Search results for: Ronald M. Yannone
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14

Search results for: Ronald M. Yannone

14 Deterministic Method to Assess Kalman Filter Passive Ranging Solution Reliability

Authors: Ronald M. Yannone

Abstract:

For decades, the defense business has been plagued by not having a reliable, deterministic method to know when the Kalman filter solution for passive ranging application is reliable for use by the fighter pilot. This has made it hard to accurately assess when the ranging solution can be used for situation awareness and weapons use. To date, we have used ad hoc rules-of-thumb to assess when we think the estimate of the Kalman filter standard deviation on range is reliable. A reliable algorithm has been developed at BAE Systems Electronics & Integrated Solutions that monitors the Kalman gain matrix elements – and a patent is pending. The “settling" of the gain matrix elements relates directly to when we can assess the time when the passive ranging solution is within the 10 percent-of-truth value. The focus of the paper is on surface-based passive ranging – but the method is applicable to airborne targets as well.

Keywords: Electronic warfare, extended Kalman filter (EKF), fighter aircraft, passive ranging, track convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
13 Identification of Arglecins B and C and Actinofuranosin A from a Termite Gut-Associated Streptomyces Species

Authors: Christian A. Romero, Tanja Grkovic, John. R. J. French, D. İpek. Kurtböke, Ronald J. Quinn

Abstract:

A high-throughput and automated 1H NMR metabolic fingerprinting dereplication approach was used to accelerate the discovery of unknown bioactive secondary metabolites. The applied dereplication strategy accelerated the discovery of new natural products, provided rapid and competent identification and quantification of the known secondary metabolites and avoided time-consuming isolation procedures. The effectiveness of the technique was demonstrated by the isolation and elucidation of arglecins B (1), C (2) and actinofuranosin A (3) from a termite-gut associated Streptomyces sp. (USC 597) grown under solid state fermentation. The structures of these compounds were elucidated by extensive interpretation of 1H, 13C and 2D NMR spectroscopic data. These represent the first report of arglecin analogues isolated from a termite gut-associated Streptomyces species.

Keywords: Actinomycetes, actinofuranosin, antibiotics, arglecins, NMR spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231
12 An Enhanced Artificial Neural Network for Air Temperature Prediction

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.

Keywords: Time-series forecasting, weather modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
11 The Experiences of South-African High-School Girls in a Fab Lab Environment

Authors: Nomusa Dlodlo, Ronald Noel Beyers

Abstract:

This paper reports on an effort to address the issue of inequality in girls- and women-s access to science, engineering and technology (SET) education and careers through raising awareness on SET among secondary school girls in South Africa. Girls participated in hands-on high-tech rapid prototyping environment of a fabrication laboratory that was aimed at stimulating creativity and innovation as part of a Fab Kids initiative. The Fab Kids intervention is about creating a SET pipeline as part of the Young Engineers and Scientists of Africa Initiative.The methodology was based on a real world situation and a hands-on approach. In the process, participants acquired a number of skills including computer-aided design, research skills, communication skills, teamwork skills, technical drawing skills, writing skills and problem-solving skills. Exposure to technology enhanced the girls- confidence in being able to handle technology-related tasks.

Keywords: Girls, design engineering, gender, science, women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538
10 Investigating the Fiber Content, Fiber Length, and Curing Characteristics of 3D Printed Recycled Carbon Fiber

Authors: Peng Hao Wang, Ronald Sterkenburg, Garam Kim, Yuwei He

Abstract:

As composite materials continue to gain popularity in the aerospace industry; large airframe sections made out of composite materials are becoming the standard for aerospace manufacturers. However, the heavy utilization of these composite materials also increases the importance of the recycling of these composite materials. A team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students have partnered to investigate the characteristics of 3D printed recycled carbon fiber. A prototype of a 3D printed recycled carbon fiber part was provided by an industry partner and different sections of the prototype were used to create specimens. A furnace was utilized in order to remove the polymer from the specimens and the specimen’s fiber content and fiber length was calculated from the remaining fibers. A differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) test was also conducted on the 3D printed recycled carbon fiber prototype in order to determine the prototype’s degree of cure at different locations. The data collected from this study provided valuable information in the process improvement and understanding of 3D printed recycled carbon fiber.

Keywords: 3D printed, carbon fiber, fiber content, recycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
9 Aspect Oriented Software Architecture

Authors: Pradip Peter Dey, Ronald F. Gonzales, Gordon W. Romney, Mohammad Amin, Bhaskar Raj Sinha

Abstract:

Natural language processing systems pose a unique challenge for software architectural design as system complexity has increased continually and systems cannot be easily constructed from loosely coupled modules. Lexical, syntactic, semantic, and pragmatic aspects of linguistic information are tightly coupled in a manner that requires separation of concerns in a special way in design, implementation and maintenance. An aspect oriented software architecture is proposed in this paper after critically reviewing relevant architectural issues. For the purpose of this paper, the syntactic aspect is characterized by an augmented context-free grammar. The semantic aspect is composed of multiple perspectives including denotational, operational, axiomatic and case frame approaches. Case frame semantics matured in India from deep thematic analysis. It is argued that lexical, syntactic, semantic and pragmatic aspects work together in a mutually dependent way and their synergy is best represented in the aspect oriented approach. The software architecture is presented with an augmented Unified Modeling Language.

Keywords: Language engineering, parsing, software design, user experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
8 Automatic Extraction of Roads from High Resolution Aerial and Satellite Images with Heavy Noise

Authors: Yan Li, Ronald Briggs

Abstract:

Aerial and satellite images are information rich. They are also complex to analyze. For GIS systems, many features require fast and reliable extraction of roads and intersections. In this paper, we study efficient and reliable automatic extraction algorithms to address some difficult issues that are commonly seen in high resolution aerial and satellite images, nonetheless not well addressed in existing solutions, such as blurring, broken or missing road boundaries, lack of road profiles, heavy shadows, and interfering surrounding objects. The new scheme is based on a new method, namely reference circle, to properly identify the pixels that belong to the same road and use this information to recover the whole road network. This feature is invariable to the shape and direction of roads and tolerates heavy noise and disturbances. Road extraction based on reference circles is much more noise tolerant and flexible than the previous edge-detection based algorithms. The scheme is able to extract roads reliably from images with complex contents and heavy obstructions, such as the high resolution aerial/satellite images available from Google maps.

Keywords: Automatic road extraction, Image processing, Feature extraction, GIS update, Remote sensing, Geo-referencing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
7 Protein Secondary Structure Prediction Using Parallelized Rule Induction from Coverings

Authors: Leong Lee, Cyriac Kandoth, Jennifer L. Leopold, Ronald L. Frank

Abstract:

Protein 3D structure prediction has always been an important research area in bioinformatics. In particular, the prediction of secondary structure has been a well-studied research topic. Despite the recent breakthrough of combining multiple sequence alignment information and artificial intelligence algorithms to predict protein secondary structure, the Q3 accuracy of various computational prediction algorithms rarely has exceeded 75%. In a previous paper [1], this research team presented a rule-based method called RT-RICO (Relaxed Threshold Rule Induction from Coverings) to predict protein secondary structure. The average Q3 accuracy on the sample datasets using RT-RICO was 80.3%, an improvement over comparable computational methods. Although this demonstrated that RT-RICO might be a promising approach for predicting secondary structure, the algorithm-s computational complexity and program running time limited its use. Herein a parallelized implementation of a slightly modified RT-RICO approach is presented. This new version of the algorithm facilitated the testing of a much larger dataset of 396 protein domains [2]. Parallelized RTRICO achieved a Q3 score of 74.6%, which is higher than the consensus prediction accuracy of 72.9% that was achieved for the same test dataset by a combination of four secondary structure prediction methods [2].

Keywords: data mining, protein secondary structure prediction, parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
6 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763
5 Cyber Warriors for Cyber Security and Information Assurance- An Academic Perspective

Authors: Ronald F. Gonzales, Gordon W. Romney, Pradip Peter Dey, Mohammad Amin, Bhaskar Raj Sinha

Abstract:

A virtualized and virtual approach is presented on academically preparing students to successfully engage at a strategic perspective to understand those concerns and measures that are both structured and not structured in the area of cyber security and information assurance. The Master of Science in Cyber Security and Information Assurance (MSCSIA) is a professional degree for those who endeavor through technical and managerial measures to ensure the security, confidentiality, integrity, authenticity, control, availability and utility of the world-s computing and information systems infrastructure. The National University Cyber Security and Information Assurance program is offered as a Master-s degree. The emphasis of the MSCSIA program uniquely includes hands-on academic instruction using virtual computers. This past year, 2011, the NU facility has become fully operational using system architecture to provide a Virtual Education Laboratory (VEL) accessible to both onsite and online students. The first student cohort completed their MSCSIA training this past March 2, 2012 after fulfilling 12 courses, for a total of 54 units of college credits. The rapid pace scheduling of one course per month is immensely challenging, perpetually changing, and virtually multifaceted. This paper analyses these descriptive terms in consideration of those globalization penetration breaches as present in today-s world of cyber security. In addition, we present current NU practices to mitigate risks.

Keywords: Cyber security, information assurance, mitigate risks, virtual machines, strategic perspective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
4 Investigating the Effectiveness of a 3D Printed Composite Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design.

Keywords: Additive manufacturing, carbon fiber, composite tooling, molds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
3 Improving Air Temperature Prediction with Artificial Neural Networks

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.

Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
2 An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

The applications of composite materials within the aviation industry has been increasing at a rapid pace.  However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds.

Keywords: Additive manufacturing, carbon fiber, composite tooling, molds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
1 New Insights for Soft Skills Development in Vietnamese Business Schools: Defining Essential Soft Skills for Maximizing Graduates’ Career Success

Authors: Hang T. T. Truong, Ronald S. Laura, Kylie Shaw

Abstract:

Within Vietnam's system of higher education, its schools of business play a vital role in supporting the country’s economic objectives. However, the crucial contribution of soft skills for maximal success within the business sector has to date not been adequately recognized by its business schools. This being so, the development of the business school curriculum in Vietnam has not been able to 'catch up', so to say, with the burgeoning need of students for a comprehensive soft skills program designed to meet the national and global business objectives of their potential employers. The burden of the present paper is first to reveal the results of our survey in Vietnam which make explicit the extent to which major Vietnamese industrial employers’ value the potential role that soft skill competencies can play in maximizing business success. Our final task will be to determine which soft skills employers discern as best serving to maximize the economic interests of Vietnam within the global marketplace. Semi-structured telephone interviews have been conducted with the 15 representative Head Employers of Vietnam's reputedly largest and most successful of the diverse business enterprises across Vietnam. The findings of the study indicate that all respondents highly value the increasing importance of soft skills in business success. Our critical analysis of respondent data reveals that 19 essential soft skills are deemed by employers as integral to business workplace efficacy and should thus be integrated into the formal business curriculum. We are confident that our study represents the first comprehensive and specific survey yet undertaken within the business sector in Vietnam which accesses and analyses the opinions of representative employers from major companies across the country in regard to the growing importance of 19 specific soft skills essential for maximizing overall business success. Our research findings also reveal that the integration into business school curriculums nationwide of the soft skills we have identified is of paramount importance to advance the national and global economic interests of Vietnam.

Keywords: Business curriculum, business graduates, employers’ perception, soft skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2490