The Importance of Zenithal Lighting Systems for Natural Light Gains and for Local Energy Generation in Brazil
Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo
Abstract:
This paper presents an approach on the advantages of using adequate coverage in the zenithal lighting typology in various areas of architectural production, while at the same time to encourage to the design concerns inherent in this choice of roofing in Brazil. Understanding that sustainability needs to cover several aspects, a roofing system such as zenithal lighting system can contribute to the provision of better quality natural light for the interior of the building, which is related to the good health and welfare; it will also be able to contribute for the sustainable aspects and environmental needs, when it allows the generation of energy in semitransparent or opacity photovoltaic solutions and economize the artificial lightning. When the energy balance in the building is positive, that is, when the building generates more energy than it consumes, it may fit into the Net Zero Energy Building concept. The zenithal lighting systems could be an important ally in Brazil, when solved the burden of heat gains, participate in the set of pro-efficiency actions in search of "zero energy buildings". The paper presents comparative three cases of buildings that have used this feature in search of better environmental performance, both in light comfort and sustainability as a whole. Two of these buildings are examples in Europe: the Notley Green School in the UK and the Isofóton factory in Spain. The third building with these principles of shed´s roof is located in Brazil: the Ipel´s factory in São Paulo.
Keywords: Natural lightning, net zero energy building, sheds, semi-transparent photovoltaics.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1317278
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045References:
[1] Acselrad, H. Sentidos da sustentabilidade urbana. In: ACSELRAD, H. (Org.). A duração das cidades: sustentabilidade e risco nas políticas urbanas. Rio de Janeiro: DP&A, 2001. p.2755.
[2] Brazilian Association Of Technical Standards (ABNT). NBR 15.215-2. Iluminação Natural. Parte 2: Procedimentos de cálculo para a estimativa da disponibilidade de luz natural. Rio de Janeiro, 2005.
[3] Chivelet, Niura Martin; Solla, Ignácio Fernández. Técnicas de vedação fotovoltaica na arquitetura. Porto Alegre: Bookman, 2010.
[4] Corbella, Oscar e Yanas, Simos. Em busca de uma arquitetura sustentável para os trópicos. Rio de Janeiro: Revan, 2ª ed., 2003.
[5] Debeir, Jean Claude; Deléage, Paul; Hémery, Daniel. Uma História da Energia. Traduzido e atualizado por Sérgio de Salvo Brito. Brasília: Brasília University, 1993. Translation by: Les servitudes de la puissance: une histoire de l´energie.
[6] Didoné, Evelise Leite; Wagner, Andreas; Pereira, Fernando Oscar Ruttkay. Estratégias para edifícios de escritórios energia zero no Brasil com ênfase em BIPV. Ambiente Construído, Porto Alegre, v. 14, n. 3, p. 27-42, jul./set. 2014. Available at:
[7] Gauzin-Müller, Dominique. Arquitetura ecológica. Translation by Celina Olga de Souza and Caroline Fretin de Freitas. São Paulo: Senac São Paulo, 2011.
[8] Santos, Ísis Portolan dos. Integração de painéis solares fotovoltaicos em edificações residenciais e sua contribuição em um alimentador de energia de zona urbana mista. Master Thesis. Santa Catarina Federal University. Civil Engineering Post-Graduation Programm, 2009.
[9] Arco Finestra. Sidônio Porto: Fábrica Ipel, Cajamar, SP. Available at:
[10] Detea. Proyecto de ejecución de Nave Industrial y oficina en el PTA, para ISOFOTON (Málaga). Available at:
[11] Portal Metalica. Uso Industrial: Fábricas, Galpões e Centros de Distribuição. Available at:
[12] Solarlight. Estudos Técnicos. Available at: