Search results for: delay differential equations
2195 Existence of Solution for Boundary Value Problems of Differential Equations with Delay
Authors: Xiguang Li
Abstract:
In this paper , by using fixed point theorem , upper and lower solution-s method and monotone iterative technique , we prove the existence of maximum and minimum solutions of differential equations with delay , which improved and generalize the result of related paper.
Keywords: Banach space, boundary value problem, differential equation, delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12322194 A Necessary Condition for the Existence of Chaos in Fractional Order Delay Differential Equations
Authors: Sachin Bhalekar
Abstract:
In this paper we propose a necessary condition for the existence of chaos in delay differential equations of fractional order. To explain the proposed theory, we discuss fractional order Liu system and financial system involving delay.
Keywords: Caputo derivative, delay, stability, chaos.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26662193 Step Method for Solving Nonlinear Two Delays Differential Equation in Parkinson’s Disease
Authors: H. N. Agiza, M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous disorder with common age of onset, symptoms, and progression levels. In this paper we will solve analytically the PD model as a non-linear delay differential equation using the steps method. The step method transforms a system of delay differential equations (DDEs) into systems of ordinary differential equations (ODEs). On some numerical examples, the analytical solution will be difficult. So we will approximate the analytical solution using Picard method and Taylor method to ODEs.
Keywords: Parkinson's disease, Step method, delay differential equation, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7342192 Variational Iteration Method for Solving Systems of Linear Delay Differential Equations
Authors: Sara Barati, Karim Ivaz
Abstract:
In this paper, using a model transformation approach a system of linear delay differential equations (DDEs) with multiple delays is converted to a non-delayed initial value problem. The variational iteration method (VIM) is then applied to obtain the approximate analytical solutions. Numerical results are given for several examples involving scalar and second order systems. Comparisons with the classical fourth-order Runge-Kutta method (RK4) verify that this method is very effective and convenient.
Keywords: Variational iteration method, delay differential equations, multiple delays, Runge-Kutta method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24792191 Global Existence of Periodic Solutions in a Delayed Tri–neuron Network
Authors: Kejun Zhuang, Zhaohui Wen
Abstract:
In this paper, a tri–neuron network model with time delay is investigated. By using the Bendixson-s criterion for high– dimensional ordinary differential equations and global Hopf bifurcation theory for functional differential equations, sufficient conditions for existence of periodic solutions when the time delay is sufficiently large are established.Keywords: Delay, global Hopf bifurcation, neural network, periodicsolutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14842190 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays
Authors: Felix Che Shu
Abstract:
We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.
Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14922189 Solution of Nonlinear Second-Order Pantograph Equations via Differential Transformation Method
Authors: Nemat Abazari, Reza Abazari
Abstract:
In this work, we successfully extended one-dimensional differential transform method (DTM), by presenting and proving some theorems, to solving nonlinear high-order multi-pantograph equations. This technique provides a sequence of functions which converges to the exact solution of the problem. Some examples are given to demonstrate the validity and applicability of the present method and a comparison is made with existing results.
Keywords: Nonlinear multi-pantograph equation, delay differential equation, differential transformation method, proportional delay conditions, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25602188 Development of Variable Stepsize Variable Order Block Method in Divided Difference Form for the Numerical Solution of Delay Differential Equations
Authors: Fuziyah Ishak, Mohamed B. Suleiman, Zanariah A. Majid, Khairil I. Othman
Abstract:
This paper considers the development of a two-point predictor-corrector block method for solving delay differential equations. The formulae are represented in divided difference form and the algorithm is implemented in variable stepsize variable order technique. The block method produces two new values at a single integration step. Numerical results are compared with existing methods and it is evident that the block method performs very well. Stability regions of the block method are also investigated.Keywords: block method, delay differential equations, predictor-corrector, stability region, variable stepsize variable order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14752187 Mean Square Stability of Impulsive Stochastic Delay Differential Equations with Markovian Switching and Poisson Jumps
Authors: Dezhi Liu
Abstract:
In the paper, based on stochastic analysis theory and Lyapunov functional method, we discuss the mean square stability of impulsive stochastic delay differential equations with markovian switching and poisson jumps, and the sufficient conditions of mean square stability have been obtained. One example illustrates the main results. Furthermore, some well-known results are improved and generalized in the remarks.
Keywords: Impulsive, stochastic, delay, Markovian switching, Poisson jumps, mean square stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15622186 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations
Authors: Fuziyah Ishak, Siti Norazura Ahmad
Abstract:
Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.
Keywords: Accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16572185 Application of the Hybrid Methods to Solving Volterra Integro-Differential Equations
Authors: G.Mehdiyeva, M.Imanova, V.Ibrahimov
Abstract:
Beginning from the creator of integro-differential equations Volterra, many scientists have investigated these equations. Classic method for solving integro-differential equations is the quadratures method that is successfully applied up today. Unlike these methods, Makroglou applied hybrid methods that are modified and generalized in this paper and applied to the numerical solution of Volterra integro-differential equations. The way for defining the coefficients of the suggested method is also given.Keywords: Integro-differential equations, initial value problem, hybrid methods, predictor-corrector method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17332184 Laplace Technique to Find General Solution of Differential Equations without Initial Conditions
Authors: Adil Al-Rammahi
Abstract:
Laplace transformations have wide applications in engineering and sciences. All previous studies of modified Laplace transformations depend on differential equation with initial conditions. The purpose of our paper is to solve the linear differential equations (not initial value problem) and then find the general solution (not particular) via the Laplace transformations without needed any initial condition. The study involves both types of differential equations, ordinary and partial.
Keywords: Differential Equations, Laplace Transformations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31852183 Strict Stability of Fuzzy Differential Equations with Impulse Effect
Authors: Sanjay K.Srivastava, Bhanu Gupta
Abstract:
In this paper some results on strict stability heve beeb extended for fuzzy differential equations with impulse effect using Lyapunov functions and Razumikhin technique.
Keywords: Fuzzy differential equations, Impulsive differential equations, Strict stability, Lyapunov function, Razumikhin technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14692182 Fractional Delay FIR Filters Design with Enhanced Differential Evolution
Authors: Krzysztof Walczak
Abstract:
Fractional delay FIR filters design method based on the differential evolution algorithm is presented. Differential evolution is an evolutionary algorithm for solving a global optimization problems in the continuous search space. In the proposed approach, an evolutionary algorithm is used to determine the coefficients of a fractional delay FIR filter based on the Farrow structure. Basic differential evolution is enhanced with a restricted mating technique, which improves the algorithm performance in terms of convergence speed and obtained solution. Evolutionary optimization is carried out by minimizing an objective function which is based on the amplitude response and phase delay errors. Experimental results show that the proposed algorithm leads to a reduction in the amplitude response and phase delay errors relative to those achieved with the Least-Squares method.Keywords: Fractional Delay Filters, Farrow Structure, Evolutionary Computation, Differential Evolution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18622181 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices
Authors: Khosrow Maleknejad, Yaser Rostami
Abstract:
In this paper, Semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions
Keywords: Integro-differential equations, Quartic B-spline wavelet, Operational matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31532180 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
Discrete linear multistep block method of uniform order for the solution of first order initial value problems (IVPs) in ordinary differential equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.
Keywords: Block Method, First Order Ordinary Differential Equations, Hybrid, Self starting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27962179 Integral Image-Based Differential Filters
Authors: Kohei Inoue, Kenji Hara, Kiichi Urahama
Abstract:
We describe a relationship between integral images and differential images. First, we derive a simple difference filter from conventional integral image. In the derivation, we show that an integral image and the corresponding differential image are related to each other by simultaneous linear equations, where the numbers of unknowns and equations are the same, and therefore, we can execute the integration and differentiation by solving the simultaneous equations. We applied the relationship to an image fusion problem, and experimentally verified the effectiveness of the proposed method.
Keywords: Integral images, differential images, differential filters, image fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20992178 Instability of a Nonlinear Differential Equation of Fifth Order with Variable Delay
Authors: Cemil Tunc
Abstract:
In this paper, we study the instability of the zero solution to a nonlinear differential equation with variable delay. By using the Lyapunov functional approach, some sufficient conditions for instability of the zero solution are obtained.
Keywords: Instability, Lyapunov-Krasovskii functional, delay differential equation, fifth order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14542177 Closed-Form Solution of Second Order Linear Ordinary Differential Equations
Authors: Saeed Otarod
Abstract:
A transformational method is employed to obtain closed-form integral solutions for nonhomogeneous second order linear ordinary differential equations in terms of a particular solution of the corresponding homogeneous part. To find the particular solution of the homogeneous part, the equation is first transformed into a simple Riccati equation from which the general solution of the nonhomogeneous second order linear differential equation, in the form of a closed integral equation, is inferred. The method is applied to the solution of Schr¨odinger equation for hydrogen-like atoms. A generic nonhomogeneous second order linear differential equation has also been solved to further exemplify the methodology.
Keywords: Closed form, Second order ordinary differential equations, explicit, linear equations, differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92176 ψ-exponential Stability for Non-linear Impulsive Differential Equations
Authors: Bhanu Gupta, Sanjay K. Srivastava
Abstract:
In this paper, we shall present sufficient conditions for the ψ-exponential stability of a class of nonlinear impulsive differential equations. We use the Lyapunov method with functions that are not necessarily differentiable. In the last section, we give some examples to support our theoretical results.Keywords: Exponential stability, globally exponential stability, impulsive differential equations, Lyapunov function, ψ-stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39372175 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (III)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using Leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferential equation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11692174 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (I)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11962173 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (II)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11002172 Projective Synchronization of a Class of Fractional-Order Chaotic Systems
Authors: Zahra Yaghoubi, Nooshin Bigdeli, Karim Afshar
Abstract:
This paper at first presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. After that a drive-response synchronization method with linear output error feedback is presented for “generalized projective synchronization" for a class of fractional-order chaotic systems via a scalar transmitted signal. Genesio_Tesi and Duffing systems are used to illustrate the effectiveness of the proposed synchronization method. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18132171 On a Class of Inverse Problems for Degenerate Differential Equations
Authors: Fadi Awawdeh, H.M. Jaradat
Abstract:
In this paper, we establish existence and uniqueness of solutions for a class of inverse problems of degenerate differential equations. The main tool is the perturbation theory for linear operators.Keywords: Inverse Problem, Degenerate Differential Equations, Perturbation Theory for Linear Operators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16362170 On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y''' = f(x, y, y', y''), y(α)=y0, y'(α)=β, y''(α)=η with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found to be consistent, zero stable and hence convergent. The derived schemes were tested on stiff and non – stiff ordinary differential equations, and the numerical results obtained compared favorably with the exact solution.
Keywords: Block Method, Hybrid, Linear Multistep, Self starting, Third Order Ordinary Differential Equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17702169 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions
Authors: Mustafa Bayram Gücen, Coşkun Yakar
Abstract:
In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.Keywords: Fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11282168 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback
Authors: M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.
Keywords: Parkinson's disease, stability, simulation, two delay differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6632167 Delay-independent Stabilization of Linear Systems with Multiple Time-delays
Authors: Ping He, Heng-You Lan, Gong-Quan Tan
Abstract:
The multidelays linear control systems described by difference differential equations are often studied in modern control theory. In this paper, the delay-independent stabilization algebraic criteria and the theorem of delay-independent stabilization for linear systems with multiple time-delays are established by using the Lyapunov functional and the Riccati algebra matrix equation in the matrix theory. An illustrative example and the simulation result, show that the approach to linear systems with multiple time-delays is effective.Keywords: Linear system, Delay-independent stabilization, Lyapunovfunctional, Riccati algebra matrix equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17632166 The Strict Stability of Impulsive Stochastic Functional Differential Equations with Markovian Switching
Authors: Dezhi Liu Guiyuan Yang Wei Zhang
Abstract:
Strict stability can present the rate of decay of the solution, so more and more investigators are beginning to study the topic and some results have been obtained. However, there are few results about strict stability of stochastic differential equations. In this paper, using Lyapunov functions and Razumikhin technique, we have gotten some criteria for the strict stability of impulsive stochastic functional differential equations with markovian switching.Keywords: Impulsive; Stochastic functional differential equation; Strict stability; Razumikhin technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289