Search results for: fault tolerant feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1324

Search results for: fault tolerant feature

1264 SFCL Location Selection Considering Reliability Indices

Authors: Wook-Won Kim, Sung-Yul Kim, Jin-O Kim

Abstract:

The fault current levels through the electric devices have a significant impact on failure probability. New fault current results in exceeding the rated capacity of circuit breaker and switching equipments and changes operation characteristic of overcurrent relay. In order to solve these problems, SFCL (Superconducting Fault Current Limiter) has rising as one of new alternatives so as to improve these problems. A fault current reduction differs depending on installed location. Therefore, a location of SFCL is very important. Also, SFCL decreases the fault current, and it prevents surrounding protective devices to be exposed to fault current, it then will bring a change of reliability. In this paper, we propose method which determines the optimal location when SFCL is installed in power system. In addition, the reliability about the power system which SFCL was installed is evaluated. The efficiency and effectiveness of this method are also shown by numerical examples and the reliability indices are evaluated in this study at each load points. These results show a reliability change of a system when SFCL was installed.

Keywords: Superconducting Fault Current Limiter, OptimalLocation, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
1263 Fault Detection and Isolation using RBF Networks for Polymer Electrolyte Membrane Fuel Cell

Authors: Mahanijah Md Kamal., Dingli Yu

Abstract:

This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC stack. One actuator fault, one component fault and three sensor faults have been introduced to the PEMFC systems experience faults between -7% to +10% of fault size in real-time operation. To validate the results, a benchmark model developed by Michigan University is used in the simulation to investigate the effect of these five faults. The developed independent RBF model is tested on MATLAB R2009a/Simulink environment. The simulation results confirm the effectiveness of the proposed method for FDI under an open-loop condition. By using this method, the RBF networks able to detect and isolate all five faults accordingly and accurately.

Keywords: Polymer electrolyte membrane fuel cell, radial basis function neural networks, fault detection, fault isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
1262 Robust Fault Diagnosis for Wind Turbine Systems Subjected to Multi-Faults

Authors: Sarah Odofin, Zhiwei Gao, Sun Kai

Abstract:

Operations, maintenance and reliability of wind turbines have received much attention over the years due to the rapid expansion of wind farms. This paper explores early fault diagnosis technique for a 5MW wind turbine system subjected to multiple faults, where genetic optimization algorithm is employed to make the residual sensitive to the faults, but robust against disturbances. The proposed technique has a potential to reduce the downtime mostly caused by the breakdown of components and exploit the productivity consistency by providing timely fault alarms. Simulation results show the effectiveness of the robust fault detection methods used under Matlab/Simulink/Gatool environment.

Keywords: Disturbance robustness, fault monitoring and detection, genetic algorithm and observer technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
1261 A Comprehensive Method of Fault Detection and Isolation Based On Testability Modeling Data

Authors: Junyou Shi, Weiwei Cui

Abstract:

Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.

Keywords: BIT, fault detection, fault isolation, testability modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
1260 Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line

Authors: Amany M. El-Zonkoly, Hussein Desouki

Abstract:

Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.

Keywords: Entropy calculation, FACTS, SSSC, UPFC, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
1259 Development of a Semantic Wiki-based Feature Library for the Extraction of Manufacturing Feature and Manufacturing Information

Authors: Hendry Muljadi, Hideaki Takeda, Koichi Ando

Abstract:

A manufacturing feature can be defined simply as a geometric shape and its manufacturing information to create the shape. In a feature-based process planning system, feature library that consists of pre-defined manufacturing features and the manufacturing information to create the shape of the features, plays an important role in the extraction of manufacturing features with their proper manufacturing information. However, to manage the manufacturing information flexibly, it is important to build a feature library that can be easily modified. In this paper, the implementation of Semantic Wiki for the development of the feature library is proposed.

Keywords: Manufacturing feature, feature library, feature ontology, process planning, Wiki, MediaWiki, Semantic Wiki.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
1258 A Comparative Study of SVM Classifiers and Artificial Neural Networks Application for Rolling Element Bearing Fault Diagnosis using Wavelet Transform Preprocessing

Authors: Commander Sunil Tyagi

Abstract:

Effectiveness of Artificial Neural Networks (ANN) and Support Vector Machines (SVM) classifiers for fault diagnosis of rolling element bearings are presented in this paper. The characteristic features of vibration signals of rotating driveline that was run in its normal condition and with faults introduced were used as input to ANN and SVM classifiers. Simple statistical features such as standard deviation, skewness, kurtosis etc. of the time-domain vibration signal segments along with peaks of the signal and peak of power spectral density (PSD) are used as features to input the ANN and SVM classifier. The effect of preprocessing of the vibration signal by Discreet Wavelet Transform (DWT) prior to feature extraction is also studied. It is shown from the experimental results that the performance of SVM classifier in identification of bearing condition is better then ANN and pre-processing of vibration signal by DWT enhances the effectiveness of both ANN and SVM classifier

Keywords: ANN, Artificial Intelligence, Fault Diagnosis, Pattern Recognition, Rolling Element Bearing, SVM. Wavelet Transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
1257 A Bayesian Network Reliability Modeling for FlexRay Systems

Authors: Kuen-Long Leu, Yung-Yuan Chen, Chin-Long Wey, Jwu-E Chen, Chung-Hsien Hsu

Abstract:

The increasing importance of FlexRay systems in automotive domain inspires unceasingly relative researches. One primary issue among researches is to verify the reliability of FlexRay systems either from protocol aspect or from system design aspect. However, research rarely discusses the effect of network topology on the system reliability. In this paper, we will illustrate how to model the reliability of FlexRay systems with various network topologies by a well-known probabilistic reasoning technology, Bayesian Network. In this illustration, we especially investigate the effectiveness of error containment built in star topology and fault-tolerant midpoint synchronization algorithm adopted in FlexRay communication protocol. Through a FlexRay steer-by-wire case study, the influence of different topologies on the failure probability of the FlexRay steerby- wire system is demonstrated. The notable value of this research is to show that the Bayesian Network inference is a powerful and feasible method for the reliability assessment of FlexRay systems.

Keywords: Bayesian Network, FlexRay, fault tolerance, network topology, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
1256 Motor Gear Fault Diagnosis by Current, Noise and Vibration on AC Machine Considering Environment

Authors: Sun-Ki Hong, Ki-Seok Kim, Yong-Ho Cho

Abstract:

Lots of motors have been being used in industry. Therefore many researchers have studied about the failure diagnosis of motors. In this paper, the effect of measuring environment for diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. For bad and good environment, the diagnosis results are compared. From these, it is shown that the bad measuring environment may not be able to detect exactly the motor gear fault. Therefore it is emphasized that the measuring environment should be carefully prepared.

Keywords: Motor fault, Diagnosis, FFT, Vibration, Noise, q-axis current, measuring environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2463
1255 Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump

Authors: Maamar Ali Saud Al Tobi, Geraint Bevan, K. P. Ramachandran, Peter Wallace, David Harrison

Abstract:

Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated.

Keywords: Centrifugal pump setup, vibration analysis, artificial intelligence, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
1254 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network

Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan

Abstract:

The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.

Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2958
1253 Fault Classification of Double Circuit Transmission Line Using Artificial Neural Network

Authors: Anamika Jain, A. S. Thoke, R. N. Patel

Abstract:

This paper addresses the problems encountered by conventional distance relays when protecting double-circuit transmission lines. The problems arise principally as a result of the mutual coupling between the two circuits under different fault conditions; this mutual coupling is highly nonlinear in nature. An adaptive protection scheme is proposed for such lines based on application of artificial neural network (ANN). ANN has the ability to classify the nonlinear relationship between measured signals by identifying different patterns of the associated signals. One of the key points of the present work is that only current signals measured at local end have been used to detect and classify the faults in the double circuit transmission line with double end infeed. The adaptive protection scheme is tested under a specific fault type, but varying fault location, fault resistance, fault inception angle and with remote end infeed. An improved performance is experienced once the neural network is trained adequately, which performs precisely when faced with different system parameters and conditions. The entire test results clearly show that the fault is detected and classified within a quarter cycle; thus the proposed adaptive protection technique is well suited for double circuit transmission line fault detection & classification. Results of performance studies show that the proposed neural network-based module can improve the performance of conventional fault selection algorithms.

Keywords: Double circuit transmission line, Fault detection and classification, High impedance fault and Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3125
1252 A Study of Adaptive Fault Detection Method for GNSS Applications

Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee

Abstract:

This study is purposed to develop an efficient fault detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive noise covariance estimation. Due to the dependence on radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. In the proposed method, the pseudorange and carrier-phase measurement noise covariances are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. The test statistics for fault detection are generated by the estimated measurement noise covariances. To evaluate the fault detection capability, intentional faults were added to the filed-collected measurements. The experiment result shows that the proposed method is efficient in detecting unhealthy measurements and improves GNSS positioning accuracy against fault occurrences.

Keywords: Adaptive estimation, fault detection, GNSS, residual.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499
1251 Shopping Cart System: Load Balancing and Fault Tolerance in the OSGi Service Platform

Authors: Irina Astrova, Arne Koschel, Thole Schneider, Johannes Westhuis, Jürgen Westerkamp

Abstract:

The main purpose of this paper was to find a simple solution for load balancing and fault tolerance in OSGi. The challenge was to implement a highly available web application such as a shopping cart system with load balancing and fault tolerance, without having to change the core of OSGi.

Keywords: Fault tolerance, load balancing, OSGi, shopping cart system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
1250 An Approach in the Improvement of the Reliability of Impedance Relay

Authors: D. Ouahdi, R. Ladjeroud, I. Habi

Abstract:

The distance protection mainly the impedance relay which is considered as the main protection for transmission lines can be subjected to impedance measurement error which is, mainly, due to the fault resistance and to the power fluctuation. Thus, the impedance relay may not operate for a short circuit at the far end of the protected line (case of the under reach) or operates for a fault beyond its protected zone (case of overreach). In this paper, an approach to fault detection by a distance protection, which distinguishes between the faulty conditions and the effect of overload operation mode, has been developed. This approach is based on the symmetrical components; mainly the negative sequence, and it is taking into account both the effect of fault resistance and the overload situation which both have an effect upon the reliability of the protection in terms of dependability for the former and security for the latter.

Keywords: Distance Protection, Fault Detection, negative sequence, overload, Transmission line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
1249 Generator Damage Recognition Based on Artificial Neural Network

Authors: Chang-Hung Hsu, Chun-Yao Lee, Guan-Lin Liao, Yung-Tsan Jou, Jin-Maun Ho, Yu-Hua Hsieh, Yi-Xing Shen

Abstract:

This article simulates the wind generator set which has two fault bearing collar rail destruction and the gear box oil leak fault. The electric current signal which produced by the generator, We use Empirical Mode Decomposition (EMD) as well as Fast Fourier Transform (FFT) obtains the frequency range-s signal figure and characteristic value. The last step is use a kind of Artificial Neural Network (ANN) classifies which determination fault signal's type and reason. The ANN purpose of the automatic identification wind generator set fault..

Keywords: Wind-driven generator, Fast Fourier Transform, Neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
1248 Unsupervised Feature Selection Using Feature Density Functions

Authors: Mina Alibeigi, Sattar Hashemi, Ali Hamzeh

Abstract:

Since dealing with high dimensional data is computationally complex and sometimes even intractable, recently several feature reductions methods have been developed to reduce the dimensionality of the data in order to simplify the calculation analysis in various applications such as text categorization, signal processing, image retrieval, gene expressions and etc. Among feature reduction techniques, feature selection is one the most popular methods due to the preservation of the original features. In this paper, we propose a new unsupervised feature selection method which will remove redundant features from the original feature space by the use of probability density functions of various features. To show the effectiveness of the proposed method, popular feature selection methods have been implemented and compared. Experimental results on the several datasets derived from UCI repository database, illustrate the effectiveness of our proposed methods in comparison with the other compared methods in terms of both classification accuracy and the number of selected features.

Keywords: Feature, Feature Selection, Filter, Probability Density Function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
1247 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles

Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou

Abstract:

The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.

Keywords: Fault detection, feature selection, machine learning, predictive maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
1246 Face Detection using Variance based Haar-Like feature and SVM

Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung

Abstract:

This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.

Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3676
1245 Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems

Authors: V.Manikandan, N.Devarajan

Abstract:

The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.

Keywords: Artificial neural network, Fault Diagnosis, Identification, Markov parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
1244 Diagnosis of Multivariate Process via Nonlinear Kernel Method Combined with Qualitative Representation of Fault Patterns

Authors: Hyun-Woo Cho

Abstract:

The fault detection and diagnosis of complicated production processes is one of essential tasks needed to run the process safely with good final product quality. Unexpected events occurred in the process may have a serious impact on the process. In this work, triangular representation of process measurement data obtained in an on-line basis is evaluated using simulation process. The effect of using linear and nonlinear reduced spaces is also tested. Their diagnosis performance was demonstrated using multivariate fault data. It has shown that the nonlinear technique based diagnosis method produced more reliable results and outperforms linear method. The use of appropriate reduced space yielded better diagnosis performance. The presented diagnosis framework is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. The use of reduced model space helps to mitigate the sensitivity of the fault pattern to noise.

Keywords: Real-time Fault diagnosis, triangular representation of patterns in reduced spaces, Nonlinear kernel technique, multivariate statistical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
1243 Hybrid Feature and Adaptive Particle Filter for Robust Object Tracking

Authors: Xinyue Zhao, Yutaka Satoh, Hidenori Takauji, Shun'ichi Kaneko

Abstract:

A hybrid feature based adaptive particle filter algorithm is presented for object tracking in real scenarios with static camera. The hybrid feature is combined by two effective features: the Grayscale Arranging Pairs (GAP) feature and the color histogram feature. The GAP feature has high discriminative ability even under conditions of severe illumination variation and dynamic background elements, while the color histogram feature has high reliability to identify the detected objects. The combination of two features covers the shortage of single feature. Furthermore, we adopt an updating target model so that some external problems such as visual angles can be overcame well. An automatic initialization algorithm is introduced which provides precise initial positions of objects. The experimental results show the good performance of the proposed method.

Keywords: Hybrid feature, adaptive Particle Filter, robust Object Tracking, Grayscale Arranging Pairs (GAP) feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
1242 On Fault Diagnosis of Asynchronous Sequential Machines with Parallel Composition

Authors: Jung-Min Yang

Abstract:

Fault diagnosis of composite asynchronous sequential machines with parallel composition is addressed in this paper. An adversarial input can infiltrate one of two submachines comprising the composite asynchronous machine, causing an unauthorized state transition. The objective is to characterize the condition under which the controller can diagnose any fault occurrence. Two control configurations, state feedback and output feedback, are considered in this paper. In the case of output feedback, the exact estimation of the state is impossible since the current state is inaccessible and the output feedback is given as the form of burst. A simple example is provided to demonstrate the proposed methodology.

Keywords: Asynchronous sequential machines, parallel composition, fault diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928
1241 A Survey on Facial Feature Points Detection Techniques and Approaches

Authors: Rachid Ahdid, Khaddouj Taifi, Said Safi, Bouzid Manaut

Abstract:

Automatic detection of facial feature points plays an important role in applications such as facial feature tracking, human-machine interaction and face recognition. The majority of facial feature points detection methods using two-dimensional or three-dimensional data are covered in existing survey papers. In this article chosen approaches to the facial features detection have been gathered and described. This overview focuses on the class of researches exploiting facial feature points detection to represent facial surface for two-dimensional or three-dimensional face. In the conclusion, we discusses advantages and disadvantages of the presented algorithms.

Keywords: Facial feature points, face recognition, facial feature tracking, two-dimensional data, three-dimensional data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
1240 A Novel Approach of Power Transformer Diagnostic Using 3D FEM Parametrical Model

Authors: M. Brandt, A. Peniak, J. Makarovič, P. Rafajdus

Abstract:

This paper deals with a novel approach of power transformers diagnostics. This approach identifies the exact location and the range of a fault in the transformer and helps to reduce operation costs related to handling of the faulty transformer, its disassembly and repair. The advantage of the approach is a possibility to simulate healthy transformer and also all faults, which can occur in transformer during its operation without its disassembling, which is very expensive in practice. The approach is based on creating frequency dependent impedance of the transformer by sweep frequency response analysis measurements and by 3D FE parametrical modeling of the fault in the transformer. The parameters of the 3D FE model are the position and the range of the axial short circuit. Then, by comparing the frequency dependent impedances of the parametrical models with the measured ones, the location and the range of the fault is identified. The approach was tested on a real transformer and showed high coincidence between the real fault and the simulated one.

Keywords: Fault, finite element method, parametrical model of transformer, sweep frequency response analysis, transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
1239 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
1238 Implementing Fault Tolerance with Proxy Signature on the Improvement of RSA System

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Fault tolerance and data security are two important issues in modern communication systems. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on the improved RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.

Keywords: Proxy signature, fault tolerance, improved RSA, key agreement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
1237 Comparative Study of Fault Identification and Classification on EHV Lines Using Discrete Wavelet Transform and Fourier Transform Based ANN

Authors: K.Gayathri, N. Kumarappan

Abstract:

An appropriate method for fault identification and classification on extra high voltage transmission line using discrete wavelet transform is proposed in this paper. The sharp variations of the generated short circuit transient signals which are recorded at the sending end of the transmission line are adopted to identify the fault. The threshold values involve fault classification and these are done on the basis of the multiresolution analysis. A comparative study of the performance is also presented for Discrete Fourier Transform (DFT) based Artificial Neural Network (ANN) and Discrete Wavelet Transform (DWT). The results prove that the proposed method is an effective and efficient one in obtaining the accurate result within short duration of time by using Daubechies 4 and 9. Simulation of the power system is done using MATLAB.

Keywords: EHV transmission line, Fault identification and classification, Discrete wavelet transform, Multiresolution analysis, Artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
1236 Robust Face Recognition using AAM and Gabor Features

Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seoungseon Jeon, Jaemin Kim, Seongwon Cho

Abstract:

In this paper, we propose a face recognition algorithm using AAM and Gabor features. Gabor feature vectors which are well known to be robust with respect to small variations of shape, scaling, rotation, distortion, illumination and poses in images are popularly employed for feature vectors for many object detection and recognition algorithms. EBGM, which is prominent among face recognition algorithms employing Gabor feature vectors, requires localization of facial feature points where Gabor feature vectors are extracted. However, localization method employed in EBGM is based on Gabor jet similarity and is sensitive to initial values. Wrong localization of facial feature points affects face recognition rate. AAM is known to be successfully applied to localization of facial feature points. In this paper, we devise a facial feature point localization method which first roughly estimate facial feature points using AAM and refine facial feature points using Gabor jet similarity-based facial feature localization method with initial points set by the rough facial feature points obtained from AAM, and propose a face recognition algorithm using the devised localization method for facial feature localization and Gabor feature vectors. It is observed through experiments that such a cascaded localization method based on both AAM and Gabor jet similarity is more robust than the localization method based on only Gabor jet similarity. Also, it is shown that the proposed face recognition algorithm using this devised localization method and Gabor feature vectors performs better than the conventional face recognition algorithm using Gabor jet similarity-based localization method and Gabor feature vectors like EBGM.

Keywords: Face Recognition, AAM, Gabor features, EBGM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158
1235 Differential Protection for Power Transformer Using Wavelet Transform and PNN

Authors: S. Sendilkumar, B. L. Mathur, Joseph Henry

Abstract:

A new approach for protection of power transformer is presented using a time-frequency transform known as Wavelet transform. Different operating conditions such as inrush, Normal, load, External fault and internal fault current are sampled and processed to obtain wavelet coefficients. Different Operating conditions provide variation in wavelet coefficients. Features like energy and Standard deviation are calculated using Parsevals theorem. These features are used as inputs to PNN (Probabilistic neural network) for fault classification. The proposed algorithm provides more accurate results even in the presence of noise inputs and accurately identifies inrush and fault currents. Overall classification accuracy of the proposed method is found to be 96.45%. Simulation of the fault (with and without noise) was done using MATLAB AND SIMULINK software taking 2 cycles of data window (40 m sec) containing 800 samples. The algorithm was evaluated by using 10 % Gaussian white noise.

Keywords: Power Transformer, differential Protection, internalfault, inrush current, Wavelet Energy, Db9.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3083