Search results for: hidden motives of buyers and sellers
276 Socio-Economic Insight of the Secondary Housing Market in Colombo Suburbs: Seller’s Point of Views
Authors: R. G. Ariyawansa, M. A. N. R. M. Perera
Abstract:
“House” is a powerful symbol of socio-economic background of individuals and families. In fact, housing provides all types of needs/wants from basic needs to self-actualization needs. This phenomenon can be realized only having analyzed hidden motives of buyers and sellers of the housing market. Hence, the aim of this study is to examine the socio-economic insight of the secondary housing market in Colombo suburbs. This broader aim was achieved via analyzing the general pattern of the secondary housing market, identifying socio-economic motives of sellers of the secondary housing market, and reviewing sellers’ experience of buyer behavior. A purposive sample of 50 sellers from popular residential areas in Colombo such as Maharagama, Kottawa, Piliyandala, Punnipitiya, and Nugegoda was used to collect primary data instead of relevant secondary data from published and unpublished reports. The sample was limited to selling price ranging from Rs15 million to Rs25 million, which apparently falls into middle and upper-middle income houses in the context. Participatory observation and semi-structured interviews were adopted as key data collection tools. Data were descriptively analyzed. This study found that the market is mainly handled by informal agents who are unqualified and unorganized. People such as taxi/tree-wheel drivers, boutique venders, security personals etc. are engaged in housing brokerage as a part time career. Few fulltime and formally organized agents were found but they were also not professionally qualified. As far as housing quality is concerned, it was observed that 90% of houses was poorly maintained and illegally modified. They are situated in poorly maintained neighborhoods as well. Among the observed houses, 2% was moderately maintained and 8% was well maintained and modified. Major socio-economic motives of sellers were “migrating foreign countries for education and employment” (80% and 10% respectively), “family problems” (4%), and “social status” (3%). Other motives were “health” and “environmental/neighborhood problems” (3%). This study further noted that the secondary middle income housing market in the area directly related with the migrants who motivated for education in foreign countries, mainly Australia, UK and USA. As per the literature, families motivated for education tend to migrate Colombo suburbs from remote areas of the country. They are seeking temporary accommodation in lower middle income housing. However, the secondary middle income housing market relates with the migration from Colombo to major global cities. Therefore, final transaction price of this market may depend on migration related dates such as university deadlines, visa and other agreements. Hence, it creates a buyers’ market lowering the selling price. Also it was revealed that the buyers tend to trust more on this market as far as the quality of construction of houses is concerned than brand new houses which are built for selling purpose.Keywords: Informal housing market, hidden motives of buyers and sellers, secondary housing market, socio-economic insight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698275 Business Buyers’ Expectations in Buyer-Seller Encounters
Authors: Pia I. Hautamäki
Abstract:
Selling has changed. Selling has taken on aspects of relationship marketing and sales force play a critical role in developing long-term relationships between buyers and sellers which is seen to serve the company’s targets and create success for a long run. The purpose of this study was to examine what really matters in buyer-seller encounters and determine what expectations business buyers have. We studied 17 business buyers by a qualitative interview. We found that buyers appreciate encounters where the salesperson face the buyer as a way he or she is as a person, map the real needs to improve buyers’ business and build up cooperation for long-term relationship. This study show that personality matters are a key elements when satisfying business buyers’ expectations.
Keywords: Business-to-Business, Business buyer-seller encounters, Business buyer, Expectations, Perceived similarity, Personal selling, Personality types.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2378274 A Community Compromised Approach to Combinatorial Coalition Problem
Authors: Laor Boongasame, Veera Boonjing, Ho-fung Leung
Abstract:
Buyer coalition with a combination of items is a group of buyers joining together to purchase a combination of items with a larger discount. The primary aim of existing buyer coalition with a combination of items research is to generate a large total discount. However, the aim is hard to achieve because this research is based on the assumption that each buyer completely knows other buyers- information or at least one buyer knows other buyers- information in a coalition by exchange of information. These assumption contrast with the real world environment where buyers join a coalition with incomplete information, i.e., they concerned only with their expected discounts. Therefore, this paper proposes a new buyer community coalition formation with a combination of items scheme, called the Community Compromised Combinatorial Coalition scheme, under such an environment of incomplete information. In order to generate a larger total discount, after buyers who want to join a coalition propose their minimum required saving, a coalition structure that gives a maximum total retail prices is formed. Then, the total discount division of the coalition is divided among buyers in the coalition depending on their minimum required saving and is a Pareto optimal. In mathematical analysis, we compare concepts of this scheme with concepts of the existing buyer coalition scheme. Our mathematical analysis results show that the total discount of the coalition in this scheme is larger than that in the existing buyer coalition scheme.
Keywords: group decision and negotiations, group buying, gametheory, combinatorial coalition formation, Pareto optimality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530273 Sun, Salon, and Cosmetic Tanning: Predictors and Motives
Authors: Andrew Reilly, Nancy A. Rudd
Abstract:
The appearance management behavior of tanning by gay men is examined through the lens of Impression Formation. The study proposes that body image, self-esteem, and internalized homophobia are connected and affect the motives for engaging in sun, salon, and cosmetic tanning. Motives examined were: to look masculine, to look attractive to (potential) partners, to look attractive in general, to socialize, to meet a peer standard, and for personal satisfaction. Using regression analysis to examine data of 103 gay men who engage in at least one method of tanning, results reveal that components of body image and internalized homophobia–but not self-esteem–are linked to various motives and methods of tanning. These findings support and extend the literature of Impression Formation Theory and provide practitioners in the health and healthrelated fields new avenues to pursue when dealing with diseases related to tanning.
Keywords: Body image, gay men, tanning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549272 Corporate Social Responsibility in an Experimental Market
Authors: Nikolaos Georgantzis, Efi Vasileiou
Abstract:
We present results from experimental price-setting oligopolies in which green firms undertake different levels of energy-saving investments motivated by public subsidies and demand-side advantages. We find that consumers reveal higher willingness to pay for greener sellers’ products. This observation in conjunction to the fact that greener sellers set higher prices is compatible with the use and interpretation of energy-saving behaviour as a differentiation strategy. However, sellers do not exploit the resulting advantage through sufficiently high price-cost margins, because they seem trapped into “run to stay still” competition. Regarding the use of public subsidies to energy-saving sellers we uncover an undesirable crowding-out effect of consumers’ intrinsic tendency to support green manufacturers. Namely, consumers may be less willing to support a green seller whose energy-saving strategy entails a direct financial benefit. Finally, we disentangle two alternative motivations for consumer’s attractions to pro-social firms; first, the self-interested recognition of the firm’s contribution to the public and private welfare and, second, the need to compensate a firm for the cost entailed in each pro-social action. Our results show the prevalence of the former over the latter.
Keywords: Corporate social responsibility, energy savings, public good, experiments, vertical differentiation, altruism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115271 Framework and System for Supplier Scouting Enabling Web-based Collaboration
Authors: Sangil Lee, Kwangyeol Ryu, Kezia Amanda Kurniadi, Yongju Park
Abstract:
Nowadays, many manufacturing companies try to reinforce their competitiveness or find a breakthrough by considering collaboration. In Korea, more than 900 manufacturing companies are using web-based collaboration systems developed by the government-led project, referred to as i-Manufacturing. The system supports some similar functions of Product Data Management (PDM) as well as Project Management System (PMS). A web-based collaboration system provides many useful functions for collaborative works. This system, however, does not support new linking services between buyers and suppliers. Therefore, in order to find new collaborative partners, this paper proposes a framework which creates new connections between buyers and suppliers facilitating their collaboration, referred to as Excellent Manufacturer Scouting System (EMSS). EMSS plays a role as a bridge between overseas buyers and suppliers. As a part of study on EMSS, we also propose an evaluation method of manufacturability of potential partners with six main factors. Based on the results of evaluation, buyers may get a good guideline to choose their new partners before getting into negotiation processes with them.Keywords: Supplier Scouting, Supplier Discovery, Collaboration, Web-based Collaboration System, Excellent Manufacturer Scouting System (EMSS)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277270 Musical Instrument Classification Using Embedded Hidden Markov Models
Authors: Ehsan Amid, Sina Rezaei Aghdam
Abstract:
In this paper, a novel method for recognition of musical instruments in a polyphonic music is presented by using an embedded hidden Markov model (EHMM). EHMM is a doubly embedded HMM structure where each state of the external HMM is an independent HMM. The classification is accomplished for two different internal HMM structures where GMMs are used as likelihood estimators for the internal HMMs. The results are compared to those achieved by an artificial neural network with two hidden layers. Appropriate classification accuracies were achieved both for solo instrument performance and instrument combinations which demonstrates that the new approach outperforms the similar classification methods by means of the dynamic of the signal.Keywords: hidden Markov model (HMM), embedded hidden Markov models (EHMM), MFCC, musical instrument.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891269 Quantifying Key Factors Affecting Leagile Manufacturing System
Authors: Naveen Virmani, Rajeev Saha, Rajeshwar Sahai
Abstract:
In today’s market, striving hard has become necessary for the industries to survive due to the intense competition and globalization. In earlier days, there were few sellers and limited numbers of buyers, so customers were having fewer options to buy the product. But today, the market is highly competitive and volatile. Industries are focusing on robotics, advance manufacturing methods like AJM (Abrasive Jet Machining), EDM (Electric Discharge Machining), ECM (Electrochemical Machining) etc., CAD/CAM, CAE to make quality products and market them in shortest possible time. Leagile manufacturing system is ensuring best available solution at minimum cost to meet the market demand. This paper tries to assimilate the concept of Leagile manufacturing system in today’s scenario and evaluating key factors affecting Leagile manufacturing using digraph technique.
Keywords: Agile manufacturing, digraph, lean manufacturing, leagile manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085268 Error Propagation of the Hidden-Point Bar Method: Effect of Bar Geometry
Authors: Said M. Easa, Ahmed Shaker
Abstract:
The hidden-point bar method is useful in many surveying applications. The method involves determining the coordinates of a hidden point as a function of horizontal and vertical angles measured to three fixed points on the bar. Using these measurements, the procedure involves calculating the slant angles, the distances from the station to the fixed points, the coordinates of the fixed points, and then the coordinates of the hidden point. The propagation of the measurement errors in this complex process has not been fully investigated in the literature. This paper evaluates the effect of the bar geometry on the position accuracy of the hidden point which depends on the measurement errors of the horizontal and vertical angles. The results are used to establish some guidelines regarding the inclination angle of the bar and the location of the observed points that provide the best accuracy.Keywords: Hidden point, accuracy, error propagation, surveying, evaluation, simulation, geometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722267 A Hidden Markov Model for Modeling Pavement Deterioration under Incomplete Monitoring Data
Authors: Nam Lethanh, Bryan T. Adey
Abstract:
In this paper, the potential use of an exponential hidden Markov model to model a hidden pavement deterioration process, i.e. one that is not directly measurable, is investigated. It is assumed that the evolution of the physical condition, which is the hidden process, and the evolution of the values of pavement distress indicators, can be adequately described using discrete condition states and modeled as a Markov processes. It is also assumed that condition data can be collected by visual inspections over time and represented continuously using an exponential distribution. The advantage of using such a model in decision making process is illustrated through an empirical study using real world data.Keywords: Deterioration modeling, Exponential distribution, Hidden Markov model, Pavement management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305266 Percolation Transition with Hidden Variables in Complex Networks
Authors: Zhanli Zhang, Wei Chen, Xin Jiang, Lili Ma, Shaoting Tang, Zhiming Zheng
Abstract:
A new class of percolation model in complex networks, in which nodes are characterized by hidden variables reflecting the properties of nodes and the occupied probability of each link is determined by the hidden variables of the end nodes, is studied in this paper. By the mean field theory, the analytical expressions for the phase of percolation transition is deduced. It is determined by the distribution of the hidden variables for the nodes and the occupied probability between pairs of them. Moreover, the analytical expressions obtained are checked by means of numerical simulations on a particular model. Besides, the general model can be applied to describe and control practical diffusion models, such as disease diffusion model, scientists cooperation networks, and so on.Keywords: complex networks, percolation transition, hidden variable, occupied probability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608265 Determination of Sensitive Transmission Lines Due to the Effect of Protection System Hidden Failure in a Critical System Cascading Collapse
Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan
Abstract:
Protection system hidden failures have been identified as one of the main causes of system cascading collapse resulting to power system instability. In this paper, a systematic approach is presented in order to identify the probability of a system cascading collapse by taking into consideration the effect of protection system hidden failure. This includes the accurate calculation of the probability of hidden failure as it will provide significant impinge on the findings of the probability of system cascading collapse. The probability of a system cascading collapse is then used to identify the initial tripping of sensitive transmission lines which will contribute to a critical system cascading collapse. Based on the results obtained from this study, it is important to decide on the accurate value of the hidden failure probability as it will affect the probability of a system cascading collapse.
Keywords: Critical system cascading collapse, hidden failure, probability of cascading collapse, sensitive transmission lines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785264 Air Cargo Overbooking Model under Stochastic Weight and Volume Cancellation
Authors: N. Phumchusri, K. Roekdethawesab, M. Lohatepanont
Abstract:
Overbooking is an approach of selling more goods or services than available capacities because sellers anticipate that some buyers will not show-up or may cancel their bookings. At present, many airlines deploy overbooking strategy in order to deal with the uncertainty of their customers. Particularly, some airlines sell more cargo capacity than what they have available to freight forwarders with beliefs that some of them will cancel later. In this paper, we propose methods to find the optimal overbooking level of volume and weight for air cargo in order to minimize the total cost, containing cost of spoilage and cost of offloaded. Cancellations of volume and weight are jointly random variables with a known joint distribution. Heuristic approaches applying the idea of weight and volume independency is considered to find an appropriate answer to the full problem. Computational experiments are used to explore the performance of approaches presented in this paper, as compared to a naïve method under different scenarios.
Keywords: Air cargo overbooking, offloaded capacity, optimal overbooking level, revenue management, spoilage capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187263 Javanese Character Recognition Using Hidden Markov Model
Authors: Anastasia Rita Widiarti, Phalita Nari Wastu
Abstract:
Hidden Markov Model (HMM) is a stochastic method which has been used in various signal processing and character recognition. This study proposes to use HMM to recognize Javanese characters from a number of different handwritings, whereby HMM is used to optimize the number of state and feature extraction. An 85.7 % accuracy is obtained as the best result in 16-stated vertical model using pure HMM. This initial result is satisfactory for prompting further research.Keywords: Character recognition, off-line handwritingrecognition, Hidden Markov Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989262 Lyric Poetry and the Motives in the Works of Poets of Syr Darya River Vicinity
Authors: Nuraddin Sadykov, Saule Erzhanova, Akmaral Dalelbekkyzy, Mukhit Tolegenov
Abstract:
This article provides a comparative analysis of poetries of diverse nations around the world while largely focusing on Kazakh lyric poetry (Kazakh zhyraulyq oneri). Alongside, it sheds the light to the historical development and contemporary progress path of foremost poetry school located along the Syr Darya coast. Hereby, it-s content and central motives are examined.
Keywords: Lyric poetry (zhyraulyq oner), poet-musician (zhyrshy), Sufi tradition (sopylyq dastur), hermeneutics (germenevtica).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746261 Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation
Authors: Terrence Chen, Thomas S. Huang
Abstract:
In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.Keywords: Finite Gaussian mixture model, Hidden Markov random field model, image segmentation, MRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102260 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases
Authors: Slimane Ouhmad, Abdellah Halimi
Abstract:
In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.
Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262259 Word Recognition and Learning based on Associative Memories and Hidden Markov Models
Authors: Zöhre Kara Kayikci, Günther Palm
Abstract:
A word recognition architecture based on a network of neural associative memories and hidden Markov models has been developed. The input stream, composed of subword-units like wordinternal triphones consisting of diphones and triphones, is provided to the network of neural associative memories by hidden Markov models. The word recognition network derives words from this input stream. The architecture has the ability to handle ambiguities on subword-unit level and is also able to add new words to the vocabulary during performance. The architecture is implemented to perform the word recognition task in a language processing system for understanding simple command sentences like “bot show apple".Keywords: Hebbian learning, hidden Markov models, neuralassociative memories, word recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524258 The Use of Recommender Systems in Decision Support–A Case Study on Used Car Dealers
Authors: Nalinee Sophatsathit
Abstract:
This research focuses on the use of a recommender system in decision support by means of a used car dealer case study in Bangkok Metropolitan. The goal is to develop an effective used car purchasing system for dealers based on the above premise. The underlying principle rests on content-based recommendation from a set of usability surveys. A prototype was developed to conduct buyers- survey selected from 5 experts and 95 general public. The responses were analyzed to determine the mean and standard deviation of buyers- preference. The results revealed that both groups were in favor of using the proposed system to assist their buying decision. This indicates that the proposed system is meritorious to used car dealers.Keywords: Recommender Systems, Decision Support, Content- Based Recommendation, used car dealer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372257 Determination of Severe Loading Condition at Critical System Cascading Collapse Considering the Effect of Protection System Hidden Failure
Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan
Abstract:
Hidden failure in a protection system has been recognized as one of the main reasons which may cause to a power system instability leading to a system cascading collapse. This paper presents a computationally systematic approach used to obtain the estimated average probability of a system cascading collapse by considering the effect of probability hidden failure in a protection system. The estimated average probability of a system cascading collapse is then used to determine the severe loading condition contributing to the higher risk of critical system cascading collapse. This information is essential to the system utility since it will assist the operator to determine the highest point of increased system loading condition prior to the event of critical system cascading collapse.Keywords: Critical system cascading collapse, protection system hidden failure, severe loading condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493256 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884255 Application of Smooth Ergodic Hidden Markov Model in Text to Speech Systems
Authors: Armin Ghayoori, Faramarz Hendessi, Asrar Sheikh
Abstract:
In developing a text-to-speech system, it is well known that the accuracy of information extracted from a text is crucial to produce high quality synthesized speech. In this paper, a new scheme for converting text into its equivalent phonetic spelling is introduced and developed. This method is applicable to many applications in text to speech converting systems and has many advantages over other methods. The proposed method can also complement the other methods with a purpose of improving their performance. The proposed method is a probabilistic model and is based on Smooth Ergodic Hidden Markov Model. This model can be considered as an extension to HMM. The proposed method is applied to Persian language and its accuracy in converting text to speech phonetics is evaluated using simulations.Keywords: Hidden Markov Models, text, synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549254 The Relationship between Motivation for Physical Activity and Level of Physical Activity over Time
Authors: Keyvan Molanorouzi, Selina Khoo, Tony Morris
Abstract:
In recent years, there has been a decline in physical activity among adults. Motivation has been shown to be a crucial factor in maintaining physical activity. The purpose of this study was to whether PA motives measured by the Physical Activity and Leisure Motivation Scale PALMS predicted the actual amount of PA at a later time to provide evidence for the construct validity of the PALMS. A quantitative, cross-sectional descriptive research design was employed. The Demographic Form, PALMS, and International Physical Activity Questionnaire Short form (IPAQ-S) questionnaires were used to assess motives and amount for physical activity in adults on two occasions. A sample of 489 male undergraduate students aged 18 to 25 years (mean ±SD; 22.30±8.13 years) took part in the study. Participants were divided into three types of activities, namely exercise, racquet sport, and team sports and female participants only took part in one type of activity, namely team sports. After 14 weeks, all 489 undergraduate students who had filled in the initial questionnaire (Occasion 1) received the questionnaire via email (Occasion 2). Of the 489 students, 378 males emailed back the completed questionnaire. The results showed that not only were pertinent sub-scales of PALMS positively related to amount of physical activity, but separate regression analyses showed the positive predictive effect of PALMS motives for amount of physical activity for each type of physical activity among participants. This study supported the construct validity of the PALMS by showing that the motives measured by PALMS did predict amount of PA. This information can be obtained to match people with specific sport or activity which in turn could potentially promote longer adherence to the specific activity.Keywords: Physical activity, motivation, the level of physical activity, types of physical activities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3597253 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 896252 Hidden State Probabilistic Modeling for Complex Wavelet Based Image Registration
Authors: F. C. Calnegru
Abstract:
This article presents a computationally tractable probabilistic model for the relation between the complex wavelet coefficients of two images of the same scene. The two images are acquisitioned at distinct moments of times, or from distinct viewpoints, or by distinct sensors. By means of the introduced probabilistic model, we argue that the similarity between the two images is controlled not by the values of the wavelet coefficients, which can be altered by many factors, but by the nature of the wavelet coefficients, that we model with the help of hidden state variables. We integrate this probabilistic framework in the construction of a new image registration algorithm. This algorithm has sub-pixel accuracy and is robust to noise and to other variations like local illumination changes. We present the performance of our algorithm on various image types.
Keywords: Complex wavelet transform, image registration, modeling using hidden state variables, probabilistic similaritymeasure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382251 Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity
Authors: Chia-Ling Chang, Chung-Sheng Liao
Abstract:
The present study focuses on the discussion over the parameter of Artificial Neural Network (ANN). Sensitivity analysis is applied to assess the effect of the parameters of ANN on the prediction of turbidity of raw water in the water treatment plant. The result shows that transfer function of hidden layer is a critical parameter of ANN. When the transfer function changes, the reliability of prediction of water turbidity is greatly different. Moreover, the estimated water turbidity is less sensitive to training times and learning velocity than the number of neurons in the hidden layer. Therefore, it is important to select an appropriate transfer function and suitable number of neurons in the hidden layer in the process of parameter training and validation.Keywords: Artificial Neural Network (ANN), sensitivity analysis, turbidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813250 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator
Authors: Thiang, Handry Khoswanto, Rendy Pangaldus
Abstract:
Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.
Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288249 Criteria Analysis of Residential Location Preferences: An Urban Dwellers’ Perspective
Authors: Arati Siddharth Petkar, Joel E. M. Macwan
Abstract:
Preferences for residential location are of a diverse nature. Primarily they are based on the socio-economic, socio-cultural, socio-demographic characteristics of the household. It also depends on character, and the growth potential of different areas in a city. In the present study, various criteria affecting residential location preferences from the Urban Dwellers’ perspective have been analyzed. The household survey has been conducted in two parts: Existing Buyers’ survey and Future Buyers’ survey. The analysis reveals that workplace location is the most governing criterion in deciding residential location from the majority of the urban dwellers perspective. For analyzing the importance of varied criteria, Analytical Hierarchy Process approach has been explored. The suggested approach will be helpful for urban planners, decision makers and developers, while designating a new residential area or redeveloping an existing one.Keywords: Analytical hierarchy process, household, preferences, residential location preferences, residential land use, urban dwellers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258248 Unsupervised Segmentation by Hidden Markov Chain with Bi-dimensional Observed Process
Authors: Abdelali Joumad, Abdelaziz Nasroallah
Abstract:
In unsupervised segmentation context, we propose a bi-dimensional hidden Markov chain model (X,Y) that we adapt to the image segmentation problem. The bi-dimensional observed process Y = (Y 1, Y 2) is such that Y 1 represents the noisy image and Y 2 represents a noisy supplementary information on the image, for example a noisy proportion of pixels of the same type in a neighborhood of the current pixel. The proposed model can be seen as a competitive alternative to the Hilbert-Peano scan. We propose a bayesian algorithm to estimate parameters of the considered model. The performance of this algorithm is globally favorable, compared to the bi-dimensional EM algorithm through numerical and visual data.
Keywords: Image segmentation, Hidden Markov chain with a bi-dimensional observed process, Peano-Hilbert scan, Bayesian approach, MCMC methods, Bi-dimensional EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612247 Inferring the Dynamics of “Hidden“ Neurons from Electrophysiological Recordings
Authors: Valeri A. Makarov, Nazareth P. Castellanos
Abstract:
Statistical analysis of electrophysiological recordings obtained under, e.g. tactile, stimulation frequently suggests participation in the network dynamics of experimentally unobserved “hidden" neurons. Such interneurons making synapses to experimentally recorded neurons may strongly alter their dynamical responses to the stimuli. We propose a mathematical method that formalizes this possibility and provides an algorithm for inferring on the presence and dynamics of hidden neurons based on fitting of the experimental data to spike trains generated by the network model. The model makes use of Integrate and Fire neurons “chemically" coupled through exponentially decaying synaptic currents. We test the method on simulated data and also provide an example of its application to the experimental recording from the Dorsal Column Nuclei neurons of the rat under tactile stimulation of a hind limb.Keywords: Integrate and fire neuron, neural network models, spike trains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342