Search results for: Hot machining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 221

Search results for: Hot machining

221 Evaluating the Tool Wear Rate in Ultrasonic Machining of Titanium using Design of Experiments Approach

Authors: Jatinder Kumar, Vinod Kumar

Abstract:

Ultrasonic machining (USM) is a non-traditional machining process being widely used for commercial machining of brittle and fragile materials such as glass, ceramics and semiconductor materials. However, USM could be a viable alternative for machining a tough material such as titanium; and this aspect needs to be explored through experimental research. This investigation is focused on exploring the use of ultrasonic machining for commercial machining of pure titanium (ASTM Grade-I) and evaluation of tool wear rate (TWR) under controlled experimental conditions. The optimal settings of parameters are determined through experiments planned, conducted and analyzed using Taguchi method. In all, the paper focuses on parametric optimization of ultrasonic machining of pure titanium metal with TWR as response, and validation of the optimized value of TWR by conducting confirmatory experiments.

Keywords: Ultrasonic machining, titanium, tool wear rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505
220 Machining of FRP Composites by Abrasive Jet Machining Optimization Using Taguchi

Authors: D. V. Srikanth, M. Sreenivasa Rao

Abstract:

Abrasive Jet Machining is an Unconventional machining process in which the metal is removed from brittle and hard material in the form of micro-chips. With increase in need of materials like ceramics, composites, in manufacturing of various Mechanical & Electronic components, AJM has become a useful technique for micro machining. The present study highlights the influence of different parameters like Pressure, SOD, Time, Abrasive grain size, nozzle diameter on the Metal removal of FRP (Fiber Reinforced Polymer) composite by Abrasive jet machining. The results of the Experiments conducted were analyzed and optimized with TAGUCHI method of Optimization and ANOVA for Optimal Value.

Keywords: ANOVA, FRP Composite, AJC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
219 Mathematical Modeling of Machining Parameters in Electrical Discharge Machining of FW4 Welded Steel

Authors: M.R.Shabgard, R.M.Shotorbani

Abstract:

FW4 is a newly developed hot die material widely used in Forging Dies manufacturing. The right selection of the machining conditions is one of the most important aspects to take into consideration in the Electrical Discharge Machining (EDM) of FW4. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Wear Ratio (TWR) and surface roughness (Ra) to machining parameters (current, pulse-on time and voltage). Furthermore, a study was carried out to analyze the effects of machining parameters in respect of listed technological characteristics. The results of analysis of variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied.

Keywords: Electrical Discharge Machining (EDM), linearregression technique, Response Surface Methodology (RSM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
218 Optimization of Control Parameters for MRR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece

Authors: M. S. Reza, M. Hamdi, A.S. Hadi

Abstract:

The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. material removal rate (MRR). Lower MRR during EDM machining process may decrease its- machining productivity. Hence, the quality characteristic for MRR is set to higher-the-better to achieve the optimum machining productivity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the MRR. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the higher the discharge voltage, the higher will be the MRR.

Keywords: ANOVA, EDM, Injection Flushing, L18 OrthogonalArray, MRR, Stainless Steel 304

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
217 Feature-Based Machining using Macro

Authors: M. Razak, A. Jusoh, A. Zakaria

Abstract:

This paper presents an on-going research work on the implementation of feature-based machining via macro programming. Repetitive machining features such as holes, slots, pockets etc can readily be encapsulated in macros. Each macro consists of methods on how to machine the shape as defined by the feature. The macro programming technique comprises of a main program and subprograms. The main program allows user to select several subprograms that contain features and define their important parameters. With macros, complex machining routines can be implemented easily and no post processor is required. A case study on machining of a part that comprised of planar face, hole and pocket features using the macro programming technique was carried out. It is envisaged that the macro programming technique can be extended to other feature-based machining fields such as the newly developed STEP-NC domain.

Keywords: Feature-based machining, CNC, Macro, STEP-NC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2688
216 Influence of Machining Process on Surface Integrity of Plasma Coating

Authors: T. Zlámal, J. Petrů, M. Pagáč, P. Krajkovič

Abstract:

For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven.

Keywords: Machining, plasma sprayed coating, surface integrity, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
215 Testing of DISAL D240 and D420 Ceramic Tool Materials with an Interrupted Cut Simulator

Authors: Robert Cep, Marek Sadilek, Lenka Ocenasova, Josef Brychta, Michal Hatala, Branimir Barisic

Abstract:

This paper presents a solution for ceramic cutting tools availability in interrupted machining. Experiments were performed on a special fixture – the interrupted cut simulator. This fixture was constructed at our Department of Machining and Assembly within the scope of a project by the Czech Science Foundation. The goals of the tests were to contribute to the wider usage of these cutting materials in machining, especially in interrupted machining. Through the centuries, producers of ceramic cutting tools have taken big steps forward. Namely, increasing durability in maintaining high levels of strength and hardness lends an advantage. Some producers of these materials advise cutting inserts for interrupted machining at the present time [1, 2].

Keywords: Ceramic cutting tool, cutting tool tests, interrupted cutting, machining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
214 Influence of High Speed Parameters on the Quality of Machined Surface

Authors: Jana Novakova, Lenka Petrkovska, Josef Brychta, Robert Cep, Lenka Ocenasova

Abstract:

The contribution is dealing with the influence of high speed parameters on the quality of machined surface. In general the principle of high speed cutting lies in achieving faster machine times with concurrent increase in accuracy and quality of the machined areas in largely irregular, mathematically hard to define shapes. High speed machining is a highly effective method of machining with the following goals: increasing of machining productivity, increasing of quality of the machined surface, improving of machining economy, improving of ecological aspects of machining. This article is based on an experiment performed by the Department of Machining and Assembly of the Faculty of Mechanical Engineering of VŠBTechnical University of Ostrava.

Keywords: High speed cutting, measurement, surface integrity, surface roughness, residual stress/

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
213 Optimizing Turning Parameters for Cylindrical Parts Using Simulated Annealing Method

Authors: Farhad Kolahan, Mahdi Abachizadeh

Abstract:

In this paper, a simulated annealing algorithm has been developed to optimize machining parameters in turning operation on cylindrical workpieces. The turning operation usually includes several passes of rough machining and a final pass of finishing. Seven different constraints are considered in a non-linear model where the goal is to achieve minimum total cost. The weighted total cost consists of machining cost, tool cost and tool replacement cost. The computational results clearly show that the proposed optimization procedure has considerably improved total operation cost by optimally determining machining parameters.

Keywords: Optimization, Simulated Annealing, Machining Parameters, Turning Operation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
212 Efficient CNC Milling by Adjusting Material Removal Rate

Authors: Majid Tolouei-Rad

Abstract:

This paper describes a combined mathematicalgraphical approach for optimum tool path planning in order to improve machining efficiency. A methodology has been used that stabilizes machining operations by adjusting material removal rate in pocket milling operations while keeping cutting forces within limits. This increases the life of cutting tool and reduces the risk of tool breakage, machining vibration, and chatter. Case studies reveal the fact that application of this approach could result in a slight increase of machining time, however, a considerable reduction of tooling cost, machining vibration, noise and chatter can be achieved in addition to producing a better surface finish.

Keywords: CNC machines, milling, optimization, removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3475
211 Pin type Clamping Attachment for Remote Setup of Machining Process

Authors: Afzeri, R. Muhida, Darmawan, A. N. Berahim

Abstract:

Sharing the manufacturing facility through remote operation and monitoring of a machining process is challenge for effective use the production facility. Several automation tools in term of hardware and software are necessary for successfully remote operation of a machine. This paper presents a prototype of workpiece holding attachment for remote operation of milling process by self configuration the workpiece setup. The prototype is designed with mechanism to reorient the work surface into machining spindle direction with high positioning accuracy. Variety of parts geometry is hold by attachment to perform single setup machining. Pin type with array pattern additionally clamps the workpiece surface from two opposite directions for increasing the machining rigidity. Optimum pins configuration for conforming the workpiece geometry with minimum deformation is determined through hybrid algorithms, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Prototype with intelligent optimization technique enables to hold several variety of workpiece geometry which is suitable for machining low of repetitive production in remote operation.

Keywords: Optimization, Remote machining, GeneticAlgorithms, Machining Fixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
210 Machining Stability of a Milling Machine with Different Preloaded Spindle

Authors: Jui-Pin Hung, Qiao-Wen Chang, Kung-Da Wu, Yong-Run Chen

Abstract:

This study was aimed to investigate the machining stability of a spindle tool with different preloaded amount. To this end, the vibration tests were conducted on the spindle unit with different preload to assess the dynamic characteristics and machining stability of the milling machine. Current results demonstrate that the tool tip frequency response characteristics and the machining stabilities in X and Y direction are affected to change due to the different preload of spindle bearings. As found from the results, a high preloaded spindle tool shows higher limited cutting depth at mid position, while a spindle with low preload shows a higher limited depth. This indicates that the machining stability of a milling machine is affected to vary by the spindle unit when it was assembled with different bearing preload.

Keywords: Dynamic compliance, Bearing preload, Machining stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
209 Development of a Methodology for Processing of Drilling Operations

Authors: Majid Tolouei-Rad, Ankit Shah

Abstract:

Drilling is the most common machining operation and it forms the highest machining cost in many manufacturing activities including automotive engine production. The outcome of this operation depends upon many factors including utilization of proper cutting tool geometry, cutting tool material and the type of coating used to improve hardness and resistance to wear, and also cutting parameters. With the availability of a large array of tool geometries, materials and coatings, is has become a challenging task to select the best tool and cutting parameters that would result in the lowest machining cost or highest profit rate. This paper describes an algorithm developed to help achieve good performances in drilling operations by automatically determination of proper cutting tools and cutting parameters. It also helps determine machining sequences resulting in minimum tool changes that would eventually reduce machining time and cost where multiple tools are used.

Keywords: Cutting tool, drilling, machining, algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3350
208 Optimization of Control Parameters for EWR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece

Authors: M. S. Reza, M. Hamdi, S. H. Tomadi, A. R. Ismail

Abstract:

The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece using copper tools are being optimized according to its individual machining characteristic i.e. Electrode Wear Ratio (EWR). Higher EWR would give bad dimensional precision for the EDM machined workpiece because of high electrode wear. Hence, the quality characteristic for EWR is set to lower-the-better to achieve the optimum dimensional precision for the machined workpiece. Taguchi method has been used for the construction, layout and analysis of the experiment for EWR machining characteristic. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that negative polarity machining parameter setting will decreases EWR.

Keywords: ANOVA, EDM, Injection Flushing, L18Orthogonal Array, EWR, Stainless Steel 304

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847
207 Determining the Workability of the New Metallurgical Materials

Authors: Ondrej Dupala, Josef Brychta, Robert Cep, Adam Janasek

Abstract:

The aim of this paper is to experimentally discover the workability coefficient of the Inconel 718 material by using a slide turning machining. Two different types of cutting inserts, one made of carbide and the other one made of ceramic, are being used. The purpose is to compare measured results and recommend the appropriate materials and cutting parameters for a machining of the Inconel 718. Furthermore, the durability of inserts with the chosen wear criterion is being compared for different cutting speeds. Machinability of these materials is a crucial characteristic as it allows us to shorten the technological cycle time and increase the machining productivity. And this is of great importance from an economic point of view.

Keywords: Workability, Inconel 718, Turning Machining, Durability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
206 Experimental Investigation on Over-Cut in Ultrasonic Machining of WC-Co Composite

Authors: Ravinder Kataria, Jatinder Kumar, B. S. Pabla

Abstract:

Ultrasonic machining is one of the most widely used non-traditional machining processes for machining of materials that are relatively brittle, hard, and fragile such as advanced ceramics, refractories, crystals, quartz etc. Present article has been targeted at investigating the impact of different experimental conditions (power rating, cobalt content, tool material, thickness of work piece, tool geometry, and abrasive grit size) on over cut in ultrasonic drilling of WC-Co composite material. Taguchi’s L-36 orthogonal array has been employed for conducting the experiments. Significant factors have been identified using analysis of variance (ANOVA) test. The experimental results revealed that abrasive grit size and tool material are most significant factors for over cut.

Keywords: ANOVA, Abrasive grit size, Taguchi, WC-Co, ultrasonic machining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
205 3D Modeling of Temperature by Finite Element in Machining with Experimental Authorization

Authors: P. Mottaghizadeh, M. Bagheri

Abstract:

In the present paper, the three-dimensional temperature field of tool is determined during the machining and compared with experimental work on C45 workpiece using carbide cutting tool inserts. During the metal cutting operations, high temperature is generated in the tool cutting edge which influence on the rate of tool wear. Temperature is most important characteristic of machining processes; since many parameters such as cutting speed, surface quality and cutting forces depend on the temperature and high temperatures can cause high mechanical stresses which lead to early tool wear and reduce tool life. Therefore, considerable attention is paid to determine tool temperatures. The experiments are carried out for dry and orthogonal machining condition. The results show that the increase of tool temperature depends on depth of cut and especially cutting speed in high range of cutting conditions.

Keywords: Finite element method, Machining, Temperature measurement, Thermal fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
204 Capability Prediction of Machining Processes Based on Uncertainty Analysis

Authors: Hamed Afrasiab, Saeed Khodaygan

Abstract:

Prediction of machining process capability in the design stage plays a key role to reach the precision design and manufacturing of mechanical products. Inaccuracies in machining process lead to errors in position and orientation of machined features on the part, and strongly affect the process capability in the final quality of the product. In this paper, an efficient systematic approach is given to investigate the machining errors to predict the manufacturing errors of the parts and capability prediction of corresponding machining processes. A mathematical formulation of fixture locators modeling is presented to establish the relationship between the part errors and the related sources. Based on this method, the final machining errors of the part can be accurately estimated by relating them to the combined dimensional and geometric tolerances of the workpiece – fixture system. This method is developed for uncertainty analysis based on the Worst Case and statistical approaches. The application of the presented method is illustrated through presenting an example and the computational results are compared with the Monte Carlo simulation results.

Keywords: Process capability, machining error, dimensional and geometrical tolerances, uncertainty analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
203 Erosion in Abrasive Jet Nozzles: A Comprehensive Study

Authors: D. V. Sreekanth, M. Sreenivasa Rao

Abstract:

Abrasive jet machining is one of the promising non-traditional machining processes which uses mechanical energy (pressure and velocity) for machining various materials. The process parameters that influence the metal removal rate are kerfs, surface finish, depth of cut, air pressure, and distance between nozzle and work piece, nozzle diameter, abrasive type, abrasive shape, and mass flow rate of abrasive particles. The abrasive particles coming out with high pressure not only hits work surface but also passes through the nozzle resulting in erosion. This paper focuses mainly on the effect of different parameters on the erosion of nozzle in Abrasive jet machining. Three different types of nozzles made of sapphire, tungsten carbide, and high carbon high chromium steel (HCHCS) are used for machining glass and the erosion of these nozzles are calculated. The results are shown in tabular form and graphical representation.

Keywords: AJM, nozzle, sapphire, tungsten carbide, chrome steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
202 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance

Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
201 Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process

Authors: Vinod Kumar, Jatinder Kumar

Abstract:

The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.

Keywords: Stress, MRR, Flow, Ultrasonic Machining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2810
200 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture

Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju

Abstract:

Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nanocutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.

Keywords: Economic analysis, Machining, Minimum Quantity lubrication, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
199 Feedrate Optimization for Ball-end milling of Sculptured Surfaces using Fuzzy Logic Controller

Authors: Njiri J. G., Ikua B. W., Nyakoe G. N.

Abstract:

Optimization of cutting parameters important in precision machining in regards to efficiency and surface integrity of the machined part. Usually productivity and precision in machining is limited by the forces emanating from the cutting process. Due to the inherent varying nature of the workpiece in terms of geometry and material composition, the peak cutting forces vary from point to point during machining process. In order to increase productivity without compromising on machining accuracy, it is important to control these cutting forces. In this paper a fuzzy logic control algorithm is developed that can be applied in the control of peak cutting forces in milling of spherical surfaces using ball end mills. The controller can adaptively vary the feedrate to maintain allowable cutting force on the tool. This control algorithm is implemented in a computer numerical control (CNC) machine. It has been demonstrated that the controller can provide stable machining and improve the performance of the CNC milling process by varying feedrate.

Keywords: Ball-end mill, feedrate, fuzzy logic controller, machining optimization, spherical surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2482
198 Analytical Model Prediction: Micro-Cutting Tool Forces with the Effect of Friction on Machining Titanium Alloy (Ti-6Al-4V)

Authors: Mohd Shahrom Ismail, B.T. Hang Tuah Baharudin, K.K.B. Hon

Abstract:

In this paper, a methodology of a model based on predicting the tool forces oblique machining are introduced by adopting the orthogonal technique. The applied analytical calculation is mostly based on Devries model and some parts of the methodology are employed from Amareggo-Brown model. Model validation is performed by comparing experimental data with the prediction results on machining titanium alloy (Ti-6Al-4V) based on micro-cutting tool perspective. Good agreements with the experiments are observed. A detailed friction form that affected the tool forces also been examined with reasonable results obtained.

Keywords: dynamics machining, micro cutting tool, Tool forces

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
197 Drilling of Glass Sheets by Abrasive Jet Machining

Authors: A. El-Domiaty, H. M. Abd El-Hafez, M. A. Shaker

Abstract:

Drilling of glass sheets with different thicknesses have been carried out by Abrasive Jet Machining process (AJM) in order to determine its machinability under different controlling parameters of the AJM process. The present study has been introduced a mathematical model and the obtained results have been compared with that obtained from other models published earlier [1-6]. The experimental results of the present work are used to discuss the validity of the proposed model as well as the other models.

Keywords: Abrasive Jet Machining, Erosion rate, Glass, Mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3942
196 Morphology of Machined Surfaces from Electro Discharge Sawing and Sinking Electro Discharge Machining

Authors: N. Nagabhushana Ramesh, Kalley Harinarayana, T. Raghavender Reddy, B. Balu Naik

Abstract:

Electro Discharge Sawing is a hybrid process combining the features of SEDM and ECM. Its major characteristic is extremely fast erosion rate compare to either of the above processes. This paper brings out its relative feature of SEDM and EDS about their erosion rates, surface roughness, and morphology of machined surfaces.

Keywords: Electro Chemical Machining (ECM), Electro Discharge Sawing (EDS), Sinking Electro Discharge Machining (SEDM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
195 Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification

Authors: Jui P. Hung, Yuan L. Lai, Hui T. You

Abstract:

Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.

Keywords: Machining stability, Vertical milling machine, Linearguide, Contact stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
194 An Exhaustive Review of Die Sinking Electrical Discharge Machining Process and Scope for Future Research

Authors: M. M. Pawade, S. S. Banwait

Abstract:

Electrical Discharge Machine (EDM) is especially used for the manufacturing of 3-D complex geometry and hard material parts that are extremely difficult-to-machine by conventional machining processes. In this paper authors review the research work carried out in the development of die-sinking EDM within the past decades for the improvement of machining characteristics such as Material Removal Rate, Surface Roughness and Tool Wear Ratio. In this review various techniques reported by EDM researchers for improving the machining characteristics have been categorized as process parameters optimization, multi spark technique, powder mixed EDM, servo control system and pulse discriminating. At the end, flexible machine controller is suggested for Die Sinking EDM to enhance the machining characteristics and to achieve high-level automation. Thus, die sinking EDM can be integrated with Computer Integrated Manufacturing environment as a need of agile manufacturing systems.

Keywords: Electrical Discharge Machine, Flexible Machine Controller, Material Removal Rate, Tool Wear Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5295
193 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel

Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini

Abstract:

Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.

Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324
192 The Effect of Nose Radius on Cutting Force and Temperature during Machining Titanium Alloy (Ti-6Al-4V)

Authors: Moaz H. Ali, M. N. M. Ansari

Abstract:

This paper presents a study the effect of nose radius (Rz-mm) on cutting force components and temperatures during the machining simulation in an orthogonal cutting process for titanium alloy (Ti-6Al-4V). The cutting process was performed at various nose radiuses (Rz-mm) while the depth of cut (d-mm), feed rate (fmm/ tooth) and cutting speed (vc-m/ min) were remained constant. The main cutting force (Fc), feed cutting force (Ft) and temperatures were estimated by using finite element modeling (FEM) through ABAQUS/EXPLICIT software and the simulation was developed the two-dimension via an orthogonal cutting process during machining titanium alloy (Ti-6Al-4V). The results led to the conclusion that the nose radius (Rz-mm) has affected directly on the cutting force components. However, temperature gave no indication or has no significant relation with nose radius during machining titanium alloy (Ti-6Al-4V). Hence, any increase or decrease in the nose radius (Rzmm) during machining operation led to effect on the cutting forces and thus it will be effective on surface finish, quality, and quantity of products.

Keywords: Finite element modeling (FEM), nose radius, cutting force, temperature, titanium alloy (Ti-6Al-4V).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009