Search results for: InterpolatedFinite Impulse Response filter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2146

Search results for: InterpolatedFinite Impulse Response filter

2146 Different Approaches for the Design of IFIR Compaction Filter

Authors: Sheeba V.S, Elizabeth Elias

Abstract:

Optimization of filter banks based on the knowledge of input statistics has been of interest for a long time. Finite impulse response (FIR) Compaction filters are used in the design of optimal signal adapted orthonormal FIR filter banks. In this paper we discuss three different approaches for the design of interpolated finite impulse response (IFIR) compaction filters. In the first method, the magnitude squared response satisfies Nyquist constraint approximately. In the second and third methods Nyquist constraint is exactly satisfied. These methods yield FIR compaction filters whose response is comparable with that of the existing methods. At the same time, IFIR filters enjoy significant saving in the number of multipliers and can be implemented efficiently. Since eigenfilter approach is used here, the method is less complex. Design of IFIR filters in the least square sense is presented.

Keywords: Principal Component Filter Bank, InterpolatedFinite Impulse Response filter, Orthonormal Filter Bank, Eigen Filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
2145 Supremacy of Differential Evolution Algorithm in Designing Multiplier-Less Low-Pass FIR Filter

Authors: Abhijit Chandra, Sudipta Chattopadhyay

Abstract:

In this communication, we have made an attempt to design multiplier-less low-pass finite impulse response (FIR) filter with the aid of various mutation strategies of Differential Evolution (DE) algorithm. Impulse response coefficient of the designed FIR filter has been represented as sums or differences of powers of two. Performance of the proposed filter has been evaluated in terms of its frequency response and associated hardware cost. Supremacy of our approach has been substantiated by comparing our result with many of the existing multiplier-less filter design algorithms of recent interest. It has also been demonstrated that DE-optimized filter outperforms Genetic Algorithm (GA) based design by a large margin.  Hardware efficiency of our algorithm has further been validated by implementing those filters on a Field Programmable Gate Array (FPGA) chip.

Keywords: Convergence speed, Differential Evolution (DE), error histogram, finite impulse response (FIR) filter, total power of two (TPT), zero-valued filter coefficient (ZFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
2144 Wiener Filter as an Optimal MMSE Interpolator

Authors: Tsai-Sheng Kao

Abstract:

The ideal sinc filter, ignoring the noise statistics, is often applied for generating an arbitrary sample of a bandlimited signal by using the uniformly sampled data. In this article, an optimal interpolator is proposed; it reaches a minimum mean square error (MMSE) at its output in the presence of noise. The resulting interpolator is thus a Wiener filter, and both the optimal infinite impulse response (IIR) and finite impulse response (FIR) filters are presented. The mean square errors (MSE-s) for the interpolator of different length impulse responses are obtained by computer simulations; it shows that the MSE-s of the proposed interpolators with a reasonable length are improved about 0.4 dB under flat power spectra in noisy environment with signal-to-noise power ratio (SNR) equal 10 dB. As expected, the results also demonstrate the improvements for the MSE-s with various fractional delays of the optimal interpolator against the ideal sinc filter under a fixed length impulse response.

Keywords: Interpolator, minimum mean square error, Wiener filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
2143 Direct Method for Converting FIR Filter with Low Nonzero Tap into IIR Filter

Authors: Jeong Hye Moon, Byung Hoon Kang, PooGyeon Park

Abstract:

In this paper, we proposed the direct method for converting Finite-Impulse Response (FIR) filter with low nonzero tap into Infinite-Impulse Response (IIR) filter using the pre-determined table. The prony method is used by ghost cancellator which is IIR approximation to FIR filter which is better performance than IIR and have much larger calculation difference. The direct method for many ghost combination with low nonzero tap of NTSC(National Television System Committee) TV signal in Korea is described. The proposed method is illustrated with an example.

Keywords: NTSC, Ghost cancellation, FIR, IIR, Prony method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3146
2142 Multi-stage Directional Median Filter

Authors: Zong Chen, Li Zhang

Abstract:

Median filter is widely used to remove impulse noise without blurring sharp edges. However, when noise level increased, or with thin edges, median filter may work poorly. This paper proposes a new filter, which will detect edges along four possible directions, and then replace noise corrupted pixel with estimated noise-free edge median value. Simulations show that the proposed multi-stage directional median filter can provide excellent performance of suppressing impulse noise in all situations.

Keywords: Impulse noise, Median filter, Multi-stage, Edgepreserving

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352
2141 An Improved Switching Median filter for Uniformly Distributed Impulse Noise Removal

Authors: Rajoo Pandey

Abstract:

The performance of an image filtering system depends on its ability to detect the presence of noisy pixels in the image. Most of the impulse detection schemes assume the presence of salt and pepper noise in the images and do not work satisfactorily in case of uniformly distributed impulse noise. In this paper, a new algorithm is presented to improve the performance of switching median filter in detection of uniformly distributed impulse noise. The performance of the proposed scheme is demonstrated by the results obtained from computer simulations on various images.

Keywords: Switching median filter, Impulse noise, Imagefiltering, Impulse detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
2140 Function Approximation with Radial Basis Function Neural Networks via FIR Filter

Authors: Kyu Chul Lee, Sung Hyun Yoo, Choon Ki Ahn, Myo Taeg Lim

Abstract:

Recent experimental evidences have shown that because of a fast convergence and a nice accuracy, neural networks training via extended kalman filter (EKF) method is widely applied. However, as to an uncertainty of the system dynamics or modeling error, the performance of the method is unreliable. In order to overcome this problem in this paper, a new finite impulse response (FIR) filter based learning algorithm is proposed to train radial basis function neural networks (RBFN) for nonlinear function approximation. Compared to the EKF training method, the proposed FIR filter training method is more robust to those environmental conditions. Furthermore , the number of centers will be considered since it affects the performance of approximation.

Keywords: Extended kalmin filter (EKF), classification problem, radial basis function networks (RBFN), finite impulse response (FIR)filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
2139 New Nonlinear Filtering Strategies for Eliminating Short and Long Tailed Noise in Images with Edge Preservation Properties

Authors: E. Srinivasan, D. Ebenezer

Abstract:

Midpoint filter is quite effective in recovering the images confounded by the short-tailed (uniform) noise. It, however, performs poorly in the presence of additive long-tailed (impulse) noise and it does not preserve the edge structures of the image signals. Median smoother discards outliers (impulses) effectively, but it fails to provide adequate smoothing for images corrupted with nonimpulse noise. In this paper, two nonlinear techniques for image filtering, namely, New Filter I and New Filter II are proposed based on a nonlinear high-pass filter algorithm. New Filter I is constructed using a midpoint filter, a highpass filter and a combiner. It suppresses uniform noise quite well. New Filter II is configured using an alpha trimmed midpoint filter, a median smoother of window size 3x3, the high pass filter and the combiner. It is robust against impulse noise and attenuates uniform noise satisfactorily. Both the filters are shown to exhibit good response at the image boundaries (edges). The proposed filters are evaluated for their performance on a test image and the results obtained are included.

Keywords: Image filters, Midpoint filter, Nonlinear filters, Nonlinear highpass filter, Order-statistic filters, Rank-order filters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
2138 Robust Statistics Based Algorithm to Remove Salt and Pepper Noise in Images

Authors: V.R.Vijaykumar, P.T.Vanathi, P.Kanagasabapathy, D.Ebenezer

Abstract:

In this paper, a robust statistics based filter to remove salt and pepper noise in digital images is presented. The function of the algorithm is to detect the corrupted pixels first since the impulse noise only affect certain pixels in the image and the remaining pixels are uncorrupted. The corrupted pixels are replaced by an estimated value using the proposed robust statistics based filter. The proposed method perform well in removing low to medium density impulse noise with detail preservation upto a noise density of 70% compared to standard median filter, weighted median filter, recursive weighted median filter, progressive switching median filter, signal dependent rank ordered mean filter, adaptive median filter and recently proposed decision based algorithm. The visual and quantitative results show the proposed algorithm outperforms in restoring the original image with superior preservation of edges and better suppression of impulse noise

Keywords: Image denoising, Nonlinear filter, Robust Statistics, and Salt and Pepper Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201
2137 Design of Two-Channel Quadrature Mirror Filter Banks Using Digital All-Pass Filters

Authors: Ju-Hong Lee, Yi-Lin Shieh

Abstract:

The paper deals with the minimax design of two-channel linear-phase (LP) quadrature mirror filter (QMF) banks using infinite impulse response (IIR) digital all-pass filters (DAFs). Based on the theory of two-channel QMF banks using two IIR DAFs, the design problem is appropriately formulated to result in an appropriate Chebyshev approximation for the desired group delay responses of the IIR DAFs and the magnitude response of the low-pass analysis filter. Through a frequency sampling and iterative approximation method, the design problem can be solved by utilizing a weighted least squares approach. The resulting two-channel QMF banks can possess approximately LP response without magnitude distortion. Simulation results are presented for illustration and comparison.

Keywords: Chebyshev approximation, Digital All-Pass Filter, Quadrature Mirror Filter, Weighted Least Squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
2136 Field Programmable Gate Array Based Infinite Impulse Response Filter Using Multipliers

Authors: Rajesh Mehra, Bharti Thakur

Abstract:

In this paper, an Infinite Impulse Response (IIR) filter has been designed and simulated on an Field Programmable Gate Arrays (FPGA). The implementation is based on Multiply Add and Accumulate (MAC) algorithm which uses multiply operations for design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of target device. The designed filter has been synthesized on Digital Signal Processor (DSP) slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The proposed design is simulated with Matlab, synthesized with Xilinx Synthesis Tool, and implemented on FPGA devices. The Virtex 5 FPGA based design can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP based design. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.

Keywords: Butterworth, DSP, IIR, MAC, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
2135 Compensated CIC-Hybrid Signed Digit Decimation Filter

Authors: Vishal Awasthi, Krishna Raj

Abstract:

In this paper, firstly, we present the mathematical modeling of finite impulse response (FIR) filter and Cascaded Integrator Comb (CIC) filter for sampling rate reduction and then an extension of Canonical signed digit (CSD) based efficient structure is presented in framework using hybrid signed digit (HSD) arithmetic. CSD representation imposed a restriction that two non-zero CSD coefficient bits cannot acquire adjacent bit positions and therefore, represented structure is not economical in terms of speed, area and power consumption. The HSD based structure gives optimum performance in terms of area and speed with 37.02% passband droop compensation.

Keywords: Multirate filtering, compensation theory, CIC filter, compensation filter, signed digit arithmetic, canonical signed digit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
2134 New Subband Adaptive IIR Filter Based On Polyphase Decomposition

Authors: Young-Seok Choi

Abstract:

We present a subband adaptive infinite-impulse response (IIR) filtering method, which is based on a polyphase decomposition of IIR filter. Motivated by the fact that the polyphase structure has benefits in terms of convergence rate and stability, we introduce the polyphase decomposition to subband IIR filtering, i.e., in each subband high order IIR filter is decomposed into polyphase IIR filters with lower order. Computer simulations demonstrate that the proposed method has improved convergence rate over conventional IIR filters.

Keywords: Subband adaptive filter, IIR filtering. Polyphase decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497
2133 IIR Filter design with Craziness based Particle Swarm Optimization Technique

Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
2132 Very Large Scale Integration Architecture of Finite Impulse Response Filter Implementation Using Retiming Technique

Authors: S. Jalaja, A. M. Vijaya Prakash

Abstract:

Recursive combination of an algorithm based on Karatsuba multiplication is exploited to design a generalized transpose and parallel Finite Impulse Response (FIR) Filter. Mid-range Karatsuba multiplication and Carry Save adder based on Karatsuba multiplication reduce time complexity for higher order multiplication implemented up to n-bit. As a result, we design modified N-tap Transpose and Parallel Symmetric FIR Filter Structure using Karatsuba algorithm. The mathematical formulation of the FFA Filter is derived. The proposed architecture involves significantly less area delay product (APD) then the existing block implementation. By adopting retiming technique, hardware cost is reduced further. The filter architecture is designed by using 90 nm technology library and is implemented by using cadence EDA Tool. The synthesized result shows better performance for different word length and block size. The design achieves switching activity reduction and low power consumption by applying with and without retiming for different combination of the circuit. The proposed structure achieves more than a half of the power reduction by adopting with and without retiming techniques compared to the earlier design structure. As a proof of the concept for block size 16 and filter length 64 for CKA method, it achieves a 51% as well as 70% less power by applying retiming technique, and for CSA method it achieves a 57% as well as 77% less power by applying retiming technique compared to the previously proposed design.

Keywords: Carry save adder Karatsuba multiplication, mid-range Karatsuba multiplication, modified FFA, transposed filter, retiming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
2131 A Pole Radius Varying Notch Filter with Transient Suppression for Electrocardiogram

Authors: Ramesh Rajagopalan, Adam Dahlstrom

Abstract:

Noise removal techniques play a vital role in the performance of electrocardiographic (ECG) signal processing systems. ECG signals can be corrupted by various kinds of noise such as baseline wander noise, electromyographic interference, and powerline interference. One of the significant challenges in ECG signal processing is the degradation caused by additive 50 or 60 Hz powerline interference. This work investigates the removal of power line interference and suppression of transient response for filtering noise corrupted ECG signals. We demonstrate the effectiveness of infinite impulse response (IIR) notch filter with time varying pole radius for improving the transient behavior. The temporary change in the pole radius of the filter diminishes the transient behavior. Simulation results show that the proposed IIR filter with time varying pole radius outperforms traditional IIR notch filters in terms of mean square error and transient suppression.

Keywords: Notch filter, ECG, transient, pole radius.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3193
2130 Digital Filter for Cochlear Implant Implemented on a Field- Programmable Gate Array

Authors: Rekha V. Dundur , M.V.Latte, S.Y. Kulkarni, M.K.Venkatesha

Abstract:

The advent of multi-million gate Field Programmable Gate Arrays (FPGAs) with hardware support for multiplication opens an opportunity to recreate a significant portion of the front end of a human cochlea using this technology. In this paper we describe the implementation of the cochlear filter and show that it is entirely suited to a single device XC3S500 FPGA implementation .The filter gave a good fit to real time data with efficiency of hardware usage.

Keywords: Cochlea, FPGA, IIR (Infinite Impulse Response), Multiplier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2320
2129 Swarm Intelligence based Optimal Linear Phase FIR High Pass Filter Design using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach

Authors: Sangeeta Mandal, Rajib Kar, Durbadal Mandal, Sakti Prasad Ghoshal

Abstract:

In this paper, an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach (PSO-CFIWA) has been presented. In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. The conventional gradient based optimization techniques are not efficient for digital filter design. Given the filter specifications to be realized, the PSO-CFIWA algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristic. In this paper, for the given problem, the designs of the optimal FIR high pass filters of different orders have been performed. The simulation results have been compared to those obtained by the well accepted algorithms such as Parks and McClellan algorithm (PM), genetic algorithm (GA). The results justify that the proposed optimal filter design approach using PSOCFIWA outperforms PM and GA, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.

Keywords: FIR Filter; PSO-CFIWA; PSO; Parks and McClellanAlgorithm, Evolutionary Optimization Technique; MagnitudeResponse; Convergence; High Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
2128 An Algorithm Proposed for FIR Filter Coefficients Representation

Authors: Mohamed Al Mahdi Eshtawie, Masuri Bin Othman

Abstract:

Finite impulse response (FIR) filters have the advantage of linear phase, guaranteed stability, fewer finite precision errors, and efficient implementation. In contrast, they have a major disadvantage of high order need (more coefficients) than IIR counterpart with comparable performance. The high order demand imposes more hardware requirements, arithmetic operations, area usage, and power consumption when designing and fabricating the filter. Therefore, minimizing or reducing these parameters, is a major goal or target in digital filter design task. This paper presents an algorithm proposed for modifying values and the number of non-zero coefficients used to represent the FIR digital pulse shaping filter response. With this algorithm, the FIR filter frequency and phase response can be represented with a minimum number of non-zero coefficients. Therefore, reducing the arithmetic complexity needed to get the filter output. Consequently, the system characteristic i.e. power consumption, area usage, and processing time are also reduced. The proposed algorithm is more powerful when integrated with multiplierless algorithms such as distributed arithmetic (DA) in designing high order digital FIR filters. Here the DA usage eliminates the need for multipliers when implementing the multiply and accumulate unit (MAC) and the proposed algorithm will reduce the number of adders and addition operations needed through the minimization of the non-zero values coefficients to get the filter output.

Keywords: Pulse shaping Filter, Distributed Arithmetic, Optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3172
2127 A Novel Impulse Detector for Filtering of Highly Corrupted Images

Authors: Umesh Ghanekar

Abstract:

As the performance of the filtering system depends upon the accuracy of the noise detection scheme, in this paper, we present a new scheme for impulse noise detection based on two levels of decision. In this scheme in the first stage we coarsely identify the corrupted pixels and in the second stage we finally decide whether the pixel under consideration is really corrupt or not. The efficacy of the proposed filter has been confirmed by extensive simulations.

Keywords: Impulse detection, noise removal, image filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
2126 Linear Phase High Pass FIR Filter Design using Improved Particle Swarm Optimization

Authors: Sangeeta Mondal, Vasundhara, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper presents an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Improved Particle Swarm Optimization (IPSO). In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. An iterative method is introduced to find the optimal solution of FIR filter design problem. Evolutionary algorithms like real code genetic algorithm (RGA), particle swarm optimization (PSO), improved particle swarm optimization (IPSO) have been used in this work for the design of linear phase high pass FIR filter. IPSO is an improved PSO that proposes a new definition for the velocity vector and swarm updating and hence the solution quality is improved. A comparison of simulation results reveals the optimization efficacy of the algorithm over the prevailing optimization techniques for the solution of the multimodal, nondifferentiable, highly non-linear, and constrained FIR filter design problems.

Keywords: FIR Filter, IPSO, GA, PSO, Parks and McClellan Algorithm, Evolutionary Optimization, High Pass Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3099
2125 Parallel Discrete Fourier Transform for Fast FIR Filtering Based on Overlapped-save Block Structure

Authors: Ying-Wen Bai, Ju-Maw Chen

Abstract:

To successfully provide a fast FIR filter with FTT algorithms, overlapped-save algorithms can be used to lower the computational complexity and achieve the desired real-time processing. As the length of the input block increases in order to improve the efficiency, a larger volume of zero padding will greatly increase the computation length of the FFT. In this paper, we use the overlapped block digital filtering to construct a parallel structure. As long as the down-sampling (or up-sampling) factor is an exact multiple lengths of the impulse response of a FIR filter, we can process the input block by using a parallel structure and thus achieve a low-complex fast FIR filter with overlapped-save algorithms. With a long filter length, the performance and the throughput of the digital filtering system will also be greatly enhanced.

Keywords: FIR Filter, Overlapped-save Algorithm, ParallelStructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
2124 Impulse Response Shortening for Discrete Multitone Transceivers using Convex Optimization Approach

Authors: Ejaz Khan, Conor Heneghan

Abstract:

In this paper we propose a new criterion for solving the problem of channel shortening in multi-carrier systems. In a discrete multitone receiver, a time-domain equalizer (TEQ) reduces intersymbol interference (ISI) by shortening the effective duration of the channel impulse response. Minimum mean square error (MMSE) method for TEQ does not give satisfactory results. In [1] a new criterion for partially equalizing severe ISI channels to reduce the cyclic prefix overhead of the discrete multitone transceiver (DMT), assuming a fixed transmission bandwidth, is introduced. Due to specific constrained (unit morm constraint on the target impulse response (TIR)) in their method, the freedom to choose optimum vector (TIR) is reduced. Better results can be obtained by avoiding the unit norm constraint on the target impulse response (TIR). In this paper we change the cost function proposed in [1] to the cost function of determining the maximum of a determinant subject to linear matrix inequality (LMI) and quadratic constraint and solve the resulting optimization problem. Usefulness of the proposed method is shown with the help of simulations.

Keywords: Equalizer, target impulse response, convex optimization, matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
2123 Designing FIR Filters with Polynomial Approach

Authors: Sunil Bhooshan, Vinay Kumar

Abstract:

This paper discusses a method for designing the Finite Impulse Response (FIR) filters based on polynomial approach.

Keywords: FIR filter, Polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
2122 Design of Variable Fractional-Delay FIR Differentiators

Authors: Jong-Jy Shyu, Soo-Chang Pei, Min-Han Chang

Abstract:

In this paper, the least-squares design of variable fractional-delay (VFD) finite impulse response (FIR) digital differentiators is proposed. The used transfer function is formulated so that Farrow structure can be applied to realize the designed system. Also, the symmetric characteristics of filter coefficients are derived, which leads to the complexity reduction by saving almost a half of the number of coefficients. Moreover, all the elements of related vectors or matrices for the optimal process can be represented in closed forms, which make the design easier. Design example is also presented to illustrate the effectiveness of the proposed method.

Keywords: Differentiator, variable fractional-delay filter, FIR filter, least-squares method, Farrow structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
2121 A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies

Authors: X. Z. Gao, S. J. Ovaska, X. Wang

Abstract:

Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.

Keywords: Predictive filtering, fuzzy logic, sinusoidal signals, time-varying frequencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
2120 Application of Hardware Efficient CIC Compensation Filter in Narrow Band Filtering

Authors: Vishal Awasthi, Krishna Raj

Abstract:

In many communication and signal processing systems, it is highly desirable to implement an efficient narrow-band filter that decimate or interpolate the incoming signals. This paper presents hardware efficient compensated CIC filter over a narrow band frequency that increases the speed of down sampling by using multiplierless decimation filters with polyphase FIR filter structure. The proposed work analyzed the performance of compensated CIC filter on the bases of the improvement of frequency response with reduced hardware complexity in terms of no. of adders and multipliers and produces the filtered results without any alterations. CIC compensator filter demonstrated that by using compensation with CIC filter improve the frequency response in passed of interest 26.57% with the reduction in hardware complexity 12.25% multiplications per input sample (MPIS) and 23.4% additions per input sample (APIS) w.r.t. FIR filter respectively.

Keywords: Multirate filtering, Narrow-band Signaling, Compensation Theory, CIC filter, Decimation, Compensation filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
2119 Time Effective Structural Frequency Response Testing with Oblique Impact

Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi

Abstract:

Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.

Keywords: Frequency response function, impact testing, modal analysis, oblique angle, oblique impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932
2118 Sparsity-Aware and Noise-Robust Subband Adaptive Filter

Authors: Young-Seok Choi

Abstract:

This paper presents a subband adaptive filter (SAF) for a system identification where an impulse response is sparse and disturbed with an impulsive noise. Benefiting from the uses of l1-norm optimization and l0-norm penalty of the weight vector in the cost function, the proposed l0-norm sign SAF (l0-SSAF) achieves both robustness against impulsive noise and much improved convergence behavior than the classical adaptive filters. Simulation results in the system identification scenario confirm that the proposed l0-norm SSAF is not only more robust but also faster and more accurate than its counterparts in the sparse system identification in the presence of impulsive noise.

Keywords: Subband adaptive filter, l0-norm, sparse system, robustness, impulsive interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
2117 Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Noise

Authors: M. B. Meenavathi, K. Rajesh

Abstract:

In this paper, we propose a new class of Volterra series based filters for image enhancement and restoration. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median operator or rank operator deal with only impulse noise and fail to cancel the most common Gaussian distributed noise. A class of second order Volterra filters is proposed to optimize the trade-off between noise removal and edge preservation. In this paper, we consider both the Gaussian and mixed Gaussian-impulse noise to test the robustness of the filter. Image enhancement and restoration results using the proposed Volterra filter are found to be superior to those obtained with standard linear and nonlinear filters.

Keywords: Gaussian noise, Image enhancement, Imagerestoration, Linear filters, Nonlinear filters, Volterra series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731