Search results for: Pore wettability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 151

Search results for: Pore wettability

151 Experimental Studies on Multiphase Flow in Porous Media and Pore Wettability

Authors: Xingxun Li, Xianfeng Fan

Abstract:

Multiphase flow transport in porous medium is very common and significant in science and engineering applications. For example, in CO2 Storage and Enhanced Oil Recovery processes, CO2 has to be delivered to the pore spaces in reservoirs and aquifers. CO2 storage and enhance oil recovery are actually displacement processes, in which oil or water is displaced by CO2. This displacement is controlled by pore size, chemical and physical properties of pore surfaces and fluids, and also pore wettability. In this study, a technique was developed to measure the pressure profile for driving gas/liquid to displace water in pores. Through this pressure profile, the impact of pore size on the multiphase flow transport and displacement can be analyzed. The other rig developed can be used to measure the static and dynamic pore wettability and investigate the effects of pore size, surface tension, viscosity and chemical structure of liquids on pore wettability.

Keywords: Enhanced oil recovery, Multiphase flow, Pore size, Pore wettability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
150 The Surface Adsorption of Nano-pore Template

Authors: M. J. Kao, S.F. Chang, C.C. Chen, C.G. Kuo

Abstract:

This paper aims to fabricated high quality anodic aluminum oxide (AAO) film by anodization method. AAO pore size, pore density, and film thickness can be controlled in 10~500 nm, 108~1011 pore.cm-2, and 1~100 μm. AAO volume and surface area can be computed based on structural parameters such as thickness, pore size, pore density, and sample size. Base on the thetorical calculation, AAO has 100 μm thickness with 15 nm, 60 nm, and 500 nm pore diameters AAO surface areas are 1225.2 cm2, 3204.4 cm2, and 549.7 cm2, respectively. The large unit surface area which is useful for adsorption application. When AAO adsorbed pH indictor of bromphenol blue presented a sensitive pH detection of solution change. This testing method can further be used for the precise measurement of biotechnology, convenience measurement of industrial engineering.

Keywords: AAO, Pore, Surface area, Adsorption, Indicator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
149 Wetting Behavior of Reactive and Non–Reactive Wetting of Liquids on Metallic Substrates

Authors: Pradeep Bhagawath, K.N. Prabhu, Satyanarayan

Abstract:

Wetting characteristics of reactive (Sn–0.7Cu solder) and non– reactive (castor oil) wetting of liquids on Cu and Ag plated Al substrates have been investigated. Solder spreading exhibited capillary, gravity and viscous regimes. Oils did not exhibit noticeable spreading regimes. Solder alloy showed better wettability on Ag coated Al substrate compared to Cu plating. In the case of castor oil, Cu coated Al substrate exhibited good wettability as compared to Ag coated Al substrates. The difference in wettability during reactive wetting of solder and non–reactive wetting of oils is attributed to the change in the surface energies of Al substrates brought about by the formation of intermetallic compounds (IMCs).

Keywords: Wettability, contact angle, solder, castor oil, IMCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
148 Effect of Cold Plasma-Surface Modification on Surface Wettability and Initial Cell Attachment

Authors: Masao Yoshinari, Jianhua Wei, Kenichi Matsuzaka, Takashi Inoue

Abstract:

A thin coating of hexamethyldisiloxane and subsequent O2-plasma treatment was performed on mirror-polished titanium in order to regulate the wide range of wettability including 106 and almost 0 degrees of contact angles. The adsorption behavior of fibronectin and albumin in both individual and competitive mode, and initial attachment of fibroblasts and osteoblasts were investigated. Individually, fibronectin adsorption showed a biphasic inclination, whereas albumin showed greater adsorption to hydrophobic surfaces. In competitive mode, in solution containing both fibronectin and albumin, fibronectin showed greater adsorption on hydrophilic surfaces, whereas Alb predominantly adsorbed on hydrophobic surfaces. Initial attachment of both cells increased with increase in surface wettability, in particular, on super-hydrophilic surface, which correlated well with fibronectin adsorption in competitive mode. These results suggest that a cold plasma-surface modification enabled to regulate the surface wettability, and fibronectin adsorption may be responsible for increasing cell adhesion on hydrophilic surfaces in a body fluid

Keywords: cold plasma-surface modification, wettability, protein adsorption, initial cell attachment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
147 Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR

Authors: Hyung T. Kwak, Jun Gao, Yao An, Alfred Kleinhammes, Yue Wu

Abstract:

Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties.

Keywords: Competitive adsorption, nuclear magnetic resonance, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 727
146 Pore Model Prediction of CH4 Separation from HS Using PTMSP and γ -Alumina Membranes

Authors: H. Mukhtar, N. M. Noor, R. Nasir, D. F. Mohshim

Abstract:

The main aim of this work is to develop a model of hydrogen sulfide (H2S) separation from natural gas by using membrane separation technology. The model is developed by incorporating three diffusion mechanisms which are Knudsen, viscous and surface diffusion towards membrane selectivity and permeability. The findings from the simulation result shows that the permeability of the gas is dependent toward the pore size of the membrane, operating pressure, operating temperature as well as feed composition. The permeability of methane has the highest value for Poly (1-trimethylsilyl-1-propyne ) PTMSP membrane at pore size of 0.1nm and decreasing toward a minimum peak at pore range 1 to 1.5 nm as pore size increased before it increase again for pore size is greater than 1.5 nm. On the other hand, the permeability of hydrogen sulfide is found to increase almost proportionally with the increase of membrane pore size. Generally, the increase of pressure will increase the permeability of gas since more driving force is provided to the system while increasing of temperature would decrease the permeability due to the surface diffusion drop off effect. A corroboration of the simulation result also showed a good agreement with the experimental data.

Keywords: Hydrogen Sulfide, Methane, Inorganic Membrane, Organic Membrane, Pore Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3707
145 Contact Angle Measurement of the Vinyl Ester Matrix Nanocomposites Based On Layered Silicate

Authors: A. I. Alateyah, H. N. Dhakal, Z. Y. Zhang

Abstract:

Contact angle measurement was utilized in order to study the subject of the wettability and surface chemistry of the nanocomposites materials. Water and glycerol droplets were used in this study. The incorporation of layered silicate into the vinyl ester matrix helped to improve the wettability and reduced the θ values of both liquids used. The addition of 2 wt.% clay loading reduced the θ values of water and glycerol by up to 21% and 6% respectively. Likewise, the incorporation of 4 wt.% clay loading reduced the water and glycerol θ values by 49% and 38% respectively. Also this study confirms the findings in the literature regarding the relationship between the intercalation nanocomposites level and the wettability. Wide Angle X-ray Diffraction, Scanning Electron Microscopy and Transmission Electron Microscopy were utilised in order to characterise the interlamellar structure of nanocomposites.

Keywords: Vinyl ester, nanocomposites, layered silicate, characterisations, contact angle measurement, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
144 Separation of Water/Organic Mixtures Using Micro- and Nanostructured Membranes of Special Type of Wettability

Authors: F. R. Sultanov Ch. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A. Zhurintaeva, R. I. Gadilshina, A. B. Dugali

Abstract:

Both hydrophilic-oleophobic and hydrophobic-oleophilic membranes were obtained by coating of the substrate of membranes, presented by stainless steel meshes with various dimensions of their openings, with a composition that forms the special type of their surface wettability via spray-coating method. The surface morphology of resulting membranes was studied using SEM, the type of their wettability was identified by measuring the contact angle between the surface of membrane and a drop of studied liquid (water or organic liquid) and efficiency of continuous separation of water and organic liquid was studied on self-assembled setup.

Keywords: Membrane, stainless steel mesh, oleophobicity, hydrophobicity, separation, water, organic liquids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
143 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: Artificial joints, plasma surface modification, UHMWPE, vitamin E, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
142 Strong Adhesion and High Wettability at Polyetheretherketone-Resin/Titanium-Dioxide Interface Obtained with Crystal-Orientation Control

Authors: Tomio Iwasaki, Yosuke Kawahito

Abstract:

The adhesion strength and wettability at the interfaces between a polyetheretherketone (PEEK) resin and titanium dioxide (TiO2) have become more important because direct joining of PEEK resin and titanium (Ti), whose surface has usually the oxide (TiO2), is needed not only in vehicles such as airplanes, automobiles, and space vehicles, but also in medical devices such as implants. To realize strong joint between the PEEK resin and TiO2, the dependence of the adhesion strength and wettability on crystal orientations of rutile TiO2 were investigated by using molecular simulations. Molecular dynamics simulations were conducted by combining quantum-mechanics equation of electrons with Newton’s equation of motion of nuclear coordinates (atomic coordinates). By putting a PEEK-resin sphere on a rutile TiO2 surface and by heating the system to 650 K, the contact angles at the interfaces were calculated to evaluate the wettability. After the system is cooled to 300 K from 650 K, to evaluate the adhesin strength, the adhesive fracture energy is calculated as the difference between the energy of the PEEK-TiO2 attached state and that of the PEEK-TiO2 detached state. The results of the contact angles showed that PEEK resin on the TiO2(100) and that on the TiO2(001) surface has low wettability with large contact angles. On the other hand, PEEK resin on the TiO2(110) surface has high wettability with a small contact angle. The results of the adhesive fracture energies showed that the adhesion at the PEEK-resin/TiO2(100) and PEEK-resin/TiO2(001) interfaces are weak. On the other hand, the adhesion at the PEEK-resin/TiO2(110) interface is strong. To clarify the reason that the higher wettability and stronger adhesion are obtained at the PEEK/TiO2(110) interface than at the at the PEEK/TiO2(100) and PEEK/TiO2(001) interfaces, atomic configurations at the interfaces were visualized. The atomic configuration at the PEEK/TiO2(110) interface showed that the lattice-matched coherent interface is realized, and the atomic density is high. On the other hand, the atomic configuration at the PEEK/TiO2(001) interface showed the lattice-unmatched incoherent interface. The atomic configuration at the PEEK/TiO2(100) interface showed that the atomic density is very low although the lattice-matched interface is realized. Therefore, the lattice matching and the high atomic density at the PEEK/TiO2(001) interface are considered to be dominant factors in the high wettability and strong adhesion.

Keywords: Adhesion, direct joining, PEEK, TiO2, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448
141 Experimental Investigation on Excess Pore Water Pressure in Soft Soil-Foundations under Minor Shocks

Authors: Zhiying Zhang, Chongdu Cho, Qiang Pan, Xilin Lu

Abstract:

In this study, shaking table tests are performed to investigate the behavior of excess pore water pressure in different soft soil-foundations of soil-structure interaction (SSI) system. The variation of the behaviors under cycled minor shock is observed. Moreover, The generation and variation mechanism of excess pore water pressure under earthquake excitation in different soft soilfoundations are analyzed and discussed.

Keywords: Excess pore water pressure, shaking table tests, soft soil foundation, SSI system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715
140 CPT Pore Water Pressure Correlations with PDA to Identify Pile Drivability Problem

Authors: Fauzi Jarushi, Paul Cosentino, Edward Kalajian, Hadeel Dekhn

Abstract:

At certain depths during large diameter displacement pile driving, rebound well over 0.25 inches was experienced, followed by a small permanent-set during each hammer blow. High pile rebound (HPR) soils may stop the pile driving and results in a limited pile capacity. In some cases, rebound leads to pile damage, delaying the construction project, and the requiring foundations redesign. HPR was evaluated at seven Florida sites, during driving of square precast, prestressed concrete piles driven into saturated, fine silty to clayey sands and sandy clays. Pile Driving Analyzer (PDA) deflection versus time data recorded during installation, was used to develop correlations between cone penetrometer (CPT) pore-water pressures, pile displacements and rebound. At five sites where piles experienced excessive HPR with minimal set, the pore pressure yielded very high positive values of greater than 20 tsf. However, at the site where the pile rebounded, followed by an acceptable permanent-set, the measured pore pressure ranged between 5 and 20 tsf. The pore pressure exhibited values of less than 5 tsf at the site where no rebound was noticed. In summary, direct correlations between CPTu pore pressure and rebound were produced, allowing identification of soils that produce HPR.

Keywords: CPTu, pore water pressure, pile rebound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2671
139 Scatter Analysis of Fatigue Life and Pore Size Data of Die-Cast AM60B Magnesium Alloy

Authors: S. Mohd, Y. Mutoh, Y. Otsuka, Y. Miyashita, T. Koike, T. Suzuki

Abstract:

Scatter behavior of fatigue life in die-cast AM60B alloy was investigated. For comparison, those in rolled AM60B alloy and die-cast A365-T5 aluminum alloy were also studied. Scatter behavior of pore size was also investigated to discuss dominant factors for fatigue life scatter in die-cast materials. Three-parameter Weibull function was suitable to explain the scatter behavior of both fatigue life and pore size. The scatter of fatigue life in die-cast AM60B alloy was almost comparable to that in die-cast A365-T5 alloy, while it was significantly large compared to that in the rolled AM60B alloy. Scatter behavior of pore size observed at fracture nucleation site on the fracture surface was comparable to that observed on the specimen cross-section and also to that of fatigue life. Therefore, the dominant factor for large scatter of fatigue life in die-cast alloys would be the large scatter of pore size. This speculation was confirmed by the fracture mechanics fatigue life prediction, where the pore observed at fatigue crack nucleation site was assumed as the pre-existing crack.

Keywords: Fatigue life, Pore size, Scatter, Weibull distribution, Die-cast magnesium alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
138 Phase Behavior of CO2 and CH4 Hydrate in Porous Media

Authors: Seong-Pil Kang, Ho-Jung Ryu, Yongwon Seo

Abstract:

Hydrate phase equilibria for the binary CO2+water and CH4+water mixtures in silica gel pore of nominal diameters 6, 30, and 100 nm were measured and compared with the calculated results based on van der Waals and Platteeuw model. At a specific temperature, three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal nm pore size were nearly identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data. The structural characteristics of gas hydrates in silica gel pores were investigated through NMR spectroscopy.

Keywords: CO2, CH4, gas hydrate, equilibria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439
137 Investigation on Pore Water Pressure in Core of Karkheh Dam

Authors: Bahar Razavi, Mansour Parehkar, Ali Gholami

Abstract:

Pore water pressure is normally because of consolidation, compaction and water level fluctuation on reservoir. Measuring, controlling and analyzing of pore water pressure have significant importance in both of construction and operation period. Since end of 2002, (dam start up) nature of KARKHEH dam has been analyzed by using the gathered information from instrumentation system of dam. In this lecture dam condition after start up have been analyzed by using the gathered data from located piezometers in core of dam. According to TERZAGHI equation and records of piezometers, consolidation lasted around five years during early years of construction stage, and current pore water pressure in core of dam is caused by water level fluctuation in reservoir. Although there is time lag between water level fluctuation and results of piezometers. These time lags have been checked and the results clearly show that one of the most important causes of it is distance between piezometer and reservoir.

Keywords: Earth dam, Reservoir, Piezometer, Terzaghi, Consolidation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
136 Effect of Prefabricated Vertical Drain System Properties on Embankment Behavior

Authors: Seyed Abolhasan Naeini, Ali Namaei

Abstract:

This study presents the effect of prefabricated vertical drain system properties on embankment behavior by calculating the settlement, lateral displacement and induced excess pore pressure by numerical method. In order to investigate this behavior, three different prefabricated vertical drains have been simulated under an embankment. The finite element software PLAXIS has been carried out for analyzing the displacements and excess pore pressures. The results showed that the consolidation time and induced excess pore pressure are highly depended to the discharge capacity of the prefabricated vertical drain. The increase in the discharge capacity leads to decrease the consolidation process and the induced excess pore pressure. Moreover, it was seen that the vertical drains spacing does not have any significant effect on the consolidation time. However, the increase in the drains spacing would decrease the system stiffness.

Keywords: Vertical drain, prefabricated, consolidation, embankment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 626
135 Finite Difference Method of the Seismic Analysis of Earth Dam

Authors: Alaoua Bouaicha, Fahim Kahlouche, Abdelhamid Benouali

Abstract:

Many embankment dams have suffered failures during earthquakes due to the increase of pore water pressure under seismic loading. After analyzing of the behavior of embankment dams under severe earthquakes, major advances have been attained in the understanding of the seismic action on dams. The present study concerns numerical analysis of the seismic response of earth dams. The procedure uses a nonlinear stress-strain relation incorporated into the code FLAC2D based on the finite difference method. This analysis provides the variation of the pore water pressure and horizontal displacement.

Keywords: Earthquake, numerical analysis, FLAC2D, displacement, Embankment Dam, pore water pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
134 Preparation and Characterization of Newly Developed Trabecular Structures in Titanium Alloy to Optimize Osteointegration

Authors: M. Regis, E. Marin, S. Fusi, M. Pressacco, L. Fedrizzi

Abstract:

Electron Beam Melting (EBM) process was used to prepare porous scaffolds with controlled porosity to ensure optimal levels of osteointegration for different trabeculae sizes. Morphological characterization by means of SEM analyses was carried out to assess pore dimensions; tensile, compression and adhesion tests have been carried out to determine the mechanical behavior. The results indicate that EBM process allows the creation of regular and repeatable porous scaffolds. Mechanical properties greatly depend on pore dimension and on bulk-pore ratio. Adhesion resistance meets the normative requirements, and the overall performance of the produced structures is compatible with potential orthopaedic applications.

Keywords: Additive manufacturing, orthopaedic implants, osteointegration, trabecular structures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
133 Electrophoretic Motion of a Liquid Droplet within an Uncharged Cylindrical Pore

Authors: Cheng-Hsuan Huang, Eric Lee

Abstract:

Electrophoretic motion of a liquid droplet within an uncharged cylindrical pore is investigated theoretically in this study. It is found that the boundary effect in terms of the reduction of droplet mobility (droplet velocity per unit strength of the applied electric field) is very significant when the double layer surrounding the droplet is thick, and diminishes as it gets very thin. Moreover, the viscosity ratio of the ambient fluid to the internal one, σ, is a crucial factor in determining its electrophoretic behavior. The boundary effect is less significant as the viscosity ratio gets high. Up to 70% mobility reduction is observed when this ratio is low (σ = 0.01), whereas only 40% reduction when it is high (σ = 100). The results of this study can be utilized in various fields of biotechnology, such as a biosensor or a lab-on-a-chip device.

Keywords: Cylindrical pore, Electrophoresis, Lab-on-a-chip, Liquid droplet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
132 Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants

Authors: Busra Balli, Tuncay Dikici, Mustafa Toparli

Abstract:

Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments.

Keywords: Dental implant, etching, surface modifications, surface morphology, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
131 Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin

Authors: A. A. Hekmatzadeh, A. Karimi-Jashani, N. Talebbeydokhti

Abstract:

The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.

Keywords: External mass transfer, pore volume diffusion, surface diffusion, mass action law isotherm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
130 New SUZ-4 Zeolite Membrane from Sol-Gel Technique

Authors: P. Worathanakul, P. Kongkachuichay

Abstract:

A new SUZ-4 zeolite membrane with tetraethlyammonium hydroxide as the template was fabricated on mullite tube via hydrothermal sol-gel synthesis in a rotating autoclave reactor. The suitable synthesis condition was SiO2:Al2O3 ratio of 21.2 for 4 days at 155 °C crystallization under autogenous pressure. The obtained SUZ-4 possessed a high BET surface area of 396.4 m2/g, total pore volume at 2.611 cm3/g, and narrow pore size distribution with 97 nm mean diameter and 760 nm long of needle crystal shape. The SUZ-4 layer obtained from seeding crystallization was thicker than that of without seeds or in situ crystallization.

Keywords: Membrane, seeding, sol-gel, SUZ-4 Zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
129 Fracture Pressure Predict Based on Well Logs of Depleted Reservoir in Southern Iraqi Oilfield

Authors: Raed H. Allawi

Abstract:

Fracture pressure is the main parameter applied in wells design and used to avoid drilling problems like lost circulation. Thus, this study aims to predict the fracture pressure of oil reservoirs in the southern Iraq Oilfield. The data required to implement this study included bulk density, compression wave velocity, gamma-ray, and leak-off test. In addition, this model is based on the pore pressure which is measured based on the Modular Formation Dynamics Tester (MDT). Many measured values of pore pressure were used to validate the accurate model. Using sonic velocity approaches, the mean absolute percentage error (MAPE) was about 4%. The fracture pressure results were consistent with the measurement data, actual drilling report, and events. The model's results will be a guide for successful drilling in future wells in the same oilfield.

Keywords: Pore pressure, fracture pressure, overburden pressure, effective stress, drilling events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184
128 Fabrication of Nanoporous Template of Aluminum Oxide with High Regularity Using Hard Anodization Method

Authors: Hamed Rezazadeh, Majid Ebrahimzadeh, Mohammad Reza Zeidi Yam

Abstract:

Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is ideally suited to anodizing, although other nonferrous metals, such as magnesium and titanium, also can be anodized. The anodic oxide structure originates from the aluminum substrate and is composed entirely of aluminum oxide. This aluminum oxide is not applied to the surface like paint or plating, but is fully integrated with the underlying aluminum substrate, so cannot chip or peel. It has a highly ordered, porous structure that allows for secondary processes such as coloring and sealing. In this experimental paper, we focus on a reliable method for fabricating nanoporous alumina with high regularity. Starting from study of nanostructure materials synthesize methods. After that, porous alumina fabricate in the laboratory by anodization of aluminum oxide. Hard anodization processes are employed to fabricate the nanoporous alumina using 0.3M oxalic acid and 90, 120 and 140 anodized voltages. The nanoporous templates were characterized by SEM and FFT. The nanoporous templates using 140 voltages have high ordered. The pore formation, influence of the experimental conditions on the pore formation, the structural characteristics of the pore and the oxide chemical reactions involved in the pore growth are discuss.

Keywords: Alumina, Nanoporous Template, Anodization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865
127 Aliveness Detection of Fingerprints using Multiple Static Features

Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim

Abstract:

Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.

Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
126 Kinetics of Palm Oil Cracking in Batch Reactor

Authors: Farouq Twaiq, Ishaq Al-Anbari, Mustafa Nasser

Abstract:

The kinetics of palm oil catalytic cracking over aluminum containing mesoporous silica Al-MCM-41 (5% Al) was investigated in a batch autoclave reactor at the temperatures range of 573 – 673 K. The catalyst was prepared by using sol-gel technique and has been characterized by nitrogen adsorption and x-ray diffraction methods. Surface area of 1276 m2/g with average pore diameter of 2.54 nm and pore volume of 0.811 cm3/g was obtained. The experimental catalytic cracking runs were conducted using 50 g of oil and 1 g of catalyst. The reaction pressure was recorded at different time intervals and the data were analyzed using Levenberg- Marquardt (LM) algorithm using polymath software. The results show that the reaction order was found to be -1.5 and activation energy of 3200 J/gmol.

Keywords: Batch Reactor, Catalytic Cracking, Kinetics, Palm Oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2998
125 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder

Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini

Abstract:

In this research, waterglass based aerogel powder was prepared by sol–gel process and ambient pressure drying. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nanofibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, heat transfer, FTIR, BET, and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nanofibers to control surface roughness for manipulating superhydrophobic nanowebs with water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nanofibers surface irregularity in presence of the aerogels while a layer of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nanofibers without any aerogel powder to 8% for the nanofibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energysaving practices.

Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968
124 An Overview of the Porosity Classification in Carbonate Reservoirs and Their Challenges: An Example of Macro-Microporosity Classification from Offshore Miocene Carbonate in Central Luconia, Malaysia

Authors: Hammad T. Janjuhah, Josep Sanjuan, Mohamed K. Salah

Abstract:

Biological and chemical activities in carbonates are responsible for the complexity of the pore system. Primary porosity is generally of natural origin while secondary porosity is subject to chemical reactivity through diagenetic processes. To understand the integrated part of hydrocarbon exploration, it is necessary to understand the carbonate pore system. However, the current porosity classification scheme is limited to adequately predict the petrophysical properties of different reservoirs having various origins and depositional environments. Rock classification provides a descriptive method for explaining the lithofacies but makes no significant contribution to the application of porosity and permeability (poro-perm) correlation. The Central Luconia carbonate system (Malaysia) represents a good example of pore complexity (in terms of nature and origin) mainly related to diagenetic processes which have altered the original reservoir. For quantitative analysis, 32 high-resolution images of each thin section were taken using transmitted light microscopy. The quantification of grains, matrix, cement, and macroporosity (pore types) was achieved using a petrographic analysis of thin sections and FESEM images. The point counting technique was used to estimate the amount of macroporosity from thin section, which was then subtracted from the total porosity to derive the microporosity. The quantitative observation of thin sections revealed that the mouldic porosity (macroporosity) is the dominant porosity type present, whereas the microporosity seems to correspond to a sum of 40 to 50% of the total porosity. It has been proven that these Miocene carbonates contain a significant amount of microporosity, which significantly complicates the estimation and production of hydrocarbons. Neglecting its impact can increase uncertainty about estimating hydrocarbon reserves. Due to the diversity of geological parameters, the application of existing porosity classifications does not allow a better understanding of the poro-perm relationship. However, the classification can be improved by including the pore types and pore structures where they can be divided into macro- and microporosity. Such studies of microporosity identification/classification represent now a major concern in limestone reservoirs around the world.

Keywords: Carbonate reservoirs, microporosity, overview of porosity classification, reservoir characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
123 Used Frying Oil for Biodiesel Production Over Kaolinite as Catalyst

Authors: Jorge Ramírez-Ortiz, Jorge Medina-Valtierra, Merced Martínez Rosales

Abstract:

Biodiesel production with used frying by transesterification reaction with methanol, using a commercial kaolinite thermally-activated solid acid catalyst was investigated. The surface area, the average pore diameter and pore volume of the kaolinite catalyst were 10 m2/g, 13.0 nm and 30 mm3/g, respectively. The optimal conditions for the transesterification reaction were determined to be oil/methanol, in a molar ratio 1:31, temperature 160 ºC and catalyst concentration of 3% (w/w). The yield of fatty acids methyl esters (FAME) was 92.4% after 2 h of reaction. This method of preparation of biodiesel can be a positive alternative for utilizing used frying corn oil for feedstock of biodiesel combined with the inexpensive catalyst.

Keywords: Biodiesel, frying corn oil, kaolinite, transesterification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
122 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline

Authors: Zuodong Liang, Dong-Sheng Jeng

Abstract:

Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation.

Keywords: Pore pressure, 3D wave model, seabed liquefaction, pipeline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039