Search results for: Optical Coherent Receiver
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 894

Search results for: Optical Coherent Receiver

804 Advanced Stochastic Models for Partially Developed Speckle

Authors: Jihad S. Daba (Jean-Pierre Dubois), Philip Jreije

Abstract:

Speckled images arise when coherent microwave, optical, and acoustic imaging techniques are used to image an object, surface or scene. Examples of coherent imaging systems include synthetic aperture radar, laser imaging systems, imaging sonar systems, and medical ultrasound systems. Speckle noise is a form of object or target induced noise that results when the surface of the object is Rayleigh rough compared to the wavelength of the illuminating radiation. Detection and estimation in images corrupted by speckle noise is complicated by the nature of the noise and is not as straightforward as detection and estimation in additive noise. In this work, we derive stochastic models for speckle noise, with an emphasis on speckle as it arises in medical ultrasound images. The motivation for this work is the problem of segmentation and tissue classification using ultrasound imaging. Modeling of speckle in this context involves partially developed speckle model where an underlying Poisson point process modulates a Gram-Charlier series of Laguerre weighted exponential functions, resulting in a doubly stochastic filtered Poisson point process. The statistical distribution of partially developed speckle is derived in a closed canonical form. It is observed that as the mean number of scatterers in a resolution cell is increased, the probability density function approaches an exponential distribution. This is consistent with fully developed speckle noise as demonstrated by the Central Limit theorem.

Keywords: Doubly stochastic filtered process, Poisson point process, segmentation, speckle, ultrasound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
803 Degradation Model of Optical Characteristics of Zno-Pigmented White Paint by Electron Radiation

Authors: Tian Hai, Yang Shengsheng, Jr., Wang Yi

Abstract:

Based on an analysis of the mechanism of degradation of optical characteristics of the ZnO-pigmented white paint by electron irradiation, a model of single molecular color centers is built. An equation that explains the relationship between the changes of variation of the ZnO-pigmented white paint-s spectrum absorptance and electron fluence is derived. The uncertain parameters in the equation can be calculated using the curve fitting by experimental data. The result indicates that the model can be applied to predict the degradation of optical characteristics of ZnO-pigmented white paint by electron radiation.

Keywords: ZnO-pigmented white pain, effects of electron radiation, optical characteristics degradation, prediction model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
802 Relative Injective Modules and Relative Flat Modules

Authors: Jianmin Xing, Rufeng Xing

Abstract:

Let R be a ring, n a fixed nonnegative integer. The concepts of (n, 0)-FI-injective and (n, 0)-FI-flat modules, and then give some characterizations of these modules over left n-coherent rings are introduced . In addition, we investigate the left and right n-FI-resolutions of R-modules by left (right) derived functors Extn(−,−) (Torn(−,−) ) over a left n-coherent ring, where n-FI stands for the categories of all (n, 0)- injective left R-modules. These modules together with the left or right derived functors are used to study the (n, 0)-injective dimensions of modules and rings.

Keywords: (n, 0)-injective module, (n, 0)-injective dimension, (n, 0)-FI-injective(flat) module, (Pre)cover, (Pre)envelope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
801 Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator

Authors: Kyoungjin Kim

Abstract:

Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while the temperature dependent viscosity of liquid coating resin plays an important role in the resin flow. It is found that the severe viscous heating near the coating die wall profoundly alters the radial velocity profiles and that the increase of final coating thickness by die pressurization is amplified if viscous heating is present.

Keywords: Optical fiber manufacturing, Optical fiber coating, Capillary flow, Viscous heating, Flow simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3078
800 High Aspect Ratio SiO2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator

Authors: N. V. Toan, S. Sangu, T. Saitoh, N. Inomata, T. Ono

Abstract:

This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).

Keywords: Thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
799 Reliability of Digital FSO Links in Europe

Authors: Zdenek Kolka, Otakar Wilfert, Viera Biolkova

Abstract:

The paper deals with an analysis of visibility records collected from 210 European airports to obtain a realistic estimation of the availability of Free Space Optical (FSO) data links. Commercially available optical links usually operate in the 850nm waveband. Thus the influence of the atmosphere on the optical beam and on the visible light is similar. Long-term visibility records represent an invaluable source of data for the estimation of the quality of service of FSO links. The model used characterizes both the statistical properties of fade depths and the statistical properties of individual fade durations. Results are presented for Italy, France, and Germany.

Keywords: Computer networks, free-space optical links, meteorology, quality of service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
798 Optimum Design of an 8x8 Optical Switch with Thermal Compensated Mechanisms

Authors: Tien-Tung Chung, Chin-Te Lin, Chung-Yun Lee, Kuang-Chao Fan, Shou-Heng Chen

Abstract:

This paper studies the optimum design for reducing optical loss of an 8x8 mechanical type optical switch due to the temperature change. The 8x8 optical switch is composed of a base, 8 input fibers, 8 output fibers, 3 fixed mirrors and 17 movable mirrors. First, an innovative switch configuration is proposed with thermal-compensated design. Most mechanical type optical switches have a disadvantage that their precision and accuracy are influenced by the ambient temperature. Therefore, the thermal-compensated design is to deal with this situation by using materials with different thermal expansion coefficients (α). Second, a parametric modeling program is developed to generate solid models for finite element analysis, and the thermal and structural behaviors of the switch are analyzed. Finally, an integrated optimum design program, combining Autodesk Inventor Professional software, finite element analysis software, and genetic algorithms, is developed for improving the thermal behaviors that the optical loss of the switch is reduced. By changing design parameters of the switch in the integrated design program, the final optimum design that satisfies the design constraints and specifications can be found.

Keywords: Optical switch, finite element analysis, thermal-compensated design, optimum design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
797 Structural and Optical Characterizations of CIGST Solar Cell Materials

Authors: Abhay Kumar Singh

Abstract:

Structural and UV/Visible optical properties can be useful to describe a material for the CIGS solar cell active layer, therefore, this work demonstrates the properties like surface morphology, X-ray Photoelectron Spectroscopy (XPS) bonding energy (EB) core level spectra, UV/Visible absorption spectra, refractive index (n), optical energy band (Eg), reflection spectra for the Cu25 (In16Ga9) Se40Te10 (CIGST-1) and Cu20 (In14Ga9) Se45Te12 (CIGST-2) chalcogenide compositions. Materials have been exhibited homogenous surface morphologies, broading /-or diffusion of bonding energy peaks relative elemental values and a high UV/Visible absorption tendency in the wave length range 400 nm- 850 nm range with the optical energy band gaps 1.37 and 1.42 respectively. Subsequently, UV/Visible reflectivity property in the wave length range 250 nm to 320 nm for these materials has also been discussed.

Keywords: Chalcogen, Optical energy band gap, UV/Visible spectra, XPS spectra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
796 Vertical Micromirror Fabrication by X-ray Lithography for Single Mode Optical Fiber Switching Applications

Authors: R. Chimchang, R. Tongta, R. Phatthanakun

Abstract:

Inthis paper, design and fabrication of vertical micromirror for optical switching applications of single mode optical fibers are proposed. The structure of micromirror will be created from negative photoresist (SU-8) on X-ray lithography using X-ray from synchrotron light source. The properties of X-ray from synchrotron light source are high-energy electrons which can construct materials that have a high aspect ratio. In addition, the technique of gold coating of reflective material has been used for change direction of light between two pairs of optical fibers. At a wavelength of 1310 nm with minimum average loss of 5.305 dB is obtained.

Keywords: vertical micromirror, negative photoresist, X-ray lithography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
795 Pure and Mixed Nash Equilibria Domain of a Discrete Game Model with Dichotomous Strategy Space

Authors: A. S. Mousa, F. Shoman

Abstract:

We present a discrete game theoretical model with homogeneous individuals who make simultaneous decisions. In this model the strategy space of all individuals is a discrete and dichotomous set which consists of two strategies. We fully characterize the coherent, split and mixed strategies that form Nash equilibria and we determine the corresponding Nash domains for all individuals. We find all strategic thresholds in which individuals can change their mind if small perturbations in the parameters of the model occurs.

Keywords: Coherent strategy, split strategy, pure strategy, mixed strategy, Nash Equilibrium, game theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
794 Optical and Double Folding Analysis for 6Li+16O Elastic Scattering

Authors: Abd Elrahman Elgamala, N. Darwish, I. Bondouk, Sh. Hamada

Abstract:

Available experimental angular distributions for 6Li elastically scattered from 16O nucleus in the energy range 13.0–50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function F(ρ). We have extracted the renormalization factor NR for 6Li+16O nuclear system in the energy range 13.0–50.0 MeV using the aforementioned interaction models.

Keywords: Elastic scattering, optical model, folding potential, density distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477
793 Evaluation of the Energy Consumption per Bit inBENES Optical Packet Switch

Authors: V. Eramo, E. Miucci, A. Cianfrani, A. Germoni, M. Listanti

Abstract:

We evaluate the average energy consumption per bit in Optical Packet Switches equipped with BENES switching fabric realized in Semiconductor Optical Amplifier (SOA) technology. We also study the impact that the Amplifier Spontaneous Emission (ASE) noise generated by a transmission system has on the power consumption of the BENES switches due to the gain saturation of the SOAs used to realize the switching fabric. As a matter of example for 32×32 switches supporting 64 wavelengths and offered traffic equal to 0,8, the average energy consumption per bit is 2, 34 · 10-1 nJ/bit and increases if ASE noise introduced by the transmission systems is increased.

Keywords: Benes, Amplifier Spontaneous Emission Noise, EnergyConsumption, Optical Packet Switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
792 Characterization of the Dispersion Phenomenon in an Optical Biosensor

Authors: An-Shik Yang, Chin-Ting Kuo, Yung-Chun Yang, Wen-Hsin Hsieh, Chiang-Ho Cheng

Abstract:

Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the micro channel of an optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of micro channels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion.

Keywords: CFD simulations, dispersion, microfluidic, optical waveguide sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
791 Effect of Cr and Fe Doping on the Structural and Optical Properties of ZnO Nanostructures

Authors: Prakash Chand, Anurag Gaur, Ashavani Kumar

Abstract:

In the present study, we have synthesized Cr and Fe doped zinc oxide (ZnO) nanostructures (Zn1-δCraFebO; where δ = a + b = 20%, a = 5, 6, 8 & 10% and b = 15, 14, 12 & 10%) via sol-gel method at different doping concentrations. The synthesized samples were characterized for structural properties by X-ray diffractrometer and field emission scanning electron microscope and the optical properties were carried out through photoluminescence and UVvisible spectroscopy. The particle size calculated through field emission scanning electron microscope varies from 41 to 96 nm for the samples synthesized at different doping concentrations. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 3.27 to 3.02 eV as the doping concentration of Cr increases and Fe decreases.

Keywords: Nanostructures, Optical Properties, Sol-gel method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4647
790 Silicon-based Low-Power Reconfigurable Optical Add-Drop Multiplexer (ROADM)

Authors: Junfeng Song, Xianshu Luo, Qing Fang, Lianxi Jia, Xiaoguang Tu, Tsung-Yang Liow, Mingbin Yu, Guo-Qiang Lo

Abstract:

We demonstrate a 1×4 coarse wavelength division-multiplexing (CWDM) planar concave grating multiplexer/demultiplexer and its application in re-configurable optical add/drop multiplexer (ROADM) system in silicon-on-insulator substrate. The wavelengths of the demonstrated concave grating multiplexer align well with the ITU-T standard. We demonstrate a prototype of ROADM comprising two such concave gratings and four wide-band thermo-optical MZI switches. Undercut technology which removes the underneath silicon substrate is adopted in optical switches in order to minimize the operation power. For all the thermal heaters, the operation voltage is smaller than 1.5 V, and the switch power is ~2.4 mW. High throughput pseudorandom binary sequence (PRBS) data transmission with up to 100 Gb/s is demonstrated, showing the high-performance ROADM functionality.

Keywords: ROADM, Optical switch, low power consumption, Integrated devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
789 Performance Evaluation of a Minimum Mean Square Error-Based Physical Sidelink Share Channel Receiver under Fading Channel

Authors: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis

Abstract:

Cellular Vehicle to Everything (C-V2X) is considered a promising solution for future autonomous driving. From Release 16 to Release 17, the Third Generation Partnership Project (3GPP) has introduced the definitions and services for 5G New Radio (NR) V2X. Since establishing a simulator for C-V2X communications is an essential preliminary step to achieve reliable and stable communication links, this paper proposes a complete framework of a link-level simulator based on the 3GPP specifications for the Physical Sidelink Share Channel (PSSCH) of the 5G NR Physical Layer (PHY). In this framework, several algorithms in the receiver part, i.e., sliding window in channel estimation and Minimum Mean Square Error (MMSE)-based equalization, are developed. Finally, the performance of the developed PSSCH receiver is validated through extensive simulations under different assumptions.

Keywords: Yang Fu, Jaime Rodrigo Navarro, Jose F. Monserrat, Faiza Bouchmal, Oscar Carrasco Quilis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59
788 Improvement of Bit-Error-Rate in Optical Fiber Receivers

Authors: Hadj Bourdoucen, Amer Alhabsi

Abstract:

In this paper, a post processing scheme is suggested for improvement of Bit Error-Rate (BER) in optical fiber transmission receivers. The developed scheme has been tested on optical fiber systems operating with a non-return-to-zero (NRZ) format at transmission rates of up to 10Gbps. The transmission system considered is based on well known transmitters and receivers blocks operating at wavelengths in the region of 1550 nm using a standard single mode fiber. Performance of improved detected signals has been evaluated via the analysis of quality factor and computed bit error rates. Numerical simulations have shown a noticeable improvement of the system BER after implementation of the suggested post processing operation on the detected electrical signals.

Keywords: BER improvement, Optical fiber, transmissionperformance, NRZ.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
787 Enhance Image Transmission Based on DWT with Pixel Interleaver

Authors: Muhanned Alfarras

Abstract:

The recent growth of using multimedia transmission over wireless communication systems, have challenges to protect the data from lost due to wireless channel effect. Images are corrupted due to the noise and fading when transmitted over wireless channel, in wireless channel the image is transmitted block by block, Due to severe fading, entire image blocks can be damaged. The aim of this paper comes out from need to enhance the digital images at the wireless receiver side. Proposed Boundary Interpolation (BI) Algorithm using wavelet, have been adapted here used to reconstruction the lost block in the image at the receiver depend on the correlation between the lost block and its neighbors. New Proposed technique by using Boundary Interpolation (BI) Algorithm using wavelet with Pixel interleaver has been implemented. Pixel interleaver work on distribute the pixel to new pixel position of original image before transmitting the image. The block lost through wireless channel is only effects individual pixel. The lost pixels at the receiver side can be recovered by using Boundary Interpolation (BI) Algorithm using wavelet. The results showed that the New proposed algorithm boundary interpolation (BI) using wavelet with pixel interleaver is better in term of MSE and PSNR.

Keywords: Image Transmission, Wavelet, Pixel Interleaver, Boundary Interpolation Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
786 Gain Tuning Fuzzy Controller for an Optical Disk Drive

Authors: Shiuh-Jer Huang, Ming-Tien Su

Abstract:

Since the driving speed and control accuracy of commercial optical disk are increasing significantly, it needs an efficient controller to monitor the track seeking and following operations of the servo system for achieving the desired data extracting response. The nonlinear behaviors of the actuator and servo system of the optical disk drive will influence the laser spot positioning. Here, the model-free fuzzy control scheme is employed to design the track seeking servo controller for a d.c. motor driving optical disk drive system. In addition, the sliding model control strategy is introduced into the fuzzy control structure to construct a 1-D adaptive fuzzy rule intelligent controller for simplifying the implementation problem and improving the control performance. The experimental results show that the steady state error of the track seeking by using this fuzzy controller can maintain within the track width (1.6 μm ). It can be used in the track seeking and track following servo control operations.

Keywords: Fuzzy control, gain tuning and optical disk drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
785 Optical Signal-To-Noise Ratio Monitoring Based on Delay Tap Sampling Using Artificial Neural Network

Authors: Feng Wang, Shencheng Ni, Shuying Han, Shanhong You

Abstract:

With the development of optical communication, optical performance monitoring (OPM) has received more and more attentions. Since optical signal-to-noise ratio (OSNR) is directly related to bit error rate (BER), it is one of the important parameters in optical networks. Recently, artificial neural network (ANN) has been greatly developed. ANN has strong learning and generalization ability. In this paper, a method of OSNR monitoring based on delay-tap sampling (DTS) and ANN has been proposed. DTS technique is used to extract the eigenvalues of the signal. Then, the eigenvalues are input into the ANN to realize the OSNR monitoring. The experiments of 10 Gb/s non-return-to-zero (NRZ) on–off keying (OOK), 20 Gb/s pulse amplitude modulation (PAM4) and 20 Gb/s return-to-zero (RZ) differential phase-shift keying (DPSK) systems are demonstrated for the OSNR monitoring based on the proposed method. The experimental results show that the range of OSNR monitoring is from 15 to 30 dB and the root-mean-square errors (RMSEs) for 10 Gb/s NRZ-OOK, 20 Gb/s PAM4 and 20 Gb/s RZ-DPSK systems are 0.36 dB, 0.45 dB and 0.48 dB respectively. The impact of chromatic dispersion (CD) on the accuracy of OSNR monitoring is also investigated in the three experimental systems mentioned above.

Keywords: Artificial neural network, ANN, chromatic dispersion, delay-tap sampling, optical signal-to-noise ratio, OSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 641
784 Optical Characterization of a Microwave Plasma Torch for Hydrogen Production

Authors: Babajide O. Ogungbesan, Rajneesh Kumar, Mohamed Sassi

Abstract:

Hydrogen sulfide (H2S) is a very toxic gas that is produced in very large quantities in the oil and gas industry. It cannot be flared to the atmosphere and Claus process based gas plants are used to recover the sulfur and convert the hydrogen to water. In this paper, we present optical characterization of an atmospheric pressure microwave plasma torch for H2S dissociation into hydrogen and sulfur. The torch is operated at 2.45 GHz with power up to 2 kW. Three different gases can simultaneously be injected in the plasma torch. Visual imaging and optical emission spectroscopy are used to characterize the plasma for varying gas flow rates and microwave power. The plasma length, emission spectra and temperature are presented. The obtained experimental results validate our earlier published simulation results of plasma torch.

Keywords: Atmospheric pressure microwave plasma, gas dissociation, optical emission spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3224
783 A Novel Feedback-Based Integrated FiWi Networks Architecture by Centralized Interlink-ONU Communication

Authors: Noman Khan, B. S. Chowdhry, A.Q.K Rajput

Abstract:

Integrated fiber-wireless (FiWi) access networks are a viable solution that can deliver the high profile quadruple play services. Passive optical networks (PON) networks integrated with wireless access networks provide ubiquitous characteristics for high bandwidth applications. Operation of PON improves by employing a variety of multiplexing techniques. One of it is time division/wavelength division multiplexed (TDM/WDM) architecture that improves the performance of optical-wireless access networks. This paper proposes a novel feedback-based TDM/WDM-PON architecture and introduces a model of integrated PON-FiWi networks. Feedback-based link architecture is an efficient solution to improves the performance of optical-line-terminal (OLT) and interlink optical-network-units (ONUs) communication. Furthermore, the feedback-based WDM/TDM-PON architecture is compared with existing architectures in terms of capacity of network throughput.

Keywords: Fiber-wireless (FiWi), Passive Optical Network (PON), TDM/WDM architecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
782 Fast Wavelength Calibration Algorithm for Optical Spectrum Analyzers

Authors: Thomas Fuhrmann

Abstract:

In this paper an algorithm for fast wavelength calibration of Optical Spectrum Analyzers (OSAs) using low power reference gas spectra is proposed. In existing OSAs a reference spectrum with low noise for precise detection of the reference extreme values is needed. To generate this spectrum costly hardware with high optical power is necessary. With this new wavelength calibration algorithm it is possible to use a noisy reference spectrum and therefore hardware costs can be cut. With this algorithm the reference spectrum is filtered and the key information is extracted by segmenting and finding the local minima and maxima. Afterwards slope and offset of a linear correction function for best matching the measured and theoretical spectra are found by correlating the measured with the stored minima. With this algorithm a reliable wavelength referencing of an OSA can be implemented on a microcontroller with a calculation time of less than one second.

Keywords: correlation, gas reference, optical spectrum analyzer, wavelength calibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
781 OXADM Asymmetrical Optical Device: Extending the Application to FTTH System

Authors: Mohammad Syuhaimi Ab-Rahman, Mohd. Saiful Dzulkefly Zan, Mohd Taufiq Mohd Yusof

Abstract:

With the drastically growth in optical communication technology, a lossless, low-crosstalk and multifunction optical switch is most desirable for large-scale photonic network. To realize such a switch, we have introduced the new architecture of optical switch that embedded many functions on single device. The asymmetrical architecture of OXADM consists of 3 parts; selective port, add/drop operation, and path routing. Selective port permits only the interest wavelength pass through and acts as a filter. While add and drop function can be implemented in second part of OXADM architecture. The signals can then be re-routed to any output port or/and perform an accumulation function which multiplex all signals onto single path and then exit to any interest output port. This will be done by path routing operation. The unique features offered by OXADM has extended its application to Fiber to-the Home Technology (FTTH), here the OXADM is used as a wavelength management element in Optical Line Terminal (OLT). Each port is assigned specifically with the operating wavelengths and with the dynamic routing management to ensure no traffic combustion occurs in OLT.

Keywords: OXADM, asymmetrical architecture, optical switch, OLT, FTTH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
780 An Efficient Spam Mail Detection by Counter Technique

Authors: Raheleh Kholghi, Soheil Behnam Roudsari, Alireza Nemaney Pour

Abstract:

Spam mails are unwanted mails sent to large number of users. Spam mails not only consume the network resources, but cause security threats as well. This paper proposes an efficient technique to detect, and to prevent spam mail in the sender side rather than the receiver side. This technique is based on a counter set on the sender server. When a mail is transmitted to the server, the mail server checks the number of the recipients based on its counter policy. The counter policy performed by the mail server is based on some pre-defined criteria. When the number of recipients exceeds the counter policy, the mail server discontinues the rest of the process, and sends a failure mail to sender of the mail; otherwise the mail is transmitted through the network. By using this technique, the usage of network resources such as bandwidth, and memory is preserved. The simulation results in real network show that when the counter is set on the sender side, the time required for spam mail detection is 100 times faster than the time the counter is set on the receiver side, and the network resources are preserved largely compared with other anti-spam mail techniques in the receiver side.

Keywords: Anti-spam, Mail server, Sender side, Spam mail

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
779 Using of Latin Router for Routing Wavelength with Configuration Algorithm

Authors: A. Habiboghli, R. Mostafaei, M. R.Meybodi

Abstract:

Optical network uses a tool for routing which is called Latin router. These routers use particular algorithms for routing. In this paper, we present algorithm for configuration of optical network that is optimized regarding previous algorithm. We show that by decreasing the number of hops for source-destination in lightpath number of satisfied request is less. Also we had shown that more than single-hop lightpath relating single-hop lightpath is better.

Keywords: Latin Router, Constraint Satisfied, Wavelength, Optical Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
778 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation

Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood

Abstract:

This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.

Keywords: VCSELs, optical power generation, power consumption, square wave modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 508
777 System Performance Comparison of Turbo and Trellis Coded Optical CDMA Systems

Authors: M. Kulkarni, R. K. Sinha, D. R. Bhaskar

Abstract:

In this paper, we have compared the performance of a Turbo and Trellis coded optical code division multiple access (OCDMA) system. The comparison of the two codes has been accomplished by employing optical orthogonal codes (OOCs). The Bit Error Rate (BER) performances have been compared by varying the code weights of address codes employed by the system. We have considered the effects of optical multiple access interference (OMAI), thermal noise and avalanche photodiode (APD) detector noise. Analysis has been carried out for the system with and without double optical hard limiter (DHL). From the simulation results it is observed that a better and distinct comparison can be drawn between the performance of Trellis and Turbo coded systems, at lower code weights of optical orthogonal codes for a fixed number of users. The BER performance of the Turbo coded system is found to be better than the Trellis coded system for all code weights that have been considered for the simulation. Nevertheless, the Trellis coded OCDMA system is found to be better than the uncoded OCDMA system. Trellis coded OCDMA can be used in systems where decoding time has to be kept low, bandwidth is limited and high reliability is not a crucial factor as in local area networks. Also the system hardware is less complex in comparison to the Turbo coded system. Trellis coded OCDMA system can be used without significant modification of the existing chipsets. Turbo-coded OCDMA can however be employed in systems where high reliability is needed and bandwidth is not a limiting factor.

Keywords: avalanche photodiode, optical code division multipleaccess, optical multiple access interference, Trellis codedmodulation, Turbo code

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
776 A Review of the Characteristics and Optimization of Optical Properties of Zirconia Ceramics for Aesthetic Dental Restorations

Authors: R. A. Shahmiri, O. C. Standard, J. N. Hart, C. C. Sorrell

Abstract:

The ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) has been used as a dental biomaterial for several decades. The strength and toughness of this material can be accounted for by its toughening mechanisms, which include transformation toughening, crack deflection, zone shielding, contact shielding, and crack bridging. Prevention of crack propagation is of critical importance in high-fatigue situations, such as those encountered in mastication and para-function. However, the poor translucence of Y-TZP in polycrystalline form is such that it may not meet the aesthetic requirements due to its white/grey appearance. To improve the optical properties of Y-TZP, more detailed study of the optical properties is required; in particular, precise evaluation of the refractive index, absorption coefficient, and scattering coefficient are necessary. The measurement of the optical parameters has been based on the assumption that light scattered from biological media is isotropically distributed over all angles. In fact, the optical behavior of real biological materials depends on the angular scattering of light due to the anisotropic nature of the materials. The purpose of the present work is to evaluate the optical properties (including color, opacity/translucence, scattering, and fluorescence) of zirconia dental ceramics and their control through modification of the chemical composition, phase composition, and surface microstructure.

Keywords: Optical properties, opacity/translucence, scattering, fluorescence, chemical composition, phase composition, surface microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
775 Optical Fiber Data Throughput in a Quantum Communication System

Authors: Arash Kosari, Ali Araghi

Abstract:

A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.

Keywords: Absorption, data throughput, depolarization, optical fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626