Beams based on the First Order Shear Deformation Theory Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies stability of homogeneous beams with piezoelectric layers subjected to axial load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on first order shear deformation beam theory. Applying the Hamilton's principle, the governing equation is established. The influences of applied voltage, dimensionless geometrical parameter and foundation coefficient on the stability of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Stability, Homogeneous beam- Piezoelectric layer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
9465 Effects Edge end Free-free Boundary Conditions for Analysis Free Vibration of Functionally Graded Cylindrical Shell with Ring based on Third Order Shear Deformation Theory using Hamilton's Principle

Authors: M.R.Isvandzibaei, P.J.Awasare

Abstract:

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
9464 Simplified Equations for Rigidity and Lateral Deflection for Reinforced Concrete Cantilever Shear Walls

Authors: Anas M. Fares

Abstract:

Reinforced concrete shear walls are the most frequently used forms of lateral resisting structural elements. These walls may take many forms due to their functions and locations in the building. In Palestine, the most lateral resisting forces construction forms is the cantilever shear walls system. It is thus of prime importance to study the rigidity of these walls. The virtual work theorem is used to derive the total lateral deflection of cantilever shear walls due to flexural and shear deformation. The case of neglecting the shear deformation in the walls is also studied, and it is found that the wall height to length aspect ratio (H/B) plays a major role in calculating the lateral deflection and the rigidity of such walls. When the H/B is more than or equal to 3.7, the shear deformation may be neglected from the calculation of the lateral deflection. Moreover, the walls with the same material properties, same lateral load value, and same aspect ratio, shall have the same of both the lateral deflection and the rigidity. Finally, an equation to calculate the total rigidity and total deflection of such walls is derived by using the virtual work theorem for a cantilever beam.

Keywords: Cantilever shear walls, flexural deformation, lateral deflection, lateral loads, reinforced concrete shear walls, rigidity, shear deformation, virtual work theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5025
9463 Effect of Silt Presence on Shear Strength Parameters of Unsaturated Sandy Soils

Authors: R. Ziaie Moayed, E. Khavaninzadeh, M. Ghorbani Tochaee

Abstract:

Direct shear test is widely used in soil mechanics experiment to determine the shear strength parameters of granular soils. For analysis of soil stability problems such as bearing capacity, slope stability and lateral pressure on soil retaining structures, the shear strength parameters must be known well. In the present study, shear strength parameters are determined in silty-sand mixtures. Direct shear tests are performed on 161 Firoozkooh sand with different silt content at a relative density of 70% in three vertical stress of 100, 150, and 200 kPa. Wet tamping method is used for soil sample preparation, and the results include diagrams of shear stress versus shear deformation and sample height changes against shear deformation. Accordingly, in different silt percent, the shear strength parameters of the soil such as internal friction angle and dilation angle are calculated and compared. According to the results, when the sample contains up to 10% silt, peak shear strength and internal friction angle have an upward trend. However, if the sample contains 10% to 50% of silt a downward trend is seen in peak shear strength and internal friction angle.

Keywords: Shear strength parameters, direct shear test, silty sand, shear stress, shear deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
9462 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear

Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek

Abstract:

Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.

Keywords: Distributed optical strain sensing, geotechnical monitoring, rock bolt stain measurement, bedding shear displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932
9461 Analytical and Numerical Results for Free Vibration of Laminated Composites Plates

Authors: Mohamed Amine Ben Henni, Taher Hassaine Daouadji, Boussad Abbes, Yu Ming Li, Fazilay Abbes

Abstract:

The reinforcement and repair of concrete structures by bonding composite materials have become relatively common operations. Different types of composite materials can be used: carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP) as well as functionally graded material (FGM). The development of analytical and numerical models describing the mechanical behavior of structures in civil engineering reinforced by composite materials is necessary. These models will enable engineers to select, design, and size adequate reinforcements for the various types of damaged structures. This study focuses on the free vibration behavior of orthotropic laminated composite plates using a refined shear deformation theory. In these models, the distribution of transverse shear stresses is considered as parabolic satisfying the zero-shear stress condition on the top and bottom surfaces of the plates without using shear correction factors. In this analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained by using the Hamilton’s principle. The accuracy of the developed model is demonstrated by comparing our results with solutions derived from other higher order models and with data found in the literature. Besides, a finite-element analysis is used to calculate the natural frequencies of laminated composite plates and is compared with those obtained by the analytical approach.

Keywords: Composites materials, laminated composite plate, shear deformation theory of plates, finite element analysis, free vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
9460 Thermal and Mechanical Buckling of Short and Long Functionally Graded Cylindrical Shells Using First Order Shear Deformation Theory

Authors: O. Miraliyari, M.M. Najafizadeh, A.R. Rahmani, A. Momeni Hezaveh

Abstract:

This paper presents the buckling analysis of short and long functionally graded cylindrical shells under thermal and mechanical loads. The shell properties are assumed to vary continuously from the inner surface to the outer surface of the shell. The equilibrium and stability equations are derived using the total potential energy equations, Euler equations and first order shear deformation theory assumptions. The resulting equations are solved for simply supported boundary conditions. The critical temperature and pressure loads are calculated for both short and long cylindrical shells. Comparison studies show the effects of functionally graded index, loading type and shell geometry on critical buckling loads of short and long functionally graded cylindrical shells.

Keywords: Buckling, Functionally graded materials, Short and long cylindrical shell, Thermal and mechanical loads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
9459 Vibration Characteristics of Functionally Graded Material Skew Plate in Thermal Environment

Authors: Gulshan Taj M. N. A., Anupam Chakrabarti, Vipul Prakash

Abstract:

In the present investigation, free vibration of functionally graded material (FGM) skew plates under thermal environment is studied. Kinematics equations are based on the Reddy’s higher order shear deformation theory and a nine noded isoparametric Lagrangian element is adopted to mesh the plate geometry. The issue of C1 continuity requirement related to the assumed displacement field has been circumvented effectively to develop C0 finite element formulation. Effective mechanical properties of the constituents of the plate are considered to be as position and temperature dependent and assumed to vary in the thickness direction according to a simple power law distribution. The displacement components of a rectangular plate are mapped into skew plate geometry by means of suitable transformation rule. One dimensional Fourier heat conduction equation is used to ascertain the temperature profile of the plate along thickness direction. Influence of different parameters such as volume fraction index, boundary condition, aspect ratio, thickness ratio and temperature field on frequency parameter of the FGM skew plate is demonstrated by performing various examples and the related findings are discussed briefly. New results are generated for vibration of the FGM skew plate under thermal environment, for the first time, which may be implemented in the future research involving similar kind of problems.

Keywords: Functionally graded material, finite element method, higher order shear deformation theory, skew plate, thermal vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3612
9458 Vibration of Functionally Graded Cylindrical Shells under Effects Clamped-Clamped Boundary Conditions

Authors: M.R.Alinaghizadehand, M.R.Isvandzibaei

Abstract:

Study of the vibration cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is important. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clampedclamped boundary conditions.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton's principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
9457 Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions

Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.

Keywords: Vibration, FGM, Cylindrical shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
9456 Mathematical Approach for Large Deformation Analysis of the Stiffened Coupled Shear Walls

Authors: M. J. Fadaee, H. Saffari, H. Khosravi

Abstract:

Shear walls are used in most of the tall buildings for carrying the lateral load. When openings for doors or windows are necessary to be existed in the shear walls, a special type of the shear walls is used called "coupled shear walls" which in some cases is stiffened by specific beams and so, called "stiffened coupled shear walls". In this paper, a mathematical method for geometrically nonlinear analysis of the stiffened coupled shear walls has been presented. Then, a suitable formulation for determining the critical load of the stiffened coupled shear walls under gravity force has been proposed. The governing differential equations for equilibrium and deformation of the stiffened coupled shear walls have been obtained by setting up the equilibrium equations and the moment-curvature relationships for each wall. Because of the complexity of the differential equation, the energy method has been adopted for approximate solution of the equations.

Keywords: Buckling load, differential equation, energy method, geometrically nonlinear analysis, mathematical method, Stiffened coupled shear walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
9455 Vibration of FGM Cylindrical Shells under Effect Clamped-simply Support Boundary Conditions using Hamilton's Principle

Authors: M.R.Isvandzibaei, E.Bidokh, M.R.Alinaghizadeh, A.Nasirian, A.Moarrefzadeh

Abstract:

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479
9454 Thermal Buckling of Rectangular FGM Plate with Variation Thickness

Authors: Mostafa Raki, Mahdi Hamzehei

Abstract:

Equilibrium and stability equations of a thin rectangular plate with length a, width b, and thickness h(x)=C1x+C2, made of functionally graded materials under thermal loads are derived based on the first order shear deformation theory. It is assumed that the material properties vary as a power form of thickness coordinate variable z. The derived equilibrium and buckling equations are then solved analytically for a plate with simply supported boundary conditions. One type of thermal loading, uniform temperature rise and gradient through the thickness are considered, and the buckling temperatures are derived. The influences of the plate aspect ratio, the relative thickness, the gradient index and the transverse shear on buckling temperature difference are all discussed.

Keywords: Stability of plate, thermal buckling, rectangularplate, functionally graded material, first order shear deformationtheory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
9453 Vibration of Functionally Graded Cylindrical Shells Under Effect Clamped-Free Boundary Conditions Using Hamilton's Principle

Authors: M.R. Isvandzibaei, M.R. Alinaghizadeh, A.H. Zaman

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clamped-free boundary conditions

Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle, clamped supported.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
9452 Vibration of Functionally Graded Cylindrical Shells under Effects Free-free and Clamed-clamped Boundary Conditions

Authors: M. R.Isvandzibaei, A.Jahani

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free and clamped-clamped boundary conditions.

Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
9451 Sliding Joints and Soil-Structure Interaction

Authors: Radim Cajka, Pavlina Mateckova, Martina Janulikova, Marie Stara

Abstract:

Use of a sliding joint is an effective method to decrease the stress in foundation structure where there is a horizontal deformation of subsoil (areas afflicted with underground mining) or horizontal deformation of a foundation structure (pre-stressed foundations, creep, shrinkage, temperature deformation). A convenient material for a sliding joint is a bitumen asphalt belt. Experiments for different types of bitumen belts were undertaken at the Faculty of Civil Engineering - VSB Technical University of Ostrava in 2008. This year an extension of the 2008 experiments is in progress and the shear resistance of a slide joint is being tested as a function of temperature in a temperature controlled room. In this paper experimental results of temperature dependant shear resistance are presented. The result of the experiments should be the sliding joint shear resistance as a function of deformation velocity and temperature. This relationship is used for numerical analysis of stress/strain relation between foundation structure and subsoil. Using a rheological slide joint could lead to a decrease of the reinforcement amount, and contribute to higher reliability of foundation structure and thus enable design of more durable and sustainable building structures.

Keywords: Pre-stressed foundations, sliding joint, soil-structure interaction, subsoil horizontal deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
9450 Thermal Stability Boundary of FG Panel under Aerodynamic Load

Authors: Sang-Lae Lee, Ji-Hwan Kim

Abstract:

In this study, it is investigated the stability boundary of Functionally Graded (FG) panel under the heats and supersonic airflows. Material properties are assumed to be temperature dependent, and a simple power law distribution is taken. First-order shear deformation theory (FSDT) of plate is applied to model the panel, and the von-Karman strain- displacement relations are adopted to consider the geometric nonlinearity due to large deformation. Further, the first-order piston theory is used to model the supersonic aerodynamic load acting on a panel and Rayleigh damping coefficient is used to present the structural damping. In order to find a critical value of the speed, linear flutter analysis of FG panels is performed. Numerical results are compared with the previous works, and present results for the temperature dependent material are discussed in detail for stability boundary of the panel with various volume fractions, and aerodynamic pressures.

Keywords: Functionally graded panels, Linear flutter analysis, Supersonic airflows, Temperature dependent material property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
9449 RBF- based Meshless Method for Free Vibration Analysis of Laminated Composite Plates

Authors: Jeeoot Singh, Sandeep Singh, K. K. Shukla

Abstract:

The governing differential equations of laminated plate utilizing trigonometric shear deformation theory are derived using energy approach. The governing differential equations discretized by different radial basis functions are used to predict the free vibration behavior of symmetric laminated composite plates. Effect of orthotropy and span to thickness ratio on frequency parameter of simply supported laminated plate is presented. Numerical results show the accuracy and good convergence of radial basis functions.

Keywords: Composite plates, Meshfree method, free vibration, Shear deformation, RBFs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
9448 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load

Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz

Abstract:

The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.

Keywords: Finite element beam model, Composite Beams, stability analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
9447 Deformation and Crystallization in a 7075-T651 Friction Stir Weld

Authors: C. S. Paglia

Abstract:

The deformation and the crystallization in a 7075-T651 friction stir weld, in particular for regions directly in contact with the mechanical action of the rotating probe, have been investigated by means of optical microscopy. The investigation enabled to identify regions of the weld differently affected by the deformation caused by the welding process. The highly deformed grains in the horizontal direction close to the plate margin were indicative of shear movements along the horizontal plane, while highly deformed grains along the plate margin in the vertical direction were indicative of vertical shear movements of opposite directions, which superimposed the shear movement along the horizontal plane. The vertical shear movements were not homogeneous through the plate thickness. The microstructure indicated that after the probe passes, the grain growth may take place under static conditions. The small grains microstructure of the nugget region, formed after the main dynamic recrystallization process, develops to an equiaxed microstructure. A material transport influenced by the rotating shoulder was also observed from the trailing to the advancing side of the weld.

Keywords: AA7075-T651, friction stir welding, deformation, crystallization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
9446 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: Dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884