Search results for: Monte Carlo simulations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1202

Search results for: Monte Carlo simulations

1022 Preliminary Design of Frozen Soil Simulation System Based on Finite Element Simulation

Authors: Wenyu Song, Bingxi Li, Zhongbin Fu, Baocheng Jiang

Abstract:

Full - Scale Accelerated Loading System, one part of “the Eleventh - Five - Year National Grand Technology Infrastructure Program" is a facility to evaluate the performance and service life of different kinds of pavements subjected to traffic loading under full - controlled environment. While simulating the environments of frigid zone and permafrost zone, the accurate control of air temperature, road temperature and roadbed temperature are the key points and also aporias for the designment. In this paper, numerical simulations are used to determine the design parameters of the frozen soil simulation system. At first, a brief introduction of the Full - Scale Accelerate Loading System was given. Then, the temperature control method of frozen soil simulation system was proposed. Finally, by using finite element simulations, the optimal design of frozen soil simulation system was obtained. This proposed design, which was obtained by finite element simulations, provided significant referents to the ultimate design of the environment simulation system.

Keywords: China, finite element simulation, frozen soilsimulation system, preliminary design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
1021 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: Finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
1020 Critical Velocities for Particle Transport from Experiments and CFD Simulations

Authors: Sajith Sajeev, Brenton McLaury, Siamack Shirazi

Abstract:

In the petroleum industry, solid particles are often present along with the produced fluids. It is imperative to keep particles from accumulating in flow lines. In this study, various experiments are conducted to study sand particle transport, where critical velocity is defined as the average fluid velocity to keep particles continuously moving. Many parameters related to the fluid, particles and pipe affect the transport process. Experimental results are presented varying the particle concentration. Additionally, CFD simulations using a discrete element modeling (DEM) approach are presented to compare with experimental result.

Keywords: Particle transport, critical velocity, CFD, DEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1168
1019 Effect of Mass on Bus Superstructure Strength Having Rollover Crash

Authors: Mustafa Bin Yusof, Mohammad Amirul Affiz Bin Afripin

Abstract:

Safety of bus journey is a fundamental concern. Risk of injuries and fatalities is severe when bus superstructure fails during rollover accident. Adequate design and sufficient strength of bus superstructure can reduce the number of injuries and fatalities. This paper deals with structural analysis of bus superstructure undergoes rollover event. Several value of mass will be varied in multiple simulations. The purpose of this work is to analyze structural response of bus superstructure in terms of deformation, stress and strain under several loading and constraining conditions. A complete bus superstructure with forty four passenger-s capability was developed using finite element analysis software. Simulations have been conducted to observe the effect of total mass of bus on the strength of superstructure. These simulations are following United Nation Economic Commission of Europe regulation 66 which focuses on strength of large vehicle superstructure. Validation process had been done using simple box model experiment and results obtained are comparing with simulation results. Inputs data from validation process had been used in full scale simulation. Analyses suggested that, the failure of bus superstructure during rollover situation is basically dependent on the total mass of bus and on the strength of bus superstructure.

Keywords: Bus, rollover, superstructure strength, UNECE regulation 66.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496
1018 Numerical Simulation of High Pressure Hydrogen Emerges to Air

Authors: Mohamed H. Elhsnawi, Mesbah M. Salem, Saleh B. Mohamed

Abstract:

Numerical simulation performed to investigate the behavior of the high pressure hydrogen jetting of air. High pressure hydrogen (30–40 MPa) was injected to air at atmospheric pressure through 2mm orifice. Numerical simulations were performed with Kiva3V code with 2D axisymmetric geometry. Numerical simulations showed that auto ignition of high pressure hydrogen to air are possible due to molecular diffusion. Auto ignition was predicted at hydrogen-air contact surface due to mass and energy exchange between high temperature hydrogen and air heated by shock wave.

Keywords: Spontaneous Ignition, Diffusion Ignition, Hydrogen ignition, Hydrogen Jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1017 Magnetic End Leakage Flux in a Spoke Type Rotor Permanent Magnet Synchronous Generator

Authors: Petter Eklund, Jonathan Sjölund, Sandra Eriksson, Mats Leijon

Abstract:

The spoke type rotor can be used to obtain magnetic flux concentration in permanent magnet machines. This allows the air gap magnetic flux density to exceed the remanent flux density of the permanent magnets but gives problems with leakage fluxes in the magnetic circuit. The end leakage flux of one spoke type permanent magnet rotor design is studied through measurements and finite element simulations. The measurements are performed in the end regions of a 12 kW prototype generator for a vertical axis wind turbine. The simulations are made using three dimensional finite elements to calculate the magnetic field distribution in the end regions of the machine. Also two dimensional finite element simulations are performed and the impact of the two dimensional approximation is studied. It is found that the magnetic leakage flux in the end regions of the machine is equal to about 20% of the flux in the permanent magnets. The overestimation of the performance by the two dimensional approximation is quantified and a curve-fitted expression for its behavior is suggested.

Keywords: End effects, end leakage flux, permanent magnet machine, spoke type rotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027
1016 Sediment Patterns from Fluid-Bed Interactions: A Direct Numerical Simulations Study on Fluvial Turbulent Flows

Authors: Nadim Zgheib, Sivaramakrishnan Balachandar

Abstract:

We present results on the initial formation of ripples from an initially flattened erodible bed. We use direct numerical simulations (DNS) of turbulent open channel flow over a fixed sinusoidal bed coupled with hydrodynamic stability analysis. We use the direct forcing immersed boundary method to account for the presence of the sediment bed. The resolved flow provides the bed shear stress and consequently the sediment transport rate, which is needed in the stability analysis of the Exner equation. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology, and the sediment flux is obtained from the DNS. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage.

Keywords: Direct numerical simulation, immersed boundary method, sediment-bed interactions, turbulent multiphase flow, linear stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 623
1015 Unsteady Flow Simulations for Microchannel Design and Its Fabrication for Nanoparticle Synthesis

Authors: Mrinalini Amritkar, Disha Patil, Swapna Kulkarni, Sukratu Barve, Suresh Gosavi

Abstract:

Micro-mixers play an important role in the lab-on-a-chip applications and micro total analysis systems to acquire the correct level of mixing for any given process. The mixing process can be classified as active or passive according to the use of external energy. Literature of microfluidics reports that most of the work is done on the models of steady laminar flow; however, the study of unsteady laminar flow is an active area of research at present. There are wide applications of this, out of which, we consider nanoparticle synthesis in micro-mixers. In this work, we have developed a model for unsteady flow to study the mixing performance of a passive micro mixer for reactants used for such synthesis. The model is developed in Finite Volume Method (FVM)-based software, OpenFOAM. The model is tested by carrying out the simulations at Re of 0.5. Mixing performance of the micro-mixer is investigated using simulated concentration values of mixed species across the width of the micro-mixer and calculating the variance across a line profile. Experimental validation is done by passing dyes through a Y shape micro-mixer fabricated using polydimethylsiloxane (PDMS) polymer and comparing variances with the simulated ones. Gold nanoparticles are later synthesized through the micro-mixer and collected at two different times leading to significantly different size distributions. These times match with the time scales over which reactant concentrations vary as obtained from simulations. Our simulations could thus be used to create design aids for passive micro-mixers used in nanoparticle synthesis.

Keywords: Lab-on-chip, micro-mixer, OpenFOAM, PDMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 741
1014 Development of Tools for Multi Vehicles Simulation with Robot Operating System and ArduPilot

Authors: Pierre Kancir, Jean-Philippe Diguet, Marc Sevaux

Abstract:

One of the main difficulties in developing multi-robot systems (MRS) is related to the simulation and testing tools available. Indeed, if the differences between simulations and real robots are too significant, the transition from the simulation to the robot won’t be possible without another long development phase and won’t permit to validate the simulation. Moreover, the testing of different algorithmic solutions or modifications of robots requires a strong knowledge of current tools and a significant development time. Therefore, the availability of tools for MRS, mainly with flying drones, is crucial to enable the industrial emergence of these systems. This research aims to present the most commonly used tools for MRS simulations and their main shortcomings and presents complementary tools to improve the productivity of designers in the development of multi-vehicle solutions focused on a fast learning curve and rapid transition from simulations to real usage. The proposed contributions are based on existing open source tools as Gazebo simulator combined with ROS (Robot Operating System) and the open-source multi-platform autopilot ArduPilot to bring them to a broad audience.

Keywords: ROS, ArduPilot, MRS, simulation, drones, Gazebo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
1013 Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines

Authors: Mustafa Sahin, İlkay Yavrucuk

Abstract:

This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life.

Keywords: Adaptive envelope protection control, limit detection and avoidance, neural networks, ultimate load reduction, wind turbine power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
1012 Impact of Process Variations on the Vertical Silicon Nanowire Tunneling FET (TFET)

Authors: Z. X. Chen, T. S. Phua, X. P. Wang, G. -Q. Lo, D. -L. Kwong

Abstract:

This paper presents device simulations on the vertical silicon nanowire tunneling FET (VSiNW TFET). Simulations show that a narrow nanowire and thin gate oxide is required for good performance, which is expected even for conventional MOSFETs. The gate length also needs to be more than the nanowire diameter to prevent short channel effects. An effect more unique to TFET is the need for abrupt source to channel junction, which is shown to improve the performance. The ambipolar effect suppression by reducing drain doping concentration is also explored and shown to have little or no effect on performance.

Keywords: Device simulation, MEDICI, tunneling FET (TFET), vertical silicon nanowire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
1011 Fuzzy Power Controller Design for Purdue University Research Reactor-1

Authors: Oktavian Muhammad Rizki, Appiah Rita, Lastres Oscar, Miller True, Chapman Alec, Tsoukalas Lefteri H.

Abstract:

The Purdue University Research Reactor-1 (PUR-1) is a 10 kWth pool-type research reactor located at Purdue University’s West Lafayette campus. The reactor was recently upgraded to use entirely digital instrumentation and control systems. However, currently, there is no automated control system to regulate the power in the reactor. We propose a fuzzy logic controller as a form of digital twin to complement the existing digital instrumentation system to monitor and stabilize power control using existing experimental data. This work assesses the feasibility of a power controller based on a Fuzzy Rule-Based System (FRBS) by modelling and simulation with a MATLAB algorithm. The controller uses power error and reactor period as inputs and generates reactivity insertion as output. The reactivity insertion is then converted to control rod height using a logistic function based on information from the recorded experimental reactor control rod data. To test the capability of the proposed fuzzy controller, a point-kinetic reactor model is utilized based on the actual PUR-1 operation conditions and a Monte Carlo N-Particle simulation result of the core to numerically compute the neutronics parameters of reactor behavior. The Point Kinetic Equation (PKE) was employed to model dynamic characteristics of the research reactor since it explains the interactions between the spatial and time varying input and output variables efficiently. The controller is demonstrated computationally using various cases: startup, power maneuver, and shutdown. From the test results, it can be proved that the implemented fuzzy controller can satisfactorily regulate the reactor power to follow demand power without compromising nuclear safety measures.

Keywords: Fuzzy logic controller, power controller, reactivity, research reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 344
1010 CAD Based Predictive Models of the Undeformed Chip Geometry in Drilling

Authors: Panagiotis Kyratsis, Dr. Ing. Nikolaos Bilalis, Dr. Ing. Aristomenis Antoniadis

Abstract:

Twist drills are geometrical complex tools and thus various researchers have adopted different mathematical and experimental approaches for their simulation. The present paper acknowledges the increasing use of modern CAD systems and using the API (Application Programming Interface) of a CAD system, drilling simulations are carried out. The developed DRILL3D software routine, creates parametrically controlled tool geometries and using different cutting conditions, achieves the generation of solid models for all the relevant data involved (drilling tool, cut workpiece, undeformed chip). The final data derived, consist a platform for further direct simulations regarding the determination of cutting forces, tool wear, drilling optimizations etc.

Keywords: Drilling, CAD based simulation, 3D-modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1009 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation

Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi

Abstract:

Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.

Keywords: Coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
1008 Informal Inferential Reasoning Using a Modelling Approach within a Computer-Based Simulation

Authors: Theodosia Prodromou

Abstract:

The article investigates how 14- to 15- year-olds build informal conceptions of inferential statistics as they engage in a modelling process and build their own computer simulations with dynamic statistical software. This study proposes four primary phases of informal inferential reasoning for the students in the statistical modeling and simulation process. Findings show shifts in the conceptual structures across the four phases and point to the potential of all of these phases for fostering the development of students- robust knowledge of the logic of inference when using computer based simulations to model and investigate statistical questions.

Keywords: Inferential reasoning, learning, modelling, statistical inference, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
1007 Operation Assay of an Industrial Single-Source – Single-Detector Gamma CT Using MCNP4C Code Simulation and Experimental Test Comparisons

Authors: M. Ghanadi, M. Rezazadeh*, M. Ardeshiri, R. Gholipour Peyvandi, M. Jafarzadeh, M. Shahriari, M.Rezaei Rad, Z. Gholamzadeh

Abstract:

A 3D industrial computed tomography (CT) manufactured based on a first generation CT systems, single-source – single-detector, was evaluated. Operation accuracy assessment of the manufactured system was achieved using simulation in comparison with experimental tests. 137Cs and 60Co were used as a gamma source. Simulations were achieved using MCNP4C code. Experimental tests of 137Cs were in good agreement with the simulations

Keywords: Gamma source, Industrial CT, MCNP4C, Operation assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
1006 CFD Simulations to Validate Two and Three Phase Up-flow in Bubble Columns

Authors: Shyam Kumar, Nannuri Srinivasulu, Ashok Khanna

Abstract:

Bubble columns have a variety of applications in absorption, bio-reactions, catalytic slurry reactions, and coal liquefaction; because they are simple to operate, provide good heat and mass transfer, having less operational cost. The use of Computational Fluid Dynamics (CFD) for bubble column becomes important, since it can describe the fluid hydrodynamics on both local and global scale. Euler- Euler two-phase fluid model has been used to simulate two-phase (air and water) transient up-flow in bubble column (15cm diameter) using FLUENT6.3. These simulations and experiments were operated over a range of superficial gas velocities in the bubbly flow and churn turbulent regime (1 to16 cm/s) at ambient conditions. Liquid velocity was varied from 0 to 16cm/s. The turbulence in the liquid phase is described using the standard k-ε model. The interactions between the two phases are described through drag coefficient formulations (Schiller Neumann). The objectives are to validate CFD simulations with experimental data, and to obtain grid-independent numerical solutions. Quantitatively good agreements are obtained between experimental data for hold-up and simulation values. Axial liquid velocity profiles and gas holdup profiles were also obtained for the simulation.

Keywords: Bubble column, Computational fluid dynamics, Gas holdup profile, k-ε model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
1005 Stability Verification for Bilateral Teleoperation System with Variable Time Delay

Authors: M. Sallam, A. Ramadan, M. Fanni, M. Abdellatif

Abstract:

Time delay in bilateral teleoperation system was introduced as a sufficient reason to make the system unstable or certainly degrade the system performance. In this paper, simulations and experimental results of implementing p-like control scheme, under different ranges of variable time delay, will be presented to verify a certain criteria, which guarantee the system stability and position tracking. The system consists of two Phantom premium 1.5A devices. One of them acts as a master and the other acts as a slave. The study includes deriving the Phantom kinematic and dynamic model, establishing the link between the two Phantoms over Simulink in Matlab, and verifying the stability criteria with simulations and real experiments.

Keywords: bilateral teleoperation, Phantom premium 1.5, varying time delay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
1004 Characterization of the Dispersion Phenomenon in an Optical Biosensor

Authors: An-Shik Yang, Chin-Ting Kuo, Yung-Chun Yang, Wen-Hsin Hsieh, Chiang-Ho Cheng

Abstract:

Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the micro channel of an optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of micro channels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion.

Keywords: CFD simulations, dispersion, microfluidic, optical waveguide sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997
1003 Automatic Generation Control of Multi-Area Electric Energy Systems Using Modified GA

Authors: Gayadhar Panda, Sidhartha Panda, C. Ardil

Abstract:

A modified Genetic Algorithm (GA) based optimal selection of parameters for Automatic Generation Control (AGC) of multi-area electric energy systems is proposed in this paper. Simulations on multi-area reheat thermal system with and without consideration of nonlinearity like governor dead band followed by 1% step load perturbation is performed to exemplify the optimum parameter search. In this proposed method, a modified Genetic Algorithm is proposed where one point crossover with modification is employed. Positional dependency in respect of crossing site helps to maintain diversity of search point as well as exploitation of already known optimum value. This makes a trade-off between exploration and exploitation of search space to find global optimum in less number of generations. The proposed GA along with decomposition technique as developed has been used to obtain the optimum megawatt frequency control of multi-area electric energy systems. Time-domain simulations are conducted with trapezoidal integration along with decomposition technique. The superiority of the proposed method over existing one is verified from simulations and comparisons.

Keywords: Automatic Generation Control (AGC), Reheat, Proportional Integral (PI) controller, Dead Band, Genetic Algorithm(GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
1002 Experimental and Finite Element Forming Limit Diagrams for Interstitial Free Steels

Authors: Basavaraj Vadavadagi, Satishkumar Shekhawat

Abstract:

Interstitial free steels possess better formability and have many applications in automotive industries. Forming limit diagrams (FLDs) indicate the formability of materials which can be determined by experimental and finite element (FE) simulations. FLDs were determined experimentally by LDH test, utilizing optical strain measurement system for measuring the strains in different width specimens and by FE simulations in Interstitial Free (IF) and Interstitial Free High Strength (IFHS) steels. In this study, the experimental and FE simulated FLDs are compared and also the stress based FLDs were investigated.

Keywords: Forming limit diagram, Limiting Dome Height, optical strain measurement, interstitial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
1001 Fast Return Path Planning for Agricultural Autonomous Terrestrial Robot in a Known Field

Authors: Carlo Cernicchiaro, Pedro D. Gaspar, Martim L. Aguiar

Abstract:

The agricultural sector is becoming more critical than ever in view of the expected overpopulation of the Earth. The introduction of robotic solutions in this field is an increasingly researched topic to make the most of the Earth's resources, thus going to avoid the problems of wear and tear of the human body due to the harsh agricultural work, and open the possibility of a constant careful processing 24 hours a day. This project is realized for a terrestrial autonomous robot aimed to navigate in an orchard collecting fallen peaches below the trees. When it receives the signal indicating the low battery, it has to return to the docking station where it will replace its battery and then return to the last work point and resume its routine. Considering a preset path in orchards with tree rows with variable length by which the robot goes iteratively using the algorithm D*. In case of low battery, the D* algorithm is still used to determine the fastest return path to the docking station as well as to come back from the docking station to the last work point. MATLAB simulations were performed to analyze the flexibility and adaptability of the developed algorithm. The simulation results show an enormous potential for adaptability, particularly in view of the irregularity of orchard field, since it is not flat and undergoes modifications over time from fallen branch as well as from other obstacles and constraints. The D* algorithm determines the best route in spite of the irregularity of the terrain. Moreover, in this work, it will be shown a possible solution to improve the initial points tracking and reduce time between movements.

Keywords: Path planning, fastest return path, agricultural terrestrial robot, autonomous, docking station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
1000 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Sameer Abdali

Abstract:

Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.

Keywords: Control, counterweight, isolation, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 455
999 Stabilization of the Bernoulli-Euler Plate Equation: Numerical Analysis

Authors: Carla E. O. de Moraes, Gladson O. Antunes, Mauro A. Rincon

Abstract:

The aim of this paper is to study the internal stabilization of the Bernoulli-Euler equation numerically. For this, we consider a square plate subjected to a feedback/damping force distributed only in a subdomain. An algorithm for obtaining an approximate solution to this problem was proposed and implemented. The numerical method used was the Finite Difference Method. Numerical simulations were performed and showed the behavior of the solution, confirming the theoretical results that have already been proved in the literature. In addition, we studied the validation of the numerical scheme proposed, followed by an analysis of the numerical error; and we conducted a study on the decay of the energy associated.

Keywords: Bernoulli-Euler Plate Equation, Numerical Simulations, Stability, Energy Decay, Finite Difference Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
998 Predicting and Mitigating Dredging DispersionImpact: A Case of Phuket Port, Thailand

Authors: Cherdvong Saengsupavanich

Abstract:

Dredging activities inevitably cause sediment dispersion. In certain locations, where there are important ecological areas such as mangroves or coral reefs, carefully planning the dredging can significantly reduce negative impacts. This article utilizes the dredging at Phuket port, Thailand, as a case study to demonstrate how computer simulations can be helpful to protect existing coral reefs. A software package named MIKE21 was applied. Necessary information required by the simulations was gathered. After calibrating and verifying the model, various dredging scenario were simulated to predict spoil movement. The simulation results were used as guidance to setting up an environmental measure. Finally, the recommendation to dredge during flood tide with silt curtains installed was made.

Keywords: Coastal simulation, Dredging, Environmentalprotection, Port. Coastal engineering, Thailand

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
997 CFD Simulation of Dense Gas Extraction through Polymeric Membranes

Authors: Azam Marjani, Saeed Shirazian

Abstract:

In this study is presented a general methodology to predict the performance of a continuous near-critical fluid extraction process to remove compounds from aqueous solutions using hollow fiber membrane contactors. A comprehensive 2D mathematical model was developed to study Porocritical extraction process. The system studied in this work is a membrane based extractor of ethanol and acetone from aqueous solutions using near-critical CO2. Predictions of extraction percentages obtained by simulations have been compared to the experimental values reported by Bothun et al. [5]. Simulations of extraction percentage of ethanol and acetone show an average difference of 9.3% and 6.5% with the experimental data, respectively. More accurate predictions of the extraction of acetone could be explained by a better estimation of the transport properties in the aqueous phase that controls the extraction of this solute.

Keywords: Solvent extraction, Membrane, Mass transfer, Densegas, Modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
996 Comparative Study of Some Adaptive Fuzzy Algorithms for Manipulator Control

Authors: Sudeept Mohan, Surekha Bhanot

Abstract:

The problem of manipulator control is a highly complex problem of controlling a system which is multi-input, multioutput, non-linear and time variant. In this paper some adaptive fuzzy, and a new hybrid fuzzy control algorithm have been comparatively evaluated through simulations, for manipulator control. The adaptive fuzzy controllers consist of self-organizing, self-tuning, and coarse/fine adaptive fuzzy schemes. These controllers are tested for different trajectories and for varying manipulator parameters through simulations. Various performance indices like the RMS error, steady state error and maximum error are used for comparison. It is observed that the self-organizing fuzzy controller gives the best performance. The proposed hybrid fuzzy plus integral error controller also performs remarkably well, given its simple structure.

Keywords: Hybrid fuzzy, Self-organizing, Self-tuning, Trajectory tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
995 A Systematic Approach for Analyzing Multiple Cyber-Physical Attacks on the Smart Grid

Authors: Yatin Wadhawan, Clifford Neuman, Anas Al Majali

Abstract:

In this paper, we evaluate the resilience of the smart grid system in the presence of multiple cyber-physical attacks on its distinct functional components. We discuss attack-defense scenarios and their effect on smart grid resilience. Through contingency simulations in the Network and PowerWorld Simulator, we analyze multiple cyber-physical attacks that propagate from the cyber domain to power systems and discuss how such attacks destabilize the underlying power grid. The analysis of such simulations helps system administrators develop more resilient systems and improves the response of the system in the presence of cyber-physical attacks.

Keywords: Smart grid, resilience, gas pipeline, cyber-physical attack, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971
994 Relating Interface Properties with Crack Propagation in Composite Laminates

Authors: Tao Qu, Chandra Prakash, Vikas Tomar

Abstract:

The interfaces between organic and inorganic phases in natural materials have been shown to be a key factor contributing to their high performance. This work analyzes crack propagation in a 2-ply laminate subjected to uniaxial tensile mode-I crack propagation loading that has laminate properties derived based on biological material constituents (marine exoskeleton- chitin and calcite). Interfaces in such laminates are explicitly modeled based on earlier molecular simulations performed by authors. Extended finite element method and cohesive zone modeling based simulations coupled with theoretical analysis are used to analyze crack propagation. Analyses explicitly quantify the effect that interface mechanical property variation has on the delamination as well as the transverse crack propagation in examined 2-ply laminates.

Keywords: Chitin, composites, interfaces, fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
993 The Use of Simulation Programs of Leakage of Harmful Substances for Crisis Management

Authors: Jiří Barta

Abstract:

The paper deals with simulation programs of spread of harmful substances. Air pollution has a direct impact on the quality of human life and environmental protection is currently a very hot topic. Therefore, the paper focuses on the simulation of release of harmful substances. The first part of article deals with perspectives and possibilities of implementation outputs of simulations programs into the system which is education and of practical training of the management staff during emergency events in the frame of critical infrastructure. The last part shows the practical testing and evaluation of simulation programs. Of the tested simulations software been selected Symos97. The tool offers advanced features for setting leakage. Gradually allows the user to model the terrain, location, and method of escape of harmful substances.

Keywords: Computer Simulation, Symos97, spread, simulation software, harmful substances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903