Search results for: Artificial lift
1010 Implementation Gas Lift Selection Technique and Design in the Wafa Field of Ghadamis Basin, West Libya
Authors: E. I. Fandi, E. A. Alfandi, M. A. Alrabib
Abstract:
Implementing of a continues flow gas lift system for one vertical oil well producer in Wafa field was investigated under five reservoir pressures and their dependent parameters. Well 03 producers were responded positively to the gas lift system despite of the high well head operating pressures. However, the flowing bottom hole pressures were reduced by a ratio from 6 to 33 % in the case A3 for example, for the design runs conducted under the existing operating conditions for years 2003, 2006 and 2009. This reduction in FBHP has increased the production rate by a ratio from 12 to 22.5%. The results indicated that continues flow gas lift system is a good candidate as an artificial lift system to be considered for the one vertical producer covered by this study. Most significantly, timing for artificial lift by a gas lift system for this field is highly dependent on the amount of gas available at the time of implementation because of the high gas production rate from the top of the reservoir.
Keywords: Gas lift, Wafa field, Ghadamis Basin, Artificial lift, Libya.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35181009 Gas Lift Optimization Using Smart Gas Lift Valve
Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, M. Babaie
Abstract:
Gas lift is one of the most common forms of artificial lift, particularly for offshore wells because of its relative down hole simplicity, flexibility, reliability, and ability to operate over a large range of rates and occupy very little space at the well head. Presently, petroleum industry is investing in exploration and development fields in offshore locations where oil and gas wells are being drilled thousands of feet below the ocean in high pressure and temperature conditions. Therefore, gas-lifted oil wells are capable of failure through gas lift valves which are considered as the heart of the gas lift system for controlling the amount of the gas inside the tubing string. The gas injection rate through gas lift valve must be controlled to be sufficient to obtain and maintain critical flow, also, gas lift valves must be designed not only to allow gas passage through it and prevent oil passage, but also for gas injection into wells to be started and stopped when needed. In this paper, smart gas lift valve has been used to investigate the effect of the valve port size, depth of injection and vertical lift performance on well productivity; all these aspects have been investigated using PROSPER simulator program coupled with experimental data. The results show that by using smart gas lift valve, the gas injection rate can be controlled which leads to improved flow performance.
Keywords: Effect of gas lift valve port size, effect water cut, and vertical flow performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24571008 Gas Lift Optimization to Improve Well Performance
Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, Meisam Babaie
Abstract:
Gas lift optimization is becoming more important now a day in petroleum industry. A proper lift optimization can reduce the operating cost, increase the net present value (NPV) and maximize the recovery from the asset. A widely accepted definition of gas lift optimization is to obtain the maximum output under specified operating conditions. In addition, gas lift, a costly and indispensable means to recover oil from high depth reservoir entails solving the gas lift optimization problems. Gas lift optimization is a continuous process; there are two levels of production optimization. The total field optimization involves optimizing the surface facilities and the injection rate that can be achieved by standard tools softwares. Well level optimization can be achieved by optimizing the well parameters such as point of injection, injection rate, and injection pressure. All these aspects have been investigated and presented in this study by using experimental data and PROSPER simulation program. The results show that the well head pressure has a large influence on the gas lift performance and also proved that smart gas lift valve can be used to improve gas lift performance by controlling gas injection from down hole. Obtaining the optimum gas injection rate is important because excessive gas injection reduces production rate and consequently increases the operation cost.
Keywords: Optimization, production rate, reservoir pressure effect, gas injection rate effect, gas injection pressure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68031007 Thread Lift: Classification, Technique, and How to Approach to the Patient
Authors: Panprapa Yongtrakul, Punyaphat Sirithanabadeekul, Pakjira Siriphan
Abstract:
Background: The thread lift technique has become popular because it is less invasive, requires a shorter operation, less downtime, and results in fewer postoperative complications. The advantage of the technique is that the thread can be inserted under the skin without the need for long incisions. Currently, there are a lot of thread lift techniques with respect to the specific types of thread used on specific areas, such as the mid-face, lower face, or neck area. Objective: To review the thread lift technique for specific areas according to type of thread, patient selection, and how to match the most appropriate to the patient. Materials and Methods: A literature review technique was conducted by searching PubMed and MEDLINE, then compiled and summarized. Result: We have divided our protocols into two sections: Protocols for short suture, and protocols for long suture techniques. We also created 3D pictures for each technique to enhance understanding and application in a clinical setting. Conclusion: There are advantages and disadvantages to short suture and long suture techniques. The best outcome for each patient depends on appropriate patient selection and determining the most suitable technique for the defect and area of patient concern.
Keywords: Thread lift, thread lift method, thread lift technique, thread lift procedure, threading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102201006 Computational Fluid Dynamics Analysis and Optimization of the Coanda Unmanned Aerial Vehicle Platform
Authors: Nigel Q. Kelly, Zaid Siddiqi, Jin W. Lee
Abstract:
It is known that using Coanda aerosurfaces can drastically augment the lift forces when applied to an Unmanned Aerial Vehicle (UAV) platform. However, Coanda saucer UAVs, which commonly use a dish-like, radially-extending structure, have shown no significant increases in thrust/lift force and therefore have never been commercially successful: the additional thrust/lift generated by the Coanda surface diminishes since the airstreams emerging from the rotor compartment expand radially causing serious loss of momentums and therefore a net loss of total thrust/lift. To overcome this technical weakness, we propose to examine a Coanda surface of straight, cylindrical design and optimize its geometry for highest thrust/lift utilizing computational fluid dynamics software ANSYS Fluent®. The results of this study reveal that a Coanda UAV configured with 4 sides of straight, cylindrical Coanda surface achieve an overall 45% increase in lift compared to conventional Coanda Saucer UAV configurations. This venture integrates with an ongoing research project where a Coanda prototype is being assembled. Additionally, a custom thrust-stand has been constructed for thrust/lift measurement.
Keywords: CFD, Coanda, Lift, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6041005 PI Control for Positive Output Elementary Super Lift Luo Converter
Authors: K. Ramash Kumar, S. Jeevananthan
Abstract:
The object of this paper is to design and analyze a proportional – integral (PI) control for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a development of PI control capable of providing the good static and dynamic performance compared to proportional – integralderivative (PID) controller. Using state space average method derives the dynamic equations describing the positive output elementary super lift luo converter and PI control is designed. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The PI control for positive output elementary super lift Luo converter is tested for transient region, line changes, load changes, steady state region and also for components variations.Keywords: DC-DC converter, Positive output elementarysuper lift Luo converter (POESLLC), Proportional – Integral (PI)control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50271004 A Retrospective of High-Lift Device Technology
Authors: Andrea Dal Monte, Marco Raciti Castelli, Ernesto Benini
Abstract:
The present paper deals with the most adopted technical solutions for the enhancement of the lift force of a wing. In fact, during several flight conditions (such as take off and landing), the lift force needs to be dramatically enhanced. Both trailing edge devices (such as flaps) and leading edge ones (such as slats) are described. Finally, the most advanced aerodynamic solutions to avoid the separation of the boundary layer from aircraft wings at high angles of attack are reviewed.Keywords: High lift devices, Trailing Edge devices, Leading Edge devices, Boundary Layer Control devices
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39681003 Hysteresis Modulation Based Sliding Mode Control for Positive Output Elementary Super Lift Luo Converter
Authors: K. Ramash Kumar, S. Jeevananthan
Abstract:
The Object of this paper is to design and analyze a Hysteresis modulation based sliding mode control (HMSMC) for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a HMSMC capable of providing the good steady state and dynamic performance compared to conventional controllers. Dynamic equations describing the positive output elementary super lift luo converter are derived by using state space average method. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The HMSMC for positive output elementary super lift Luo converter is tested for line changes, load changes and also for components variations.Keywords: DC-DC converter, Positive output elementarysuper lift Luo converter (POESLLC), Hysteresis modulation basedsliding mode control (HMSMC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22511002 Optimal Design of Airfoil with High Aspect Ratio in Unmanned Aerial Vehicles
Authors: Kyoungwoo Park, Ji-Won Han, Hyo-Jae Lim, Byeong-Sam Kim, Juhee Lee
Abstract:
Shape optimization of the airfoil with high aspect ratio of long endurance unmanned aerial vehicle (UAV) is performed by the multi-objective optimization technology coupled with computational fluid dynamics (CFD). For predicting the aerodynamic characteristics around the airfoil the high-fidelity Navier-Stokes solver is employed and SMOGA (Simple Multi-Objective Genetic Algorithm), which is developed by authors, is used for solving the multi-objective optimization problem. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that is decided by airfoil shapes can be obtained.Keywords: Unmanned aerial vehicle (UAV), Airfoil, CFD, Shape optimization, Lift-to-drag ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64371001 Half Model Testing for Canard of a Hybrid Buoyant Aircraft
Authors: A. U. Haque, W. Asrar, A. A. Omar, E. Sulaeman, J. S. Mohamed Ali
Abstract:
Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angle of attack. As a part of the validation of low fidelity tool, plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficients, the overall trend has under predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.Keywords: Wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26251000 Optimal Design of Airfoil Platform Shapes with High Aspect Ratio Using Genetic Algorithm
Authors: Kyoungwoo Park, Byeong-Sam Kim
Abstract:
Unmanned aerial vehicles (UAVs) performing their operations for a long time have been attracting much attention in military and civil aviation industries for the past decade. The applicable field of UAV is changing from the military purpose only to the civil one. Because of their low operation cost, high reliability and the necessity of various application areas, numerous development programs have been initiated around the world. To obtain the optimal solutions of the design variable (i.e., sectional airfoil profile, wing taper ratio and sweep) for high performance of UAVs, both the lift and lift-to-drag ratio are maximized whereas the pitching moment should be minimized, simultaneously. It is found that the lift force and lift-to-drag ratio are linearly dependent and a unique and dominant solution are existed. However, a trade-off phenomenon is observed between the lift-to-drag ratio and pitching moment. As the result of optimization, sixty-five (65) non-dominated Pareto individuals at the cutting edge of design spaces that are decided by airfoil shapes can be obtained.Keywords: Unmanned aerial vehicle (UAV), Airfoil, CFD, Shape optimization, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959999 Influence of Propeller Blade Lift Distribution on Whirl Flutter Stability Characteristics
Authors: J. Cecrdle
Abstract:
This paper deals with the whirl flutter of the turboprop aircraft structures. It is focused on the influence of the blade lift span-wise distribution on the whirl flutter stability. Firstly it gives the overall theoretical background of the whirl flutter phenomenon. After that the propeller blade forces solution and the options of the blade lift modeling are described. The problem is demonstrated on the example of a twin turboprop aircraft structure. There are evaluated the influences with respect to the propeller aerodynamic derivatives and finally the influences to the whirl flutter speed and the whirl flutter margin respectively.
Keywords: Aeroelasticity, flutter, propeller blade force, whirl flutter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334998 Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift
Authors: Donatien Callon, Ian Lalonde, Mathieu Nadeau, Alexandre Girard
Abstract:
Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66% and 3) provides the same level of patient comfort compared to a standard unassisted floor lift.
Keywords: Floor lift, human robot interaction, admittance controller, variable admittance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57997 Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class
Authors: Ahmed Abdulghani Taha, Mohammad Abdulghani Taha
Abstract:
This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m-2, fat mass (FM) = 9.96 ± 3.15 kg and fat percentage (% BF) = 13.98 ± 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55± 2.21, P > 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students.Keywords: Fuzzy logic, body mass index, body fat percentage, weightlifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533996 Computational Analysis of Cavity Effect over Aircraft Wing
Authors: P. Booma Devi, Dilip A. Shah
Abstract:
This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack.Keywords: Lift, square and rectangle dimples, enhancement of stall angle, cavity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872995 Aerodynamic Performance of a Pitching Bio-Inspired Corrugated Airfoil
Authors: Hadi Zarafshani, Shidvash Vakilipour, Shahin Teimori, Sara Barati
Abstract:
In the present study, the aerodynamic performance of a rigid two-dimensional pitching bio-inspired corrugate airfoil was numerically investigated at Reynolds number of 14000. The Open Field Operations And Manipulations (OpenFOAM) computational fluid dynamic tool is used to solve flow governing equations numerically. The k-ω SST turbulence model with low Reynolds correction (k-ω SST LRC) and the pimpleDyMFOAM solver are utilized to simulate the flow field around pitching bio-airfoil. The lift and drag coefficients of the airfoil are calculated at reduced frequencies k=1.24-4.96 and the angular amplitude of A=5°-20°. Results show that in a fixed reduced frequency, the absolute value of the sectional lift and drag coefficients increase with increasing pitching amplitude. In a fixed angular amplitude, the absolute value of the lift and drag coefficients increase as the pitching reduced frequency increases.
Keywords: Bio-inspired pitching airfoils, OpenFOAM, low Reynolds k-ω SST model, lift and drag coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906994 Effect of Endplate Shape on Performance and Stability of Wings-in Ground (WIG) Craft
Authors: Kyoungwoo Park, Chol Ho Hong, Kwang Soo Kim, Juhee Lee
Abstract:
Numerical analysis for the aerodynamic characteristics of the WIG (wing-in ground effect) craft with highly cambered and aspect ratio of one is performed to predict the ground effect for the case of with- and without- lower-extension endplate. The analysis is included varying angles of attack from 0 to10 deg. and ground clearances from 5% of chord to 50%. Due to the ground effect, the lift by rising in pressure on the lower surface is increased and the influence of wing-tip vortices is decreased. These two significant effects improve the lift-drag ratio. On the other hand, the endplate prevents the high-pressure air escaping from the air cushion at the wing tip and causes to increase the lift and lift-drag ratio further. It is found from the visualization of computation results that two wing-tip vortices are generated from each surface of the wing tip and their strength are weak and diminished rapidly. Irodov-s criteria are also evaluated to investigate the static height stability. The comparison of Irodov-s criteria shows that the endplate improves the deviation of the static height stability with respect to pitch angles and heights. As the results, the endplate can improve the aerodynamic characteristics and static height stability of wings in ground effect, simultaneously.Keywords: WIG craft, Endplate, Ground Effect, Aerodynamics, CFD, Lift-drag ratio, Static height stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007993 Extractable Heavy Metal Concentrations in Bottom Ash from Incineration of Wood-Based Residues in a BFB Boiler Using Artificial Sweat and Gastric Fluids
Authors: Risto Pöykiö, Olli Dahl, Hannu Nurmesniemi
Abstract:
The highest extractable concentration in the artificial sweat fluid was observed for Ba (120mg/kg; d.w.). The highest extractable concentration in the artificial gastric fluid was observed for Al (9030mg/kg; d.w.). Furthermore, the extractable concentrations of Ba (550mg/kg; d.w.) and Zn (400mg/kg: d.w.) in the bottom ash using artificial gastric fluid were elevated. The extractable concentrations of all heavy metals in the artificial gastric fluid were higher than those in the artificial sweat fluid. These results are reasonable in the light of the fact that the pH of the artificial gastric fluid was extremely acidic both before (pH 1.54) and after (pH 1.94) extraction, whereas the pH of the artificial sweat fluid was slightly alkaline before (pH 6.50) and after extraction (pH 8.51).
Keywords: Ash, artificial fluid, heavy metals, in vitro, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2929992 Optimal Distribution of Lift Gas in Gas Lifted Oil Field Using MPC and Unscented Kalman Filter
Authors: Roshan Sharma, Bjørn Glemmestad
Abstract:
In gas lifted oil fields, the lift gas should be distributed optimally among the wells which share gas from a common source to maximize total oil production. One of the objectives of the paper is to show that a linear MPC consisting of a control objective and an economic objective can be used both as an optimizer and a controller for gas lifted systems. The MPC is based on linearized model of the oil field developed from first principles modeling. Simulation results show that the total oil production is increased by 3.4%. Difficulties in accurately measuring the bottom hole pressure using sensors in harsh operating conditions can be resolved by using an Unscented Kalman Filter (UKF) for estimation. In oil fields where input disturbance (total supply of gas) is not measured, UKF can also be used for disturbance estimation. Increased total oil production due to optimization leads to increased profit.
Keywords: gas lift, MPC, oil production, optimization, Unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655991 Application of Fuzzy Logic Approach for an Aircraft Model with and without Winglet
Authors: Altab Hossain, Ataur Rahman, Jakir Hossen, A.K.M. P. Iqbal, SK. Hasan
Abstract:
The measurement of aerodynamic forces and moments acting on an aircraft model is important for the development of wind tunnel measurement technology to predict the performance of the full scale vehicle. The potentials of an aircraft model with and without winglet and aerodynamic characteristics with NACA wing No. 65-3- 218 have been studied using subsonic wind tunnel of 1 m × 1 m rectangular test section and 2.5 m long of Aerodynamics Laboratory Faculty of Engineering (University Putra Malaysia). Focusing on analyzing the aerodynamic characteristics of the aircraft model, two main issues are studied in this paper. First, a six component wind tunnel external balance is used for measuring lift, drag and pitching moment. Secondly, Tests are conducted on the aircraft model with and without winglet of two configurations at Reynolds numbers 1.7×105, 2.1×105, and 2.5×105 for different angle of attacks. Fuzzy logic approach is found as efficient for the representation, manipulation and utilization of aerodynamic characteristics. Therefore, the primary purpose of this work was to investigate the relationship between lift and drag coefficients, with free-stream velocities and angle of attacks, and to illustrate how fuzzy logic might play an important role in study of lift aerodynamic characteristics of an aircraft model with the addition of certain winglet configurations. Results of the developed fuzzy logic were compared with the experimental results. For lift coefficient analysis, the mean of actual and predicted values were 0.62 and 0.60 respectively. The coreelation between actual and predicted values (from FLS model) of lift coefficient in different angle of attack was found as 0.99. The mean relative error of actual and predicted valus was found as 5.18% for the velocity of 26.36 m/s which was found to be less than the acceptable limits (10%). The goodness of fit of prediction value was 0.95 which was close to 1.0.Keywords: Wind tunnel; Winglet; Lift coefficient; Fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906990 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems
Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr
Abstract:
Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.Keywords: Gas lift instability, bubble forming, bubble collapsing, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475989 Concept for a Multidisciplinary Design Process–An Application on High Lift Systems
Authors: P. Zamov, H. Spangenberg
Abstract:
Presents a concept for a multidisciplinary process supporting effective task transitions between different technical domains during the architectural design stage. A system configuration challenge is the multifunctional driven increased solution space. As a consequence, more iteration is needed to find a global optimum, i.e. a compromise between involved disciplines without negative impact on development time. Since state of the art standards like ISO 15288 and VDI 2206 do not provide a detailed methodology on multidisciplinary design process, higher uncertainties regarding final specifications arise. This leads to the need of more detailed and standardized concepts or processes which could mitigate risks. The performed work is based on analysis of multidisciplinary interaction, of modeling and simulation techniques. To demonstrate and prove the applicability of the presented concept, it is applied to the design of aircraft high lift systems, in the context of the engineering disciplines kinematics, actuation, monitoring, installation and structure design.Keywords: Systems engineering, multidisciplinary, architectural design, high lift system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304988 Hybrid Model Based on Artificial Immune System and Cellular Automata
Authors: Ramin Javadzadeh, Zahra Afsahi, MohammadReza Meybodi
Abstract:
The hybridization of artificial immune system with cellular automata (CA-AIS) is a novel method. In this hybrid model, the cellular automaton within each cell deploys the artificial immune system algorithm under optimization context in order to increase its fitness by using its neighbor-s efforts. The hybrid model CA-AIS is introduced to fix the standard artificial immune system-s weaknesses. The credibility of the proposed approach is evaluated by simulations and it shows that the proposed approach achieves better results compared to standard artificial immune system.Keywords: Artificial Immune System, Cellular Automat, neighborhood
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603987 Force Statistics and Wake Structure Mechanism of Flow around a Square Cylinder at Low Reynolds Numbers
Authors: Shams-Ul-Islam, Waqas Sarwar Abbasi, Hamid Rahman
Abstract:
Numerical investigation of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann methods at different Reynolds numbers. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations, streamlines and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The Reynolds numbers affected the physical quantities.
Keywords: Code validation, Force statistics, Multi-relaxation-time lattice Boltzmann method, Reynolds numbers, Square cylinder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3122986 Extractability of Heavy Metals in Green Liquor Dregs using Artificial Sweat and Gastric Fluids
Authors: Kati Manskinen, Risto Pöykiö, Hannu Nurmesniemi
Abstract:
In an assessment of the extractability of metals in green liquor dregs from the chemical recovery circuit of semichemical pulp mill, extractable concentrations of heavy metals in artificial gastric fluid were between 10 (Ni) and 717 (Zn) times higher than those in artificial sweat fluid. Only Al (6.7 mg/kg; d.w.), Ni (1.2 mg/kg; d.w.) and Zn (1.8 mg/kg; d.w.) showed extractability in the artificial sweat fluid, whereas Al (730 mg/kg; d.w.), Ba (770 mg/kg; d.w.) and Zn (1290 mg/kg; d.w.) showed clear extractability in the artificial gastric fluid. As certain heavy metals were clearly soluble in the artificial gastric fluid, the careful handling of this residue is recommended in order to prevent the penetration of green liquor dregs across the human gastrointestinal tract.Keywords: Dregs, non-process elements, pulping, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752985 Optimization of the Aerodynamic Performances of an Unmanned Aerial Vehicle
Authors: Fares Senouci, Bachir Imine
Abstract:
This document provides numerical and experimental optimization of the aerodynamic performance of a drone equipped with three types of horizontal stabilizer. To build this optimal configuration, an experimental and numerical study was conducted on three parameters: the geometry of the stabilizer (horizontal form or reverse V form), the position of the horizontal stabilizer (up or down), and the landing gear position (closed or open). The results show that up-stabilizer position with respect to the horizontal plane of the fuselage provides better aerodynamic performance, and that the landing gear increases the lift in the zone of stability, that is to say where the flow is not separated.
Keywords: Aerodynamics, wind tunnel, turbulence model, lift, drag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274984 Absorption Spectra of Artificial Atoms in Presence of THz Fields
Authors: B. Dahiya, K.Batra, V.Prasad
Abstract:
Artificial atoms are growing fields of interest due to their physical and optoelectronicapplications. The absorption spectra of the proposed artificial atom inpresence of Tera-Hertz field is investigated theoretically. We use the non-perturbativeFloquet theory and finite difference method to study the electronic structure of ArtificialAtom. The effect of static electric field on the energy levels of artificial atom is studied.The effect of orientation of static electric field on energy levels and diploe matrix elementsis also highlighted.
Keywords: Absorption spectra, Artificial atom, Floquet Theory, THz fields
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699983 Interactive Agents with Artificial Mind
Authors: Hirohide Ushida
Abstract:
This paper discusses an artificial mind model and its applications. The mind model is based on some theories which assert that emotion is an important function in human decision making. An artificial mind model with emotion is built, and the model is applied to action selection of autonomous agents. In three examples, the agents interact with humans and their environments. The examples show the proposed model effectively work in both virtual agents and real robots.Keywords: Artificial mind, emotion, interactive agent, pet robot
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252982 Numerical Study of Effects of Air Dam on the Flow Field and Pressure Distribution of a Passenger Car
Authors: Min Ye Koo, Ji Ho Ahn, Byung Il You, Gyo Woo Lee
Abstract:
Everything that is attached to the outside of the vehicle to improve the driving performance of the vehicle by changing the flow characteristics of the surrounding air or to pursue the external personality is called a tuning part. Typical tuning components include front or rear air dam, also known as spoilers, splitter, and side air dam. Particularly, the front air dam prevents the airflow flowing into the lower portion of the vehicle and increases the amount of air flow to the side and front of the vehicle body, thereby reducing lift force generation that lifts the vehicle body, and thus, improving the steering and driving performance of the vehicle. The purpose of this study was to investigate the role of anterior air dam in the flow around a sedan passenger car using computational fluid dynamics. The effects of flow velocity, trajectory of fluid particles on static pressure distribution and pressure distribution on body surface were investigated by varying flow velocity and size of air dam. As a result, it has been confirmed that the front air dam improves the flow characteristics, thereby reducing the generation of lift force of the vehicle, so it helps in steering and driving characteristics.
Keywords: Numerical study, computational fluid dynamics, air dam, tuning parts, drag, lift force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636981 Robust Artificial Neural Network Architectures
Authors: A. Schuster
Abstract:
Many artificial intelligence (AI) techniques are inspired by problem-solving strategies found in nature. Robustness is a key feature in many natural systems. This paper studies robustness in artificial neural networks (ANNs) and proposes several novel, nature inspired ANN architectures. The paper includes encouraging results from experimental studies on these networks showing increased robustness.Keywords: robustness, robust artificial neural networks architectures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407