Search results for: Problem solving process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8594

Search results for: Problem solving process

8474 Optimum Stratification of a Skewed Population

Authors: D.K. Rao, M.G.M. Khan, K.G. Reddy

Abstract:

The focus of this paper is to develop a technique of solving a combined problem of determining Optimum Strata Boundaries(OSB) and Optimum Sample Size (OSS) of each stratum, when the population understudy isskewed and the study variable has a Pareto frequency distribution. The problem of determining the OSB isformulated as a Mathematical Programming Problem (MPP) which is then solved by dynamic programming technique. A numerical example is presented to illustrate the computational details of the proposed method. The proposed technique is useful to obtain OSB and OSS for a Pareto type skewed population, which minimizes the variance of the estimate of population mean.

Keywords: Stratified sampling, Optimum strata boundaries, Optimum sample size, Pareto distribution, Mathematical programming problem, Dynamic programming technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4010
8473 Development of an Intelligent Tool for Planning the Operation

Authors: T. R. Alencar, P. T. Leite

Abstract:

Several optimization algorithms specifically applied to the problem of Operation Planning of Hydrothermal Power Systems have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. Thus, this paper presents the development of a computational tool for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique, Genetic Algorithms and programming language Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: Energy, Optimization, Hydrothermal Power Systemsand Genetic Algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
8472 A Program for Solving problems in Inorganic Chemistry based on Knowledge Base

Authors: Nhon Van Do, Nam Hoai Le, Vien Chan Luong

Abstract:

The Model for Knowledge Base of Computational Objects (KBCO model) has been successfully applied to represent the knowledge of human like Plane Geometry, Physical, Calculus. However, the original model cannot easyly apply in inorganic chemistry field because of the knowledge specific problems. So, the aim of this article is to introduce how we extend the Computional Object (Com-Object) in KBCO model, kinds of fact, problems model, and inference algorithms to develop a program for solving problems in inorganic chemistry. Our purpose is to develop the application that can help students in their study inorganic chemistry at schools. This application was built successful by using Maple, C# and WPF technology. It can solve automatically problems and give human readable solution agree with those writting by students and teachers.

Keywords: artificial intelligence, automated problem solving, knowledge base system, knowledge representation, reasoning strategy, education software/educational applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
8471 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: B. Mukanova, N. Glazyrina, S. Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: Direct problem, multiparametric optimization, optimization parameters, water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
8470 The Algorithm to Solve the Extend General Malfatti’s Problem in a Convex Circular Triangle

Authors: Ching-Shoei Chiang

Abstract:

The Malfatti’s problem solves the problem of fitting three circles into a right triangle such that these three circles are tangent to each other, and each circle is also tangent to a pair of the triangle’s sides. This problem has been extended to any triangle (called general Malfatti’s problem). Furthermore, the problem has been extended to have 1 + 2 + … + n circles inside the triangle with special tangency properties among circles and triangle sides; it is called the extended general Malfatti’s problem. In the extended general Malfatti’s problem, call it Tri(Tn), where Tn is the triangle number, there are closed-form solutions for the Tri(T₁) (inscribed circle) problem and Tri(T₂) (3 Malfatti’s circles) problem. These problems become more complex when n is greater than 2. In solving the Tri(Tn) problem, n > 2, algorithms have been proposed to solve these problems numerically. With a similar idea, this paper proposed an algorithm to find the radii of circles with the same tangency properties. Instead of the boundary of the triangle being a straight line, we use a convex circular arc as the boundary and try to find Tn circles inside this convex circular triangle with the same tangency properties among circles and boundary as in Tri(Tn) problems. We call these problems the Carc(Tn) problems. The algorithm is a mO(Tn) algorithm, where m is the number of iterations in the loop. It takes less than 1000 iterations and less than 1 second for the Carc(T16) problem, which finds 136 circles inside a convex circular triangle with specified tangency properties. This algorithm gives a solution for circle packing problem inside convex circular triangle with arbitrarily-sized circles. Many applications concerning circle packing may come from the result of the algorithm, such as logo design, architecture design, etc.

Keywords: Circle packing, computer-aided geometric design, geometric constraint solver, Malfatti’s problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47
8469 Application of the Hybrid Methods to Solving Volterra Integro-Differential Equations

Authors: G.Mehdiyeva, M.Imanova, V.Ibrahimov

Abstract:

Beginning from the creator of integro-differential equations Volterra, many scientists have investigated these equations. Classic method for solving integro-differential equations is the quadratures method that is successfully applied up today. Unlike these methods, Makroglou applied hybrid methods that are modified and generalized in this paper and applied to the numerical solution of Volterra integro-differential equations. The way for defining the coefficients of the suggested method is also given.

Keywords: Integro-differential equations, initial value problem, hybrid methods, predictor-corrector method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
8468 A New Heuristic Approach for the Large-Scale Generalized Assignment Problem

Authors: S. Raja Balachandar, K.Kannan

Abstract:

This paper presents a heuristic approach to solve the Generalized Assignment Problem (GAP) which is NP-hard. It is worth mentioning that many researches used to develop algorithms for identifying the redundant constraints and variables in linear programming model. Some of the algorithms are presented using intercept matrix of the constraints to identify redundant constraints and variables prior to the start of the solution process. Here a new heuristic approach based on the dominance property of the intercept matrix to find optimal or near optimal solution of the GAP is proposed. In this heuristic, redundant variables of the GAP are identified by applying the dominance property of the intercept matrix repeatedly. This heuristic approach is tested for 90 benchmark problems of sizes upto 4000, taken from OR-library and the results are compared with optimum solutions. Computational complexity is proved to be O(mn2) of solving GAP using this approach. The performance of our heuristic is compared with the best state-ofthe- art heuristic algorithms with respect to both the quality of the solutions. The encouraging results especially for relatively large size test problems indicate that this heuristic approach can successfully be used for finding good solutions for highly constrained NP-hard problems.

Keywords: Combinatorial Optimization Problem, Generalized Assignment Problem, Intercept Matrix, Heuristic, Computational Complexity, NP-Hard Problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
8467 XML Schema Automatic Matching Solution

Authors: Huynh Quyet Thang, Vo Sy Nam

Abstract:

Schema matching plays a key role in many different applications, such as schema integration, data integration, data warehousing, data transformation, E-commerce, peer-to-peer data management, ontology matching and integration, semantic Web, semantic query processing, etc. Manual matching is expensive and error-prone, so it is therefore important to develop techniques to automate the schema matching process. In this paper, we present a solution for XML schema automated matching problem which produces semantic mappings between corresponding schema elements of given source and target schemas. This solution contributed in solving more comprehensively and efficiently XML schema automated matching problem. Our solution based on combining linguistic similarity, data type compatibility and structural similarity of XML schema elements. After describing our solution, we present experimental results that demonstrate the effectiveness of this approach.

Keywords: XML Schema, Schema Matching, SemanticMatching, Automatic XML Schema Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
8466 Numerical Solving of General Fuzzy Linear Systems by Huang's Method

Authors: S. J. Hosseini Ghoncheh, M. Paripour

Abstract:

In this paper the Huang-s method for solving a m×n fuzzy linear system when, m≤ n, is considered. The method in detail is discussed and illustrated by solving some numerical examples.

Keywords: Fuzzy number, fuzzy linear systems, Huang's method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
8465 Robust Disturbance Rejection for Left Invertible Singular Systems with Nonlinear Uncertain Structure

Authors: Fotis N. Koumboulis, Michael G. Skarpetis, Maria P. Tzamtzi

Abstract:

The problem of robust disturbance rejection (RDR) using a proportional state feedback controller is studied for the case of Left Invertible MIMO generalized state space linear systems with nonlinear uncertain structure. Sufficient conditions for the problem to have a solution are established. The set of all proportional feedback controllers solving the problem subject to these conditions is analytically determined.

Keywords: System theory, uncertain systems, robust control, singular systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
8464 Multi-Objective Optimization of Combined System Reliability and Redundancy Allocation Problem

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents established 3n enumeration procedure for mixed integer optimization problems for solving multi-objective reliability and redundancy allocation problem subject to design constraints. The formulated problem is to find the optimum level of unit reliability and the number of units for each subsystem. A number of illustrative examples are provided and compared to indicate the application of the superiority of the proposed method.

Keywords: Integer programming, mixed integer programming, multi-objective optimization, reliability redundancy allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
8463 A New Heuristic Approach to Solving U-shape Assembly Line Balancing Problems Type-1

Authors: M. Fathi, M. J. Alvarez, V. Rodríguez

Abstract:

Assembly line balancing is a very important issue in mass production systems due to production cost. Although many studies have been done on this topic, but because assembly line balancing problems are so complex they are categorized as NP-hard problems and researchers strongly recommend using heuristic methods. This paper presents a new heuristic approach called the critical task method (CTM) for solving U-shape assembly line balancing problems. The performance of the proposed heuristic method is tested by solving a number of test problems and comparing them with 12 other heuristics available in the literature to confirm the superior performance of the proposed heuristic. Furthermore, to prove the efficiency of the proposed CTM, the objectives are increased to minimize the number of workstation (or equivalently maximize line efficiency), and minimizing the smoothness index. Finally, it is proven that the proposed heuristic is more efficient than the others to solve the U-shape assembly line balancing problem.

Keywords: Critical task method, Heuristic, Line balancingproblem, U-shape

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
8462 Evaluation of the exIWO Algorithm Based On the Traveling Salesman Problem

Authors: Daniel Kostrzewa, Henryk Josiński

Abstract:

The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.

Keywords: Expanded Invasive Weed Optimization algorithm (exIWO), Traveling Salesman Problem (TSP), heuristic approach, inversion operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
8461 A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints

Authors: S. Kavitha, Nirmala P. Ratchagar

Abstract:

This paper presents the novel deterministic dynamic programming approach for solving optimization problem with quadratic objective function with linear equality and inequality constraints. The proposed method employs backward recursion in which computations proceeds from last stage to first stage in a multi-stage decision problem. A generalized recursive equation which gives the exact solution of an optimization problem is derived in this paper. The method is purely analytical and avoids the usage of initial solution. The feasibility of the proposed method is demonstrated with a practical example. The numerical results show that the proposed method provides global optimum solution with negligible computation time.

Keywords: Backward recursion, Dynamic programming, Multi-stage decision problem, Quadratic objective function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3540
8460 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression

Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu

Abstract:

The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.

Keywords: Artificial neural network, finite element method, perforated sections, thin-walled steel, ultimate load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
8459 A Branch and Bound Algorithm for Resource Constrained Project Scheduling Problem Subject to Cumulative Resources

Authors: A. Shirzadeh Chaleshtari, Sh. Shadrokh

Abstract:

Renewable and non-renewable resource constraints have been vast studied in theoretical fields of project scheduling problems. However, although cumulative resources are widespread in practical cases, the literature on project scheduling problems subject to these resources is scant. So in order to study this type of resources more, in this paper we use the framework of a resource constrained project scheduling problem (RCPSP) with finish-start precedence relations between activities and subject to the cumulative resources in addition to the renewable resources. We develop a branch and bound algorithm for this problem customizing precedence tree algorithm of RCPSP. We perform extensive experimental analysis on the algorithm to check its effectiveness and performance for solving different instances of the problem in question.

Keywords: Resource constrained project scheduling problem, cumulative resources, branch and bound algorithm, precedence tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861
8458 A Method for Improving the Embedded Runge Kutta Fehlberg 4(5)

Authors: Sunyoung Bu, Wonkyu Chung, Philsu Kim

Abstract:

In this paper, we introduce a method for improving the embedded Runge-Kutta-Fehlberg4(5) method. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. These solution and error are obtained by solving an initial value problem whose solution has the information of the error at each integration step. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. For the assessment of the effectiveness, EULR problem is numerically solved.

Keywords: Embedded Runge-Kutta-Fehlberg method, Initial value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
8457 Using Pattern Search Methods for Minimizing Clustering Problems

Authors: Parvaneh Shabanzadeh, Malik Hj Abu Hassan, Leong Wah June, Maryam Mohagheghtabar

Abstract:

Clustering is one of an interesting data mining topics that can be applied in many fields. Recently, the problem of cluster analysis is formulated as a problem of nonsmooth, nonconvex optimization, and an algorithm for solving the cluster analysis problem based on nonsmooth optimization techniques is developed. This optimization problem has a number of characteristics that make it challenging: it has many local minimum, the optimization variables can be either continuous or categorical, and there are no exact analytical derivatives. In this study we show how to apply a particular class of optimization methods known as pattern search methods to address these challenges. These methods do not explicitly use derivatives, an important feature that has not been addressed in previous studies. Results of numerical experiments are presented which demonstrate the effectiveness of the proposed method.

Keywords: Clustering functions, Non-smooth Optimization, Nonconvex Optimization, Pattern Search Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
8456 Modified Data Mining Approach for Defective Diagnosis in Hard Disk Drive Industry

Authors: S. Soommat, S. Patamatamkul, T. Prempridi, M. Sritulyachot, P. Ineure, S. Yimman

Abstract:

Currently, slider process of Hard Disk Drive Industry become more complex, defective diagnosis for yield improvement becomes more complicated and time-consumed. Manufacturing data analysis with data mining approach is widely used for solving that problem. The existing mining approach from combining of the KMean clustering, the machine oriented Kruskal-Wallis test and the multivariate chart were applied for defective diagnosis but it is still be a semiautomatic diagnosis system. This article aims to modify an algorithm to support an automatic decision for the existing approach. Based on the research framework, the new approach can do an automatic diagnosis and help engineer to find out the defective factors faster than the existing approach about 50%.

Keywords: Slider process, Defective diagnosis and Data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
8455 A Projection Method Based on Extended Krylov Subspaces for Solving Sylvester Equations

Authors: Yiqin Lin, Liang Bao, Yimin Wei

Abstract:

In this paper we study numerical methods for solving Sylvester matrix equations of the form AX +XBT +CDT = 0. A new projection method is proposed. The union of Krylov subspaces in A and its inverse and the union of Krylov subspaces in B and its inverse are used as the right and left projection subspaces, respectively. The Arnoldi-like process for constructing the orthonormal basis of the projection subspaces is outlined. We show that the approximate solution is an exact solution of a perturbed Sylvester matrix equation. Moreover, exact expression for the norm of residual is derived and results on finite termination and convergence are presented. Some numerical examples are presented to illustrate the effectiveness of the proposed method.

Keywords: Arnoldi process, Krylov subspace, Iterative method, Sylvester equation, Dissipative matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
8454 Genetic Algorithm Application in a Dynamic PCB Assembly with Carryover Sequence- Dependent Setups

Authors: M. T. Yazdani Sabouni, Rasaratnam Logendran

Abstract:

We consider a typical problem in the assembly of printed circuit boards (PCBs) in a two-machine flow shop system to simultaneously minimize the weighted sum of weighted tardiness and weighted flow time. The investigated problem is a group scheduling problem in which PCBs are assembled in groups and the interest is to find the best sequence of groups as well as the boards within each group to minimize the objective function value. The type of setup operation between any two board groups is characterized as carryover sequence-dependent setup time, which exactly matches with the real application of this problem. As a technical constraint, all of the boards must be kitted before the assembly operation starts (kitting operation) and by kitting staff. The main idea developed in this paper is to completely eliminate the role of kitting staff by assigning the task of kitting to the machine operator during the time he is idle which is referred to as integration of internal (machine) and external (kitting) setup times. Performing the kitting operation, which is a preparation process of the next set of boards while the other boards are currently being assembled, results in the boards to continuously enter the system or have dynamic arrival times. Consequently, a dynamic PCB assembly system is introduced for the first time in the assembly of PCBs, which also has characteristics similar to that of just-in-time manufacturing. The problem investigated is computationally very complex, meaning that finding the optimal solutions especially when the problem size gets larger is impossible. Thus, a heuristic based on Genetic Algorithm (GA) is employed. An example problem on the application of the GA developed is demonstrated and also numerical results of applying the GA on solving several instances are provided.

Keywords: Genetic algorithm, Dynamic PCB assembly, Carryover sequence-dependent setup times, Multi-objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
8453 Transmission Lines Loading Enhancement Using ADPSO Approach

Authors: M. Mahdavi, H. Monsef, A. Bagheri

Abstract:

Discrete particle swarm optimization (DPSO) is a powerful stochastic evolutionary algorithm that is used to solve the large-scale, discrete and nonlinear optimization problems. However, it has been observed that standard DPSO algorithm has premature convergence when solving a complex optimization problem like transmission expansion planning (TEP). To resolve this problem an advanced discrete particle swarm optimization (ADPSO) is proposed in this paper. The simulation result shows that optimization of lines loading in transmission expansion planning with ADPSO is better than DPSO from precision view point.

Keywords: ADPSO, TEP problem, Lines loading optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
8452 Sustainable Urban Transport Management and Its Strategies

Authors: Touba Amirazodi

Abstract:

Rapid process of urbanism development has increased the demand for some infrastructures such as supplying potable water, electricity network and transportation facilities and etc. Nonefficiency of the existing system with parallel managements of urban traffic management has increased the gap between supply and demand of traffic facilities. A sustainable transport system requires some activities more important than air pollution control, traffic or fuel consumption reduction and the studies show that there is no unique solution for solving complicated transportation problems and solving such a problem needs a comprehensive, dynamic and reliable mechanism. Sustainable transport management considers the effects of transportation development on economic efficiency, environmental issues, resources consumption, land use and social justice and helps reduction of environmental effects, increase of transportation system efficiency as well as improvement of social life and aims to enhance efficiency, goods transportation, provide services with minimum access problems that cannot be realized without reorganization of strategies, policies and plans.

Keywords: Sustainable Urban Transport, Environment, Social Justice, Air Pollution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
8451 Solving Machine Loading Problem in Flexible Manufacturing Systems Using Particle Swarm Optimization

Authors: S. G. Ponnambalam, Low Seng Kiat

Abstract:

In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve machine loading problem in flexible manufacturing system (FMS), with bicriterion objectives of minimizing system unbalance and maximizing system throughput in the occurrence of technological constraints such as available machining time and tool slots. A mathematical model is used to select machines, assign operations and the required tools. The performance of the PSO is tested by using 10 sample dataset and the results are compared with the heuristics reported in the literature. The results support that the proposed PSO is comparable with the algorithms reported in the literature.

Keywords: Machine loading problem, FMS, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066
8450 Jet-Stream Airsail: Study of the Shape and the Behavior of the Connecting Cable

Authors: Christopher Frank, Yoshiki Miyairi

Abstract:

A Jet-stream airsail concept takes advantage of aerology in order to fly without propulsion. Weather phenomena, especially jet streams, are relatively permanent high winds blowing from west to east, located at average altitudes and latitudes in both hemispheres. To continuously extract energy from the jet-stream, the system is composed of a propelled plane and a wind turbine interconnected by a cable. This work presents the aerodynamic characteristics and the behavior of the cable that links the two subsystems and transmits energy from the turbine to the aircraft. Two ways of solving this problem are explored: numerically and analytically. After obtaining the optimal shape of the cross-section of the cable, its behavior is analyzed as a 2D problem solved numerically and analytically. Finally, a 3D extension could be considered by adding lateral forces. The results of this work can be further used in the design process of the overall system: aircraft-turbine.

Keywords: Jet-stream, cable, tether, aerodynamics, aircraft, airsail, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
8449 Completion Latin Square for Wavelength Routing

Authors: Ali Habiboghli, Rouhollah Mostafaei, Vasif Nabiyev

Abstract:

Optical network uses a tool for routing called Latin router. These routers use particular algorithms for routing. For example, we can refer to LDF algorithm that uses backtracking (one of CSP methods) for problem solving. In this paper, we proposed new approached for completion routing table (DRA&CRA algorithm) and compare with pervious proposed ways and showed numbers of backtracking, blocking and run time for DRA algorithm less than LDF and CRA algorithm.

Keywords: Latin Router, Constraint Satisfaction Problem, Wavelength Routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
8448 Split-Pipe Design of Water Distribution Network Using Simulated Annealing

Authors: J. Tospornsampan, I. Kita, M. Ishii, Y. Kitamura

Abstract:

In this paper a procedure for the split-pipe design of looped water distribution network based on the use of simulated annealing is proposed. Simulated annealing is a heuristic-based search algorithm, motivated by an analogy of physical annealing in solids. It is capable for solving the combinatorial optimization problem. In contrast to the split-pipe design that is derived from a continuous diameter design that has been implemented in conventional optimization techniques, the split-pipe design proposed in this paper is derived from a discrete diameter design where a set of pipe diameters is chosen directly from a specified set of commercial pipes. The optimality and feasibility of the solutions are found to be guaranteed by using the proposed method. The performance of the proposed procedure is demonstrated through solving the three well-known problems of water distribution network taken from the literature. Simulated annealing provides very promising solutions and the lowest-cost solutions are found for all of these test problems. The results obtained from these applications show that simulated annealing is able to handle a combinatorial optimization problem of the least cost design of water distribution network. The technique can be considered as an alternative tool for similar areas of research. Further applications and improvements of the technique are expected as well.

Keywords: Combinatorial problem, Heuristics, Least-cost design, Looped network, Pipe network, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628
8447 Proposal of Solidification/Stabilisation Process of Chosen Hazardous Waste by Cementation

Authors: Bozena Dohnalkova

Abstract:

This paper presents a part of the project solving which is dedicated to the identification of the hazardous waste with the most critical production within the Czech Republic with the aim to study and find the optimal composition of the cement matrix that will ensure maximum content disposal of chosen hazardous waste. In the first stage of project solving – which represents this paper – a specific hazardous waste was chosen, its properties were identified and suitable solidification agents were chosen. Consequently solidification formulas and testing methodology was proposed.

Keywords: Cementation, solidification, waste, binder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
8446 Integrated Approaches to Enhance Aggregate Production Planning with Inventory Uncertainty Based On Improved Harmony Search Algorithm

Authors: P. Luangpaiboon, P. Aungkulanon

Abstract:

This work presents a multiple objective linear programming (MOLP) model based on the desirability function approach for solving the aggregate production planning (APP) decision problem upon Masud and Hwang-s model. The proposed model minimises total production costs, carrying or backordering costs and rates of change in labor levels. An industrial case demonstrates the feasibility of applying the proposed model to the APP problems with three scenarios of inventory levels. The proposed model yields an efficient compromise solution and the overall levels of DM satisfaction with the multiple combined response levels. There has been a trend to solve complex planning problems using various metaheuristics. Therefore, in this paper, the multi-objective APP problem is solved by hybrid metaheuristics of the hunting search (HuSIHSA) and firefly (FAIHSA) mechanisms on the improved harmony search algorithm. Results obtained from the solution of are then compared. It is observed that the FAIHSA can be used as a successful alternative solution mechanism for solving APP problems over three scenarios. Furthermore, the FAIHSA provides a systematic framework for facilitating the decision-making process, enabling a decision maker interactively to modify the desirability function approach and related model parameters until a good optimal solution is obtained with proper selection of control parameters when compared.

Keywords: Aggregate Production Planning, Desirability Function Approach, Improved Harmony Search Algorithm, Hunting Search Algorithm and Firefly Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
8445 Direct Block Backward Differentiation Formulas for Solving Second Order Ordinary Differential Equations

Authors: Zarina Bibi Ibrahim, Mohamed Suleiman, Khairil Iskandar Othman

Abstract:

In this paper, a direct method based on variable step size Block Backward Differentiation Formula which is referred as BBDF2 for solving second order Ordinary Differential Equations (ODEs) is developed. The advantages of the BBDF2 method over the corresponding sequential variable step variable order Backward Differentiation Formula (BDFVS) when used to solve the same problem as a first order system are pointed out. Numerical results are given to validate the method.

Keywords: Backward Differentiation Formula, block, secondorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966