Search results for: Manufacturing Control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4360

Search results for: Manufacturing Control

4180 EGCL: An Extended G-Code Language with Flow Control, Functions and Mnemonic Variables

Authors: Oscar E. Ruiz, S. Arroyave, J. F. Cardona

Abstract:

In the context of computer numerical control (CNC) and computer aided manufacturing (CAM), the capabilities of programming languages such as symbolic and intuitive programming, program portability and geometrical portfolio have special importance. They allow to save time and to avoid errors during part programming and permit code re-usage. Our updated literature review indicates that the current state of art presents voids in parametric programming, program portability and programming flexibility. In response to this situation, this article presents a compiler implementation for EGCL (Extended G-code Language), a new, enriched CNC programming language which allows the use of descriptive variable names, geometrical functions and flow-control statements (if-then-else, while). Our compiler produces low-level generic, elementary ISO-compliant Gcode, thus allowing for flexibility in the choice of the executing CNC machine and in portability. Our results show that readable variable names and flow control statements allow a simplified and intuitive part programming and permit re-usage of the programs. Future work includes allowing the programmer to define own functions in terms of EGCL, in contrast to the current status of having them as library built-in functions.

Keywords: CNC Programming, Compiler, G-code Language, Numerically Controlled Machine-Tools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2577
4179 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle

Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin

Abstract:

A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.

Keywords: Balance control, synchronization control, two wheel inverted pendulum, TWIP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
4178 Supply Air Pressure Control of HVAC System Using MPC Controller

Authors: P. Javid, A. Aeenmehr, J. Taghavifar

Abstract:

In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly.

Keywords: Air conditioning system, GPC, dead time, Air supply control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
4177 Robust Nonlinear Control of Two Links Robot Manipulator and Computing Maximum Load

Authors: Hasanifard Goran, Habib Nejad Korayem Moharam, Nikoobin Amin

Abstract:

A new robust nonlinear control scheme of a manipulator is proposed in this paper which is robust against modeling errors and unknown disturbances. It is based on the principle of variable structure control, with sliding mode control (SMC) method. The variable structure control method is a robust method that appears to be well suited for robotic manipulators because it requers only bounds on the robotic arm parameters. But there is no single systematic procedure that is guaranteed to produce a suitable control law. Also, to reduce chattring of the control signal, we replaced the sgn function in the control law by a continuous approximation such as tangant function. We can compute the maximum load with regard to applied torque into joints. The effectivness of the proposed approach has been evaluated analitically demonstrated through computer simulations for the cases of variable load and robot arm parameters.

Keywords: Variable structure control, robust control, switching surface, robot manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
4176 A Product Development for Green Logistics Model by Integrated Evaluation of Design and Manufacturing and Green Supply Chain

Authors: Yuan-Jye Tseng, Yen-Jung Wang

Abstract:

A product development for green logistics model using the fuzzy analytic network process method is presented for evaluating the relationships among the product design, the manufacturing activities, and the green supply chain. In the product development stage, there can be alternative ways to design the detailed components to satisfy the design concept and product requirement. In different design alternative cases, the manufacturing activities can be different. In addition, the manufacturing activities can affect the green supply chain of the components and product. In this research, a fuzzy analytic network process evaluation model is presented for evaluating the criteria in product design, manufacturing activities, and green supply chain. The comparison matrices for evaluating the criteria among the three groups are established. The total relational values between the three groups represent the relationships and effects. In application, the total relational values can be used to evaluate the design alternative cases for decision-making to select a suitable design case and the green supply chain. In this presentation, an example product is illustrated. It shows that the model is useful for integrated evaluation of design and manufacturing and green supply chain for the purpose of product development for green logistics.

Keywords: Supply chain management, green supply chain, product development for logistics, fuzzy analytic network process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
4175 Data Quality Enhancement with String Length Distribution

Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda

Abstract:

Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.

Keywords: Data quality, feature selection, probability distribution, string classification, string length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
4174 Efficient Supplies to Assembly Areas from Storage Stages

Authors: Matthias Schmidt, Steffen C. Eickemeyer, Prof. Peter Nyhuis

Abstract:

Guaranteeing the availability of the required parts at the scheduled time represents a key logistical challenge. This is especially important when several parts are required together. This article describes a tool that supports the positioning in the area of conflict between low stock costs and a high service level for a consumer.

Keywords: Systems Modeling, Manufacturing Systems, Simulation & Control, logistics and supply chain management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
4173 Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: A Review

Authors: Adnan A. Ugla, Hassan J. Khaudair, Ahmed R. J. Almusawi

Abstract:

Shaped Metal Deposition (SMD) in additive layered manufacturing technique is a promising alternative to traditional manufacturing used for manufacturing large, expensive metal components with complex geometry in addition to producing free structures by building materials in a layer by layer technique. The present paper is a comprehensive review of the literature and the latest rapid manufacturing technologies of the SMD technique. The aim of this paper is to comprehensively review the most prominent facts that researchers have dealt with in the SMD techniques especially those associated with the cold wire feed. The intent of this study is to review the literature presented on metal deposition processes and their classifications, including SMD process using Wire + Arc Additive Manufacturing (WAAM) which divides into wire + tungsten inert gas (TIG), metal inert gas (MIG), or plasma. This literary research presented covers extensive details on bead geometry, process parameters and heat input or arc energy resulting from the deposition process in both cases MIG and Tandem-MIG in SMD process. Furthermore, SMD may be done using Single Wire-MIG (SW-MIG) welding and SMD using Double Wire-MIG (DW-MIG) welding. The present review shows that the method of deposition of metals when using the DW-MIG process can be considered a distinctive and low-cost method to produce large metal components due to high deposition rates as well as reduce the input of high temperature generated during deposition and reduce the distortions. However, the accuracy and surface finish of the MIG-SMD are less as compared to electron and laser beam.

Keywords: Shaped metal deposition, additive manufacturing, double-wire feed, cold feed wire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
4172 Manufacturing Dispersions Based Simulation and Synthesis of Design Tolerances

Authors: Nassima Cheikh, Abdelmadjid Cheikh, Said Hamou

Abstract:

The objective of this work which is based on the approach of simultaneous engineering is to contribute to the development of a CIM tool for the synthesis of functional design dimensions expressed by average values and tolerance intervals. In this paper, the dispersions method known as the Δl method which proved reliable in the simulation of manufacturing dimensions is used to develop a methodology for the automation of the simulation. This methodology is constructed around three procedures. The first procedure executes the verification of the functional requirements by automatically extracting the functional dimension chains in the mechanical sub-assembly. Then a second procedure performs an optimization of the dispersions on the basis of unknown variables. The third procedure uses the optimized values of the dispersions to compute the optimized average values and tolerances of the functional dimensions in the chains. A statistical and cost based approach is integrated in the methodology in order to take account of the capabilities of the manufacturing processes and to distribute optimal values among the individual components of the chains.

Keywords: functional tolerances, manufacturing dispersions, simulation, CIM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
4171 The Implementation of Good Manufacturing Practice in Polycarbonate Film Industry

Authors: Nisachon Mawai, Jeerapat Ngaoprasertwong

Abstract:

This study reports the implementation of Good Manufacturing Practice (GMP) in a polycarbonate film processing plant. The implementation of GMP took place with the creation of a multidisciplinary team. It was carried out in four steps: conduct gap assessment, create gap closure plan, close gaps, and follow up the GMP implementation. The basis for the gap assessment is the guideline for GMP for plastic materials and articles intended for Food Contact Material (FCM), which was edited by Plastic Europe. The effective results of the GMP implementation in this study showed 100% completion of gap assessment. The key success factors for implementing GMP in production process are the commitment, intention and support of top management.

Keywords: Implementation, Good Manufacturing Practice, Polycarbonate Film, Food Contact Materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3695
4170 Particle Swarm Optimisation of a Terminal Synergetic Controllers for a DC-DC Converter

Authors: H. Abderrezek, M. N. Harmas

Abstract:

DC-DC converters are widely used as reliable power source for many industrial and military applications, computers and electronic devices. Several control methods were developed for DC-DC converters control mostly with asymptotic convergence. Synergetic control (SC) is a proven robust control approach and will be used here in a so called terminal scheme to achieve finite time convergence. Lyapounov synthesis is adopted to assure controlled system stability. Furthermore particle swarm optimization (PSO) algorithm, based on an integral time absolute of error (ITAE) criterion will be used to optimize controller parameters. Simulation of terminal synergetic control of a DC-DC converter is carried out for different operating conditions and results are compared to classic synergetic control performance, that which demonstrate the effectiveness and feasibility of the proposed control method.

Keywords: DC-DC converter, PSO, finite time, terminal, synergetic control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
4169 Control Configuration System as a Key Element in Distributed Control System

Authors: Goodarz Sabetian, Sajjad Moshfe

Abstract:

Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.

Keywords: Control, configuration, DCS, power plant, bus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174
4168 Comparison of Field-Oriented Control and Direct Torque Control for Permanent Magnet Synchronous Motor (PMSM)

Authors: M. S. Merzoug, F. Naceri

Abstract:

This paper presents a comparative study on two most popular control strategies for Permanent Magnet Synchronous Motor (PMSM) drives: field-oriented control (FOC) and direct torque control (DTC). The comparison is based on various criteria including basic control characteristics, dynamic performance, and implementation complexity. The study is done by simulation using the Simulink Power System Blockset that allows a complete representation of the power section (inverter and PMSM) and the control system. The simulation and evaluation of both control strategies are performed using actual parameters of Permanent Magnet Synchronous Motor fed by an IGBT PWM inverter.

Keywords: PMSM, FOC, DTC, hysteresis, PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7007
4167 Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Iker Elorza, Ana Maria Macarulla

Abstract:

Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.

Keywords: Fault-tolerant control, electro-hydraulic actuator, fault detection and isolation, control re-design, real-time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
4166 Material Saving Strategies, Technologies and Effects on Return on Sales

Authors: Jasna Prester, Najla Podrug, Davor Filipović

Abstract:

Manufacturing companies invest a significant amount of sales into material resources for production. In our sample, 58% of sales is used for manufacturing inputs, while only 24% of sales is used for salaries. This means that if a company is looking to reduce costs, the greater potential is in reduction of material costs than downsizing. This research shows that manufacturing companies in Croatia did realize material savings in last three years. It is also shown by which technologies they achieved materials cost savings. Through literature research, we found research gap as to which technologies reduce material consumption. As methodology of research four regression analyses are used to prove our findings.

Keywords: Croatia, materials savings strategies, technologies, return on sales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
4165 Validation of Automotive Centrals Using Hardware in the Loop-Body Control Unit and Lights

Authors: Marley Rosa Luciano, Rodney Rezende Saldanha

Abstract:

The race for electrification and the need for innovation to attract customers has led the automotive industry to do something different with vehicles. New emissions control challenges and efficient technological availability are the pillars of creation. The growing demand to upgrade industrial manufacturing systems creates actions that directly impact vehicle production. With this comes the search for new prototyping methods and virtual tools for component testing and validation, and vehicle systems have established themselves. The demand for Electronic Control Units (ECU) is increasing due to the availability of intelligence and safety in today's vehicles, directly affecting their development, performance, and functional testing. In order to keep up with global changes, the automotive industry uses different virtual environments to produce, verify and validate their vehicles and test prototypes used during development. Therefore, in this paper, integration and validation were performed using the Hardware in the Loop (HIL) test platform, focusing on the ECU Body Control Module (BCM). Then, a brief commentary reviews other test medium platforms, such as the Plywood Buck (PWB), and examines the reliability, flexibility, installation time, and cost of the three test platforms, software in the loop (SIL), Model in the loop (MIL), and HIL, to review their benefits, challenges, and issues in use and information to optimize the use of each platform and test medium.

Keywords: Automotive, Electronic Central Unit, xIL, Hardware in the loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234
4164 The Feedback Control for Distributed Systems

Authors: Kamil Aida-zade, C. Ardil

Abstract:

We study the problem of synthesis of lumped sources control for the objects with distributed parameters on the basis of continuous observation of phase state at given points of object. In the proposed approach the phase state space (phase space) is beforehand somehow partitioned at observable points into given subsets (zones). The synthesizing control actions therewith are taken from the class of piecewise constant functions. The current values of control actions are determined by the subset of phase space that contains the aggregate of current states of object at the observable points (in these states control actions take constant values). In the paper such synthesized control actions are called zone control actions. A technique to obtain optimal values of zone control actions with the use of smooth optimization methods is given. With this aim, the formulas of objective functional gradient in the space of zone control actions are obtained.

Keywords: Feedback control, distributed systems, smooth optimization methods, lumped control synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564
4163 Design of Adaptive Sliding Mode Controller for Robotic Manipulators Tracking Control

Authors: T. C. Kuo, Y. J. Huang, B. W. Hong

Abstract:

This paper proposes an adaptive sliding mode controller which combines adaptive control and sliding mode control to control a nonlinear robotic manipulator with uncertain parameters. We use an adaptive algorithm based on the concept of sliding mode control to alleviate the chattering phenomenon of control input. Adaptive laws are developed to obtain the gain of switching input and the boundary layer parameters. The stability and convergence of the robotic manipulator control system are guaranteed by applying the Lyapunov theorem. Simulation results demonstrate that the chattering of control input can be alleviated effectively. The proposed controller scheme can assure robustness against a large class of uncertainties and achieve good trajectory tracking performance.

Keywords: Robotic manipulators, sliding mode control, adaptive law, Lyapunov theorem, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001
4162 Design for Reliability and Manufacturing Yield (Study and Modeling of Defects in Integrated Circuits for their Reliability Analysis)

Authors: G. Ait Abdelmalek, R. Ziani

Abstract:

In this document, we have proposed a robust conceptual strategy, in order to improve the robustness against the manufacturing defects and thus the reliability of logic CMOS circuits. However, in order to enable the use of future CMOS technology nodes this strategy combines various types of design: DFR (Design for Reliability), techniques of tolerance: hardware redundancy TMR (Triple Modular Redundancy) for hard error tolerance, the DFT (Design for Testability. The Results on largest ISCAS and ITC benchmark circuits show that our approach improves considerably the reliability, by reducing the key factors, the area costs and fault tolerance probability.

Keywords: Design for reliability, design for testability, fault tolerance, manufacturing yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
4161 Auto-Parking System via Intelligent Computation Intelligence

Authors: Y. J. Huang, C. H. Chang

Abstract:

In this paper, an intelligent automatic parking control method is proposed. First, the dynamical equation of the rear parking control is derived. Then a fuzzy logic control is proposed to perform the parking planning process. Further, a rear neural network is proposed for the steering control. Through the simulations and experiments, the intelligent auto-parking mode controllers have been shown to achieve the demanded goals with satisfactory control performance and to guarantee the system robustness under parametric variations and external disturbances. To improve some shortcomings and limitations in conventional parking mode control and further to reduce consumption time and prime cost.

Keywords: Auto-parking system, Fuzzy control, Neural network, Robust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
4160 Implementation of CMMS Software for a Maintenance Plan in a Manufacturing Industry

Authors: Abimbola O. Aniki, Esther T. Akinlabi

Abstract:

This paper proposes an effective maintenance method by considering the implementation of the Computerized Maintenance Management System (CMMS) software to plan a maintenance activity in a manufacturing industry. Globally, maintenance is a very important activity in the manufacturing sector to prolong the life span of equipment and machinery; it is also applicable to all household items. It is obvious and well known that apart from giving long life to equipment, it reduces the substantial financial losses for repairs and save the production downtime. In some cases, appropriate maintenance of plant equipment and machinery reduces the tendencies of injuries to personnel in the job floor. But before the maintenance process can be carried out, proper and effective work order planning and scheduling must be in place in other to achieve the set goals and objectives of a maintenance shop. Brief reviews of common planning tools which include the Computerized Maintenance Management System (CMMS) are presented. An interesting outline of analyses on planning and scheduling for effective job planning in a typical manufacturing industry using the CMMS is also presented and discussed. Finally, the steps to adhere to in making job planning effective in a manufacturing industry are also highlighted.

Keywords: Advanced Downtime Analysis Programme (ADAP), Computerized Maintenance Management System (CMMS), Corrective Maintenance (CM), Executing Department (ED), Maintenance Department (MD), Preventive Maintenance (PM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3378
4159 Information System Life Cycle: Applications in Construction and Manufacturing

Authors: Carlos J. Costa, Manuela Aparício

Abstract:

In this paper, we present the information life cycle, and analyze the importance of managing the corporate application portfolio across this life cycle. The approach presented here does not correspond just to the extension of the traditional information system development life cycle. This approach is based in the generic life cycle employed in other contexts like manufacturing or marketing. In this paper it is proposed a model of an information system life cycle, supported in the assumption that a system has a limited life. But, this limited life may be extended. This model is also applied in several cases; being reported here two examples of the framework application in a construction enterprise, and in a manufacturing enterprise.

Keywords: Information systems/technology, informatio nsystems life cycle, organization engineering, information economics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
4158 Fuzzy Separation Bearing Control for Mobile Robots Formation

Authors: A. Bazoula, H. Maaref

Abstract:

In this article we address the problem of mobile robot formation control. Indeed, the most work, in this domain, have studied extensively classical control for keeping a formation of mobile robots. In this work, we design an FLC (Fuzzy logic Controller) controller for separation and bearing control (SBC). Indeed, the leader mobile robot is controlled to follow an arbitrary reference path, and the follower mobile robot use the FSBC (Fuzzy Separation and Bearing Control) to keep constant relative distance and constant angle to the leader robot. The efficiency and simplicity of this control law has been proven by simulation on different situation.

Keywords: Autonomous mobile robot, Formation control, Fuzzy logic control, Multiple robots, Leader-Follower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
4157 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Tomoaki Hashimoto

Abstract:

Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.

Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints, random dither quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1097
4156 Implicit Lyapunov Control of Multi-Control Hamiltonians Systems Based On the State Error

Authors: Fangfang Meng, Shuang Cong

Abstract:

In the closed quantum system, if the control system is strongly regular and all other eigenstates are directly coupled to the target state, the control system can be asymptotically stabilized at the target eigenstate by the Lyapunov control based on the state error. However, if the control system is not strongly regular or as long as there is one eigenstate not directly coupled to the target state, the situations will become complicated. In this paper, we propose an implicit Lyapunov control method based on the state error to solve the convergence problems for these two degenerate cases. And at the same time, we expand the target state from the eigenstate to the arbitrary pure state. Especially, the proposed method is also applicable in the control system with multi-control Hamiltonians. On this basis, the convergence of the control systems is analyzed using the LaSalle invariance principle. Furthermore, the relation between the implicit Lyapunov functions of the state distance and the state error is investigated. Finally, numerical simulations are carried out to verify the effectiveness of the proposed implicit Lyapunov control method. The comparisons of the control effect using the implicit Lyapunov control method based on the state distance with that of the state error are given.

Keywords: Implicit Lyapunov control, state error, degenerate cases, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
4155 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designed the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
4154 Design and Motion Control of a Two-Wheel Inverted Pendulum Robot

Authors: Shiuh-Jer Huang, Su-Shean Chen, Sheam-Chyun Lin

Abstract:

Two-wheel inverted pendulum robot (TWIPR) is designed with two-hub DC motors for human riding and motion control evaluation. In order to measure the tilt angle and angular velocity of the inverted pendulum robot, accelerometer and gyroscope sensors are chosen. The mobile robot’s moving position and velocity were estimated based on DC motor built in hall sensors. The control kernel of this electric mobile robot is designed with embedded Arduino Nano microprocessor. A handle bar was designed to work as steering mechanism. The intelligent model-free fuzzy sliding mode control (FSMC) was employed as the main control algorithm for this mobile robot motion monitoring with different control purpose adjustment. The intelligent controllers were designed for balance control, and moving speed control purposes of this robot under different operation conditions and the control performance were evaluated based on experimental results.

Keywords: Balance control, speed control, intelligent controller and two wheel inverted pendulum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
4153 Feasibility Study of Distributed Lightless Intersection Control with Level 1 Autonomous Vehicles

Authors: Bo Yang, Christopher Monterola

Abstract:

Urban intersection control without the use of the traffic light has the potential to vastly improve the efficiency of the urban traffic flow. For most proposals in the literature, such lightless intersection control depends on the mass market commercialization of highly intelligent autonomous vehicles (AV), which limits the prospects of near future implementation. We present an efficient lightless intersection traffic control scheme that only requires Level 1 AV as defined by NHTSA. The technological barriers of such lightless intersection control are thus very low. Our algorithm can also accommodate a mixture of AVs and conventional vehicles. We also carry out large scale numerical analysis to illustrate the feasibility, safety and robustness, comfort level, and control efficiency of our intersection control scheme.

Keywords: Intersection control, autonomous vehicles, traffic modelling, intelligent transport system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
4152 Stabilization of a New Configurable Two- Wheeled Machine Using a PD-PID and a Hybrid FL Control Strategies: A Comparative Study

Authors: M. Almeshal, M. O. Tokhi, K. M. Goher

Abstract:

A novel design of two-wheeled robotic vehicle with moving payload is presented in this paper. A mathematical model describing the vehicle dynamics is derived and simulated in Matlab Simulink environment. Two control strategies were developed to stabilise the vehicle in the upright position. A robust Proportional- Integral-Derivative (PID) control strategy has been implemented and initially tested to measure the system performance, while the second control strategy is to use a hybrid fuzzy logic controller (FLC). The results are given on a comparative basis for the system performance in terms of disturbance rejection, control algorithms robustness as well as the control effort in terms of input torque.

Keywords: double inverted pendulum, modelling, robust control, simulation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
4151 Design of Thermal Control Subsystem for TUSAT Telecommunication Satellite

Authors: N. Sozbir, M. Bulut, M.F.Oktem, A.Kahriman, A. Chaix

Abstract:

TUSAT is a prospective Turkish Communication Satellite designed for providing mainly data communication and broadcasting services through Ku-Band and C-Band channels. Thermal control is a vital issue in satellite design process. Therefore, all satellite subsystems and equipments should be maintained in the desired temperature range from launch to end of maneuvering life. The main function of the thermal control is to keep the equipments and the satellite structures in a given temperature range for various phases and operating modes of spacecraft during its lifetime. This paper describes the thermal control design which uses passive and active thermal control concepts. The active thermal control is based on heaters regulated by software via thermistors. Alternatively passive thermal control composes of heat pipes, multilayer insulation (MLI) blankets, radiators, paints and surface finishes maintaining temperature level of the overall carrier components within an acceptable value. Thermal control design is supported by thermal analysis using thermal mathematical models (TMM).

Keywords: Spacecraft thermal control, design of thermal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3631