Search results for: agricultural sustainability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 892

Search results for: agricultural sustainability

592 Sustainable Intensification of Agriculture in Victoria’s Food Bowl: Optimizing Productivity with the use of Decision-Support Tools

Authors: M. Johnson, R. Faggian, V. Sposito

Abstract:

A participatory and engaged approach is key in connecting agricultural managers to sustainable agricultural systems to support and optimize production in Victoria’s food bowl. A sustainable intensification (SI) approach is well documented globally, but participation rates amongst Victorian farmers is fragmentary, and key outcomes and implementation strategies are poorly understood. Improvement in decision-support management tools and a greater understanding of the productivity gains available upon implementation of SI is necessary. This paper reviews the current understanding and uptake of SI practices amongst farmers in one of Victoria’s premier food producing regions, the Goulburn Broken; and it spatially analyses the potential for this region to adapt to climate change and optimize food production. A Geographical Information Systems (GIS) approach is taken to develop an interactive decision-support tool that can be accessible to on-ground agricultural managers. The tool encompasses multiple criteria analysis (MCA) that identifies factors during the construction phase of the tool, using expert witnesses and regional knowledge, framed within an Analytical Hierarchy Process. Given the complexities of the interrelations between each of the key outcomes, this participatory approach, in which local realities and factors inform the key outcomes and help to strategies for a particular region, results in a robust strategy for sustainably intensifying production in key food producing regions. The creation of an interactive, locally embedded, decision-support management and education tool can help to close the gap between farmer knowledge and production, increase on-farm adoption of sustainable farming strategies and techniques, and optimize farm productivity.

Keywords: Agriculture, decision-support management tools, GIS, sustainable intensification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
591 Impacts of Climate Change under the Threat of Global Warming for an Agricultural Watershed of the Kangsabati River

Authors: Sujana Dhar, Asis Mazumdar

Abstract:

The effects of global warming on India vary from the submergence of low-lying islands and coastal lands to the melting of glaciers in the Indian Himalayas, threatening the volumetric flow rate of many of the most important rivers of India and South Asia. In India, such effects are projected to impact millions of lives. As a result of ongoing climate change, the climate of India has become increasingly volatile over the past several decades; this trend is expected to continue. Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. The climate change issue is part of the larger challenge of sustainable development. As a result, climate policies can be more effective when consistently embedded within broader strategies designed to make national and regional development paths more sustainable. The impact of climate variability and change, climate policy responses, and associated socio-economic development will affect the ability of countries to achieve sustainable development goals. A very well calibrated Soil and Water Assessment Tool (R2 = 0.9968, NSE = 0.91) was exercised over the Khatra sub basin of the Kangsabati River watershed in Bankura district of West Bengal, India, in order to evaluate projected parameters for agricultural activities. Evapotranspiration, Transmission Losses, Potential Evapotranspiration and Lateral Flow to reach are evaluated from the years 2041-2050 in order to generate a picture for sustainable development of the river basin and its inhabitants. India has a significant stake in scientific advancement as well as an international understanding to promote mitigation and adaptation. This requires improved scientific understanding, capacity building, networking and broad consultation processes. This paper is a commitment towards the planning, management and development of the water resources of the Kangsabati River by presenting detailed future scenarios of the Kangsabati river basin, Khatra sub basin, over the mentioned time period. India-s economy and societal infrastructures are finely tuned to the remarkable stability of the Indian monsoon, with the consequence that vulnerability to small changes in monsoon rainfall is very high. In 2002 the monsoon rains failed during July, causing profound loss of agricultural production with a drop of over 3% in India-s GDP. Neither the prolonged break in the monsoon nor the seasonal rainfall deficit was predicted. While the general features of monsoon variability and change are fairly well-documented, the causal mechanisms and the role of regional ecosystems in modulating the changes are still not clear. Current climate models are very poor at modelling the Asian monsoon: this is a challenging and critical region where the ocean, atmosphere, land surface and mountains all interact. The impact of climate change on regional ecosystems is likewise unknown. The potential for the monsoon to become more volatile has major implications for India itself and for economies worldwide. Knowledge of future variability of the monsoon system, particularly in the context of global climate change, is of great concern for regional water and food security. The major findings of this paper were that of all the chosen projected parameters, transmission losses, soil water content, potential evapotranspiration, evapotranspiration and lateral flow to reach, display an increasing trend over the time period of years 2041- 2050.

Keywords: Change, future water availability scenario, modeling, SWAT, global warming, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
590 Impacts of Tillage on Biodiversity of Microarthropod Communities in Two Different Crop Systems

Authors: Leila Ramezani, Mohammad Saeid Mossadegh

Abstract:

Different uses of land by humans alter the physico chemical characteristics of the soil and affect the soil microhabitat. The objective of this study was to evaluate the influence of tillage in three different human land uses on microarthropods biodiversity in Khuzestan province, southwest of Iran. Three microhabitats including a permanent grassland with old Date-Palms around and no till system, and two wheat fields, one with conservative agricultural practices and low till system and the other with conventional agricultural practices (deep tillage), were compared for the biodiversity of the two main groups of soil microarthropods (Oribatida and Collembola). Soil samples were collected from the top to a depth of 15 cm bimonthly during a period of two years. Significant differences in the biodiversity index of microarthropods were observed between the different tillage systems (F = 36.748, P =0.000). Indeed, analysis of species diversity showed that the diversity index at the conservative field with low till (2.58 ± 0.01) was higher (p < 0.05) than the conventional tilled field (2.45 ± 0.08) and the diversity of natural grassland was the highest (2.79 ± 0.19, p < 0.05). Indeed, the index of biodiversity and population abundance differed significantly in different seasons (p < 0.00).

Keywords: Biodiversity, collembola, microarthropods, oribatida.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
589 Japan’s Challenges in Managing Resources and Implementing Strategies toward Sustainability

Authors: Dana Aljadaa, Hasim Altan

Abstract:

Japan’s strategy is based on improving the current resources and productivity by identifying the environmental challenges to progress further in many areas. For example, it will help in understanding the competitive challenges in the industry, emerging innovation, and other progresses. The present study seeks to examine the characteristics of sustainable practices using materials that will last longer and following environmental policies. There has been a major emphasis since 1990s and onwards about recycling and preserving the environment. Furthermore, the present paper analyses and argues how national interest in policy increases resource productivity. It is a universal law, but these actions may be different based on the unique situation of the country. In addition, the present study explains some of the strategies developed by the Environmental Agency of Japan in the last few years. There are a few resources reviewed involving ‘Strategy for an Environmental Nation in the 21st Century’ from 2001, ‘Clean Asia Initiative’ from 2008, and ‘New Growth Strategy’ from 2010. The present paper also highlights the emphasis on increasing efficiency, as it is an important part of sustainability. We finally conclude by providing reasoning on the impact and positivity of reducing production and consumption on the environment, resulting in a productive and progressive Japan for the near and long term future.

Keywords: Green innovation, sustainable development, resource productivity, sound material-cycle society, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
588 Valuation of Green Commercial Office Building: A Preliminary Study of Malaysian Valuers’ Insight

Authors: Tuti Haryati Jasimin, Hishamuddin Mohd Ali

Abstract:

Malaysia’s green building development is gaining momentum and green buildings have become a key focus area, especially within the commercial sector with the encouragement of government legislation and policy. Due to the emerging awareness among the market players’ views of the benefits associated with the ownership of green buildings in Malaysia, there is a need for valuers to incorporate consideration of sustainability into their assessments of property market value to ensure the green buildings continue to increase in the market. This paper analyses the valuers’ current perception on the valuation practices with regard to the green issues in Malaysia. The study was based on a survey of registered real estate valuers and the experts whose work related to valuation in the Klang Valley area to rate their view regarding the perception on valuation of green building. The findings present evidence that even though Malaysian valuers have limited knowledge of green buildings, they recognise the importance of incorporating the green features in the valuation process. The inclusion of incorporating the green features in valuations in practice was hindered by the inadequacy of sufficient transaction data in the market. Furthermore, valuers experienced difficulty in identifying what are the various input parameters of green building and how to adjust it in order to reflect the benefit of sustainability features correctly in the valuation process. This paper focuses on the present challenges confronted by Malaysian valuers with regards to incorporating the green features in their valuation.

Keywords: Green commercial office building, Malaysia, valuers’ perception, valuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2921
587 Storage Method for Parts from End of Life Vehicles' Dismantling Process According to Sustainable Development Requirements: Polish Case Study

Authors: M. Kosacka, I. Kudelska

Abstract:

Vehicle is one of the most influential and complex product worldwide, which affects people’s life, state of the environment and condition of the economy (all aspects of sustainable development concept) during each stage of lifecycle. With the increase of vehicles’ number, there is growing potential for management of End of Life Vehicle (ELV), which is hazardous waste. From one point of view, the ELV should be managed to ensure risk elimination, but from another point, it should be treated as a source of valuable materials and spare parts. In order to obtain materials and spare parts, there are established recycling networks, which are an example of sustainable policy realization at the national level. The basic object in the polish recycling network is dismantling facility. The output material streams in dismantling stations include waste, which very often generate costs and spare parts, that have the biggest potential for revenues creation. Both outputs are stored into warehouses, according to the law. In accordance to the revenue creation and sustainability potential, it has been placed a strong emphasis on storage process. We present the concept of storage method, which takes into account the specific of the dismantling facility in order to support decision-making process with regard to the principles of sustainable development. The method was developed on the basis of case study of one of the greatest dismantling facility in Poland.

Keywords: Dismantling, end of life vehicle, sustainability, storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
586 Household Level Determinants of Rural-Urban Migration in Bangladesh

Authors: Shamima Akhter, Siegfried Bauer

Abstract:

The aim of this study is to analyze the migration  process of the rural population of Bangladesh. Heckman Probit model  with sample selection was applied in this paper to explore the  determinants of migration and intensity of migration at farm  household level. The farm survey was conducted in the central part of  Bangladesh on 160 farm households with migrant and on 154 farm  households without migrant including a total of 316 farm households.  The results from the applied model revealed that main determinants  of migration at farm household level are household age, economically  active males and females, number of young and old dependent  members in the household and agricultural land holding. On the other  hand the main determinants of intensity of migration are availability  of economically adult male in the household, number of young  dependents and agricultural land holding.

 

Keywords: Determinants, Heckman Probit Model, Migration, Rural- Urban.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3006
585 Synthesis of Activated Carbon Using Agricultural Wastes from Biodiesel Production

Authors: A. Buasri, N. Chaiyut, V. Loryuenyong, E. Phakdeepataraphan, S. Watpathomsub, V. Kunakemakorn

Abstract:

In this research, the optimum conditions for the synthesis of activated carbon from biodiesel wastes such as palm shells (PS) and Jatropha curcas fruit shells (JS) by chemical activation method using potassium hydroxide (KOH) as an activating agent under nitrogen atmosphere were investigated. The effects of soaking in hydrofluoric acid (HF), impregnation ratio, activation temperature and activation time on adsorption capacity of methylene blue (MB) and iodine (I2) solution were examined. The results showed that HF-treated activated carbons exhibited higher adsorption capacities by eliminating ash residues, which might fill up the pores. In addition, the adsorption capacities of methylene blue and iodine solution were also significantly influenced by the types of raw materials, the activation temperature and the activation time. The highest adsorption capacity of methylene blue 257.07mg/g and iodine 847.58mg/g were obtained from Jatropha curcas wastes.

Keywords: Activated Carbon, Palm Shells (PS), Jatropha Curcas Fruit Shells (JS), Agricultural Wastes, Biodiesel Wastes, Optimum Conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4146
584 Closing the Loop between Building Sustainability and Stakeholder Engagement: Case Study of an Australian University

Authors: Karishma Kashyap, Subha D. Parida

Abstract:

Rapid population growth and urbanization is creating pressure throughout the world. This has a dramatic effect on a lot of elements which include water, food, transportation, energy, infrastructure etc. as few of the key services. Built environment sector is growing concurrently to meet the needs of urbanization. Due to such large scale development of buildings, there is a need for them to be monitored and managed efficiently. Along with appropriate management, climate adaptation is highly crucial as well because buildings are one of the major sources of greenhouse gas emission in their operation phase. Buildings to be adaptive need to provide a triple bottom approach to sustainability i.e., being socially, environmentally and economically sustainable. Hence, in order to deliver these sustainability outcomes, there is a growing understanding and thrive towards switching to green buildings or renovating new ones as per green standards wherever possible. Academic institutions in particular have been following this trend globally. This is highly significant as universities usually have high occupancy rates because they manage a large building portfolio. Also, as universities accommodate the future generation of architects, policy makers etc., they have the potential of setting themselves as a best industry practice model for research and innovation for the rest to follow. Hence their climate adaptation, sustainable growth and performance management becomes highly crucial in order to provide the best services to users. With the objective of evaluating appropriate management mechanisms within academic institutions, a feasibility study was carried out in a recent 5-Star Green Star rated university building (housing the School of Construction) in Victoria (south-eastern state of Australia). The key aim was to understand the behavioral and social aspect of the building users, management and the impact of their relationship on overall building sustainability. A survey was used to understand the building occupant’s response and reactions in terms of their work environment and management. A report was generated based on the survey results complemented with utility and performance data which were then used to evaluate the management structure of the university. Followed by the report, interviews were scheduled with the facility and asset managers in order to understand the approach they use to manage the different buildings in their university campuses (old, new, refurbished), respective building and parameters incorporated in maintaining the Green Star performance. The results aimed at closing the communication and feedback loop within the respective institutions and assist the facility managers to deliver appropriate stakeholder engagement. For the wider design community, analysis of the data highlights the applicability and significance of prioritizing key stakeholders, integrating desired engagement policies within an institution’s management structures and frameworks and their effect on building performance

Keywords: Building Optimization, Green Building, Post Occupancy Evaluation, Stakeholder Engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
583 High-Speed Train Planning in France, Lessons from Mediterranean TGV-Line

Authors: Stéphanie Leheis

Abstract:

To fight against the economic crisis, French Government, like many others in Europe, has decided to give a boost to high-speed line projects. This paper explores the implementation and decision-making process in TGV projects, their evolutions, especially since the Mediterranean TGV-line. This project was probably the most controversial, but paradoxically represents today a huge success for all the actors involved. What kind of lessons we can learn from this experience? How to evaluate the impact of this project on TGV-line planning? How can we characterize this implementation and decision-making process regards to the sustainability challenges? The construction of Mediterranean TGV-line was the occasion to make several innovations: to introduce more dialog into the decisionmaking process, to take into account the environment, to introduce a new project management and technological innovations. That-s why this project appears today as an example in terms of integration of sustainable development. In this paper we examine the different kinds of innovations developed in this project, by using concepts from sociology of innovation to understand how these solutions emerged in a controversial situation. Then we analyze the lessons which were drawn from this decision-making process (in the immediacy and a posteriori) and the way in which procedures evolved: creation of new tools and devices (public consultation, project management...). Finally we try to highlight the impact of this evolution on TGV projects governance. In particular, new methods of implementation and financing involve a reconfiguration of the system of actors. The aim of this paper is to define the impact of this reconfiguration on negotiations between stakeholders.

Keywords: High-speed train, innovation, governance, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2309
582 Estimating Affected Croplands and Potential Crop Yield Loss of an Individual Farmer Due to Floods

Authors: Shima Nabinejad, Holger Schüttrumpf

Abstract:

Farmers who are living in flood-prone areas such as coasts are exposed to storm surges increased due to climate change. Crop cultivation is the most important economic activity of farmers, and in the time of flooding, agricultural lands are subject to inundation. Additionally, overflow saline water causes more severe damage outcomes than riverine flooding. Agricultural crops are more vulnerable to salinity than other land uses for which the economic damages may continue for a number of years even after flooding and affect farmers’ decision-making for the following year. Therefore, it is essential to assess what extent the agricultural areas are flooded and how much the associated flood damage to each individual farmer is. To address these questions, we integrated farmers’ decision-making at farm-scale with flood risk management. The integrated model includes identification of hazard scenarios, failure analysis of structural measures, derivation of hydraulic parameters for the inundated areas and analysis of the economic damages experienced by each farmer. The present study has two aims; firstly, it attempts to investigate the flooded cropland and potential crop damages for the whole area. Secondly, it compares them among farmers’ field for three flood scenarios, which differ in breach locations of the flood protection structure. To achieve its goal, the spatial distribution of fields and cultivated crops of farmers were fed into the flood risk model, and a 100-year storm surge hydrograph was selected as the flood event. The study area was Pellworm Island that is located in the German Wadden Sea National Park and surrounded by North Sea. Due to high salt content in seawater of North Sea, crops cultivated in the agricultural areas of Pellworm Island are 100% destroyed by storm surges which were taken into account in developing of depth-damage curve for analysis of consequences. As a result, inundated croplands and economic damages to crops were estimated in the whole Island which was further compared for six selected farmers under three flood scenarios. The results demonstrate the significance and the flexibility of the proposed model in flood risk assessment of flood-prone areas by integrating flood risk management and decision-making.

Keywords: Crop damages, flood risk analysis, individual farmer, inundated cropland, Pellworm Island, storm surges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
581 The Importance of Zenithal Lighting Systems for Natural Light Gains and for Local Energy Generation in Brazil

Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo

Abstract:

This paper presents an approach on the advantages of using adequate coverage in the zenithal lighting typology in various areas of architectural production, while at the same time to encourage to the design concerns inherent in this choice of roofing in Brazil. Understanding that sustainability needs to cover several aspects, a roofing system such as zenithal lighting system can contribute to the provision of better quality natural light for the interior of the building, which is related to the good health and welfare; it will also be able to contribute for the sustainable aspects and environmental needs, when it allows the generation of energy in semitransparent or opacity photovoltaic solutions and economize the artificial lightning. When the energy balance in the building is positive, that is, when the building generates more energy than it consumes, it may fit into the Net Zero Energy Building concept. The zenithal lighting systems could be an important ally in Brazil, when solved the burden of heat gains, participate in the set of pro-efficiency actions in search of "zero energy buildings". The paper presents comparative three cases of buildings that have used this feature in search of better environmental performance, both in light comfort and sustainability as a whole. Two of these buildings are examples in Europe: the Notley Green School in the UK and the Isofóton factory in Spain. The third building with these principles of shed´s roof is located in Brazil: the Ipel´s factory in São Paulo.

Keywords: Natural lightning, net zero energy building, sheds, semi-transparent photovoltaics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
580 An Environmental Impact Tool to Assess National Energy Scenarios

Authors: R. Taviv, A.C. Brent, H. Fortuin

Abstract:

The Long-range Energy and Alternatives Planning (LEAP) energy planning system has been developed for South Africa, for the 2005 base year and a limited number of plausible future scenarios that may have significant implications (negative or positive) in terms of environmental impacts. The system quantifies the national energy demand for the domestic, commercial, transport, industry and agriculture sectors, the supply of electricity and liquid fuels, and the resulting emissions. The South African National Energy Research Institute (SANERI) identified the need to develop an environmental assessment tool, based on the LEAP energy planning system, to provide decision-makers and stakeholders with the necessary understanding of the environmental impacts associated with different energy scenarios. A comprehensive analysis of indicators that are used internationally and in South Africa was done and the available data was accessed to select a reasonable number of indicators that could be utilized in energy planning. A consultative process was followed to determine the needs of different stakeholders on the required indicators and also the most suitable form of reporting. This paper demonstrates the application of Energy Environmental Sustainability Indicators (EESIs) as part of the developed tool, which assists with the identification of the environmental consequences of energy generation and use scenarios and thereby promotes sustainability, since environmental considerations can then be integrated into the preparation and adoption of policies, plans, programs and projects. Recommendations are made to refine the tool further for South Africa.

Keywords: Energy modeling, LEAP, environmental impact, environmental indicators, energy sector emissions, sustainable development, South Africa

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
579 Retrospective Reconstruction of Time Series Data for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modeling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modeling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modeling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.

Keywords: Content analysis, factors, integrated waste management system, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
578 The Extent of Land Use Externalities in the Fringe of Jakarta Metropolitan: An Application of Spatial Panel Dynamic Land Value Model

Authors: Rahma Fitriani, Eni Sumarminingsih, Suci Astutik

Abstract:

In a fast growing region, conversion of agricultural lands which are surrounded by some new development sites will occur sooner than expected. This phenomenon has been experienced by many regions in Indonesia, especially the fringe of Jakarta (BoDeTaBek). Being Indonesia’s capital city, rapid conversion of land in this area is an unavoidable process. The land conversion expands spatially into the fringe regions, which were initially dominated by agricultural land or conservation sites. Without proper control or growth management, this activity will invite greater costs than benefits. The current land use is the use which maximizes its value. In order to maintain land for agricultural activity or conservation, some efforts are needed to keep the land value of this activity as high as possible. In this case, the knowledge regarding the functional relationship between land value and its driving forces is necessary. In a fast growing region, development externalities are the assumed dominant driving force. Land value is the product of the past decision of its use leading to its value. It is also affected by the local characteristics and the observed surrounded land use (externalities) from the previous period. The effect of each factor on land value has dynamic and spatial virtues; an empirical spatial dynamic land value model will be more useful to capture them. The model will be useful to test and to estimate the extent of land use externalities on land value in the short run as well as in the long run. It serves as a basis to formulate an effective urban growth management’s policy. This study will apply the model to the case of land value in the fringe of Jakarta Metropolitan. The model will be used further to predict the effect of externalities on land value, in the form of prediction map. For the case of Jakarta’s fringe, there is some evidence about the significance of neighborhood urban activity – negative externalities, the previous land value and local accessibility on land value. The effects are accumulated dynamically over years, but they will fully affect the land value after six years.

Keywords: Growth management, land use externalities, land value, spatial panel dynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
577 Simulation for Input-Output Energy Structure in Agriculture: Bangladesh

Authors: M. S. Alam, M. R. Alam, Nusrat Jahan Imu

Abstract:

This paper presents a computer simulation model based on system dynamics methodology for analyzing the dynamic characteristics of input energy structure in agriculture and Bangladesh is used here as a case study for model validation. The model provides an input energy structure linking the major energy flows with human energy and draft energy from cattle as well as tractors and/or power tillers, irrigation, chemical fertilizer and pesticide. The evaluation is made in terms of different energy dependent indicators. During the simulation period, the energy input to agriculture increased from 6.1 to 19.15 GJ/ha i.e. 2.14 fold corresponding to energy output in terms of food, fodder and fuel increase from 71.55 to 163.58 GJ/ha i.e. 1.28 fold from the base year. This result indicates that the energy input in Bangladeshi agricultural production is increasing faster than the energy output. Problems such as global warming, nutrient loading and pesticide pollution can associate with this increasing input. For an assessment, a comparative statement of input energy use in agriculture of developed countries (DCs) and least developed countries (LDCs) including Bangladesh has been made. The performance of the model is found satisfactory to analyze the agricultural energy system for LDCs

Keywords: Agriculture, energy indicator, system dynamics, energy flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2517
576 Engineering Topology of Construction Ecology for Dynamic Integration of Sustainability Outcomes to Functions in Urban Environments: Spatial Modeling

Authors: Moustafa Osman Mohammed

Abstract:

Integration sustainability outcomes give attention to construction ecology in the design review of urban environments to comply with Earth’s System that is composed of integral parts of the (i.e., physical, chemical and biological components). Naturally, exchange patterns of industrial ecology have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. When engineering topology is affecting internal and external processes in system networks, it postulated the valence of the first-level spatial outcome (i.e., project compatibility success). These instrumentalities are dependent on relating the second-level outcome (i.e., participant security satisfaction). The construction ecology-based topology (i.e., as feedback energy system) flows from biotic and abiotic resources in the entire Earth’s ecosystems. These spatial outcomes are providing an innovation, as entails a wide range of interactions to state, regulate and feedback “topology” to flow as “interdisciplinary equilibrium” of ecosystems. The interrelation dynamics of ecosystems are performing a process in a certain location within an appropriate time for characterizing their unique structure in “equilibrium patterns”, such as biosphere and collecting a composite structure of many distributed feedback flows. These interdisciplinary systems regulate their dynamics within complex structures. These dynamic mechanisms of the ecosystem regulate physical and chemical properties to enable a gradual and prolonged incremental pattern to develop a stable structure. The engineering topology of construction ecology for integration sustainability outcomes offers an interesting tool for ecologists and engineers in the simulation paradigm as an initial form of development structure within compatible computer software. This approach argues from ecology, resource savings, static load design, financial other pragmatic reasons, while an artistic/architectural perspective, these are not decisive. The paper described an attempt to unify analytic and analogical spatial modeling in developing urban environments as a relational setting, using optimization software and applied as an example of integrated industrial ecology where the construction process is based on a topology optimization approach.

Keywords: Construction ecology, industrial ecology, urban topology, environmental planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461
575 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria

Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman

Abstract:

Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstress. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhance agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings, decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and antinutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.

Keywords: Anti-nutritional, healthy livelihood, nutritional waste, organic waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
574 Enrichment of Cr, Mn, Ni and Zn in Surface Soil

Authors: Gitimoni Deka, Krishna G Bhattacharyya

Abstract:

The textile industry produces highly coloured effluents containing polar and non-polar compounds. The textile mill run by the Assam Polyester Co-operative Society Limited (APOL) is situated at Rangia, about 55 km from Guwahati (26011' N, 91047' E) in the northern bank of the river Brahmaputra, Assam (India). This unit was commissioned in June 1988 and started commercial production in November 1988. The installed capacity of the weaving unit was 8000 m/day and that of the processing unit was 20,000 m/day. The mill has its own dyeing unit with a capacity of 1500-2000 kg/day. The western side of the mill consists of vast agricultural land and the far northern and southern side of the mill has scattered human population. The eastern side of the mill has a major road for thoroughfare. The mill releases its effluents into the agricultural land in the western side of the mill. The present study was undertaken to assess the impact of the textile mill on surface soil quality in and around the mill with particular reference to Cr, Mn, Ni and Zn. Surface soil samples, collected along different directions at 200, 500 and 1000 m were digested and the metals were estimated with Atomic Absorption Spectrophotometer. The metals were found in the range of: Cr 50.9 – 105.0 mg kg-1, Mn 19.2- 78.6 mg kg-1, Ni 41.9 – 50.6 mg kg-1 and Zn 187.8 – 1095.8 mg kg-1. The study reveals enrichment of Cr, Mn, Ni and Zn in the soil near the textile mill.

Keywords: Cr, Mn, Ni, Zn, soil quality, heavy metal enrichment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
573 Application of Central Composite Design Based Response Surface Methodology in Parameter Optimization and on Cellulase Production Using Agricultural Waste

Authors: R.Muthuvelayudham, T.Viruthagiri

Abstract:

Response Surface Methodology (RSM) is a powerful and efficient mathematical approach widely applied in the optimization of cultivation process. Cellulase enzyme production by Trichoderma reesei RutC30 using agricultural waste rice straw and banana fiber as carbon source were investigated. In this work, sequential optimization strategy based statistical design was employed to enhance the production of cellulase enzyme through submerged cultivation. A fractional factorial design (26-2) was applied to elucidate the process parameters that significantly affect cellulase production. Temperature, Substrate concentration, Inducer concentration, pH, inoculum age and agitation speed were identified as important process parameters effecting cellulase enzyme synthesis. The concentration of lignocelluloses and lactose (inducer) in the cultivation medium were found to be most significant factors. The steepest ascent method was used to locate the optimal domain and a Central Composite Design (CCD) was used to estimate the quadratic response surface from which the factor levels for maximum production of cellulase were determined.

Keywords: Banana fiber, Cellulase, Optimization, Rice straw

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
572 An Assessment of Water Pollution of the Beshar River Aquatic Ecosystems

Authors: Amir Eghbal Khajeh Rahimi, Fardin Boustani, Omid Tabiee, Masoud Hashemi

Abstract:

The Beshar River is one of the most important aquatic ecosystems in the upstream of the Karun watershed in south of Iran which is affected by point and non point pollutant sources . This study was done in order to evaluate the effects of pollutants activities on the water quality of the Beshar river and its aquatic ecosystems. This river is approximately 190 km in length and situated at the geographical positions of 51° 20´ to 51° 48´ E and 30° 18´ to 30° 52´ N it is one of the most important aquatic ecosystems of Kohkiloye and Boyerahmad province in south-west Iran. In this research project, five study stations were selected to examine water pollution in the Beshar River systems. Human activity is now one of the most important factors affecting on hydrology and water quality of the Beshar river. Humans use large amounts of resources to sustain various standards of living, although measures of sustainability are highly variable depending on how sustainability is defined. The Beshar river ecosystems are particularly sensitive and vulnerable to human activities. Therefore, to determine the impact of human activities on the Beshar River, the most important water quality parameters such as pH, dissolve oxygen (DO), Biological Oxygen Demand (BOD5), Total Dissolve Solids (TDS), Nitrates (NO3-N) and Phosphates (PO4) were estimated at the five stations. As the results show, the most important pollution index parameters such as BOD5, NO3 and PO4 increase and DO and pH decrease according to human activities (P<0.05). However, due to pollutant degradation and dilution, pollution index parameters improve downstream sampling stations.

Keywords: Human activities, Water pollution, Beshar River, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
571 Using Recyclable Steel Material in Tall Buildings

Authors: O. Eren, L. Zakar

Abstract:

Recycling steel building components is key to the sustainability of a structure’s end-of-life, as it is the most economical solution. In this paper the effects of usage of recycled steel material in tall buildings aspects are investigated.

Keywords: Building, recycled material, steel, structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3194
570 Preparation and Characterization of Maltodextrin Microcapsules Containing Walnut Green Husk Extract

Authors: Fatemeh Cheraghali, Saeedeh Shojaee-Aliabadi, Seyede Marzieh Hosseini, Leila Mirmoghtadaie

Abstract:

In recent years, the field of natural antimicrobial and antioxidant compounds is one of the main research topics in the food industry. Application of agricultural residues is mainly cheap, and available resources are receiving increased attention. Walnut green husk is one of the agricultural residues that is considered as natural compounds with biological properties because of phenolic compounds. In this study, maltodextrin 10% was used for microencapsulation of walnut green husk extract. At first, the extract was examined to consider extraction yield, total phenolic compounds, and antioxidant activation. The results showed the extraction yield of 81.43%, total phenolic compounds of 3997 [mg GAE/100 g], antioxidant activity [DPPH] of 84.85% for walnut green husk extract. Antioxidant activity is about 75%-81% and by DPPH. At the next stage, microencapsulation was done by spry-drying method. The microencapsulation efficiency was 72%-79%. The results of SEM tests confirmed this microencapsulation process. In addition, microencapsulated and free extract was more effective on gram-positive bacteria’s rather than the gram-negative ones. According to the study, walnut green husk can be used as a cheap antioxidant and antimicrobial compounds due to sufficient value of phenolic compounds.

Keywords: Biopolymer, microencapsulation, Spray-drying, Walnut green husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
569 Effect of Good Agriculture Management Practices and Constraints on Grape Farming: A Case Study in Mirbachakot, Kalakan and Shakardara Districts Kabul, Afghanistan

Authors: Mohammad Mirwais Yusufi

Abstract:

Skillful management is one of the most important success factors for today’s farms. When a farm is well managed, it can generate funds for its sustainability. Grape is one of the most diffused fruits in the world and one of the most important cash crops with high potential of production in Afghanistan as well. While there are several organizations intervening for improvement of this cash crop, the quality and quantity are still not satisfactory for producers and external markets. The situation has not changed over the years. Therefore, a survey was conducted in 2017 with 60 grape growers, supported by questionnaires in Mirbachakot, Kalakan and Shakardara districts of Kabul province. The purpose was to get an understanding of the current socio-demographic characteristics of farmers, management methods, constraints, farm size, yield and contribution of grape farming to household income. Findings indicate that grape farming was predominant 83.3% male, 16.6% female and small-scale farmers were the main grape producers, 60% < 1 ha of land under grape production. Likewise, 50% had more than > 10 years and 33.3% between 1-5 years’ experience in grape farming. The high level of illiteracy and diseases had significant digit effect on growth, yield and quality of grapes. The results showed that vineyard management operations to protect grapes from mechanical damage are very poor or completely absent. Comparing developed countries, table grape is one of the fruits with the highest input of technology, while in developing countries the cost of labor is low but the purchase of the equipment is very high due to financial situation. Hence the low quality and quantity of grape are influenced by poor management methods, such as non-availability of experts and lack of technical guidance in the study site. Thereby, the study suggested that improved agricultural extension services and managerial skills could contribute to addressing the problems.

Keywords: Efficient resources use, management skills, constraints factors, Kabul.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546
568 Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting

Authors: Nanh Lovanh, John Loughrin, Kimberly Cook, Phil Silva, Byung-Taek Oh

Abstract:

In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change).

Keywords: Windrow, swine manure, ammonia, nitrous oxide, fluxes, management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
567 Customer Involvement in the Development of New Sustainable Products: A Review of the Literature

Authors: Natalia Moreira, Trevor Wood-Harper

Abstract:

The acceptance of sustainable products by the final consumer is still one of the challenges of the industry, which constantly seeks alternative approaches to successfully be accepted in the global market. A large set of methods and approaches have been discussed and analysed throughout the literature. Considering the current need for sustainable development and the current pace of consumption, the need for a combined solution towards the development of new products became clear, forcing researchers in product development to propose alternatives to the previous standard product development models. This paper presents, through a systemic analysis of the literature on product development, eco-design and consumer involvement, a set of alternatives regarding consumer involvement towards the development of sustainable products and how these approaches could help improve the sustainable industry’s establishment in the general market. Still being developed in the course of the author’s PhD, the initial findings of the research show that the understanding of the benefits of sustainable behaviour lead to a more conscious acquisition and eventually to the implementation of sustainable change in the consumer. Thus this paper is the initial approach towards the development of new sustainable products using the fashion industry as an example of practical implementation and acceptance by the consumers. By comparing the existing literature and critically analysing it, this paper concluded that the consumer involvement is strategic to improve the general understanding of sustainability and its features. The use of consumers and communities has been studied since the early 90s in order to exemplify uses and to guarantee a fast comprehension. The analysis done also includes the importance of this approach for the increase of innovation and ground breaking developments, thus requiring further research and practical implementation in order to better understand the implications and limitations of this methodology.

Keywords: Consumer involvement, Products development, Sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
566 Decision Support System “Crop-9-DSS“ for Identified Crops

Authors: Ganesan V.

Abstract:

Application of Expert System in the area of agriculture would take the form of Integrated Crop Management decision aids and would encompass water management, fertilizer management, crop protection systems and identification of implements. In order to remain competitive, the modern farmer often relies on agricultural specialists and advisors to provide information for decision-making. An expert system normally composed of a knowledge base (information, heuristics, etc.), inference engine (analyzes knowledge base), and end user interface (accepting inputs, generating outputs). Software named 'CROP-9-DSS' incorporating all modern features like, graphics, photos, video clippings etc. has been developed. This package will aid as a decision support system for identification of pest and diseases with control measures, fertilizer recommendation system, water management system and identification of farm implements for leading crops of Kerala (India) namely Coconut, Rice, Cashew, Pepper, Banana, four vegetables like Amaranthus, Bhindi, Brinjal and Cucurbits. 'CROP-9-DSS' will act as an expert system to agricultural officers, scientists in the field of agriculture and extension workers for decision-making and help them in suggesting suitable recommendations.

Keywords: Diagnostic, inference engine, knowledge base and user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
565 Political Economy of Integrated Soil Fertility Management in the Okavango Delta, Botswana

Authors: Oluwatoyin D. Kolawole, Oarabile Mogobe, Lapologang Magole

Abstract:

Although many factors play a significant role in agricultural production and productivity, the importance of soil fertility cannot be underestimated. The extent to which small farmers are able to manage the fertility of their farmlands is crucial in agricultural development particularly in sub-Saharan Africa (SSA).  This paper assesses the nutrient status of selected farmers’ fields in relation to how government policy addresses the allocation of and access to agricultural inputs (e.g. chemical fertilizers) in a unique social-ecological environment of the Okavango Delta in northern Botswana. It also analyses small farmers and soil scientists’ perceptions about the political economy of integrated soil fertility management (ISFM) in the area. A multi-stage sampling procedure was used to elicit quantitative and qualitative information from 228 farmers and 9 soil researchers through the use of interview schedules and questionnaires, respectively. Knowledge validation workshops and focus group discussions (FGDs) were also used to collect qualitative data from farmers. Thirty-three composite soil samples were collected from 30 farmers’ plots in three farming communities of Makalamabedi, Nokaneng and Mohembo for laboratory analysis. While meeting points exist, farmers and scientists have divergent perspectives on soil fertility management. Laboratory analysis carried out shows that most soils in the wetland and the adjoining dry-land/upland surroundings are low in essential nutrients as well as in cation exchange capacity (CEC). Although results suggest the identification and use of appropriate inorganic fertilizers, the low CEC is an indication that holistic cultural practices, which are beyond mere chemical fertilizations, are critical and more desirable for improved soil health and sustainable livelihoods in the area. Farmers’ age (t= -0.728; p≤0.10); their perceptions about the political economy (t = -0.485; p≤0.01) of ISFM; and their preference for the use of local knowledge in soil fertility management (t = -10.254; p≤0.01) had a significant relationship with how they perceived their involvement in the implementation of ISFM.

Keywords: Access, Botswana, ecology, inputs, Okavango Delta, policy, scientists, small farmers, soil fertility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
564 Limestone Briquette Production and Characterization

Authors: André C. Silva, Mariana R. Barros, Elenice M. S. Silva, Douglas. Y. Marinho, Diego F. Lopes, Débora N. Sousa, Raphael S. Tomáz

Abstract:

Modern agriculture requires productivity, efficiency and quality. Therefore, there is need for agricultural limestone implementation that provides adequate amounts of calcium and magnesium carbonates in order to correct soil acidity. During the limestone process, fine particles (with average size under 400#) are generated. These particles do not have economic value in agricultural and metallurgical sectors due their size. When limestone is used for agriculture purposes, these fine particles can be easily transported by wind generated air pollution. Therefore, briquetting, a mineral processing technique, was used to mitigate this problem resulting in an agglomerated product suitable for agriculture use. Briquetting uses compressive pressure to agglomerate fine particles. It can be aided by agglutination agents, allowing adjustments in shape, size and mechanical parameters of the mass. Briquettes can generate extra profits for mineral industry, presenting as a distinct product for agriculture, and can reduce the environmental liabilities of the fine particles storage or disposition. The produced limestone briquettes were subjected to shatter and water action resistance tests. The results show that after six minutes completely submerged in water, the briquettes where fully diluted, a highly favorable result considering its use for soil acidity correction.

Keywords: Agglomeration, briquetting, limestone, agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
563 Study and Analysis of Permeable Articulated Concrete Blocks Pavement: With Reference to Indian Context

Authors: Shrikant Charhate, Gayatri Deshpande

Abstract:

Permeable pavements have significant benefits like managing runoff, infiltration, and carrying traffic over conventional pavements in terms of sustainability and environmental impact. Some of the countries are using this technique, especially at locations where durability and other parameters are of importance in nature; however, sparse work has been done on this concept. In India, this is yet to be adopted. In this work, the progress in the characterization and development of Permeable Articulated Concrete Blocks (PACB) pavement design is described and discussed with reference to Indian conditions. The experimentation and in-depth analysis was carried out considering conditions like soil erosion, water logging, and dust which are significant challenges caused due to impermeability of pavement. Concrete blocks with size 16.5’’x 6.5’’x 7’’ consisting of arch shape (4’’) at beneath and ½” PVC holes for articulation were casted. These blocks were tested for flexural strength. The articulation process was done with nylon ropes forming series of concrete block system. The total spacing between the blocks was kept about 8 to 10% of total area. The hydraulic testing was carried out by placing the articulated blocks with the combination of layers of soil, geotextile, clean angular aggregate. This was done to see the percentage of seepage through the entire system. The experimental results showed that with the shape of concrete block the flexural strength achieved was beyond the permissible limit. Such blocks with the combination could be very useful innovation in Indian conditions and useful at various locations compared to the traditional blocks as an alternative for long term sustainability.

Keywords: Connections, geotextile, permeable ACB, pavements, stone base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 822