Search results for: Activated biochar produced from agriculture waste
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2183

Search results for: Activated biochar produced from agriculture waste

1883 Recycled Aggregates from Construction and Demolition Waste in the Production of Concrete Blocks

Authors: Juan A. Ferriz-Papi, Simon Thomas

Abstract:

The construction industry generates large amounts of waste, usually mixed, which can be composed of different origin materials, most of them catalogued as non-hazardous. The European Union targets for this waste for 2020 have been already achieved by the UK, but it is mainly developed in downcycling processes (backfilling) whereas upcycling (such as recycle in new concrete batches) still keeps at a low percentage. The aim of this paper is to explore further in the use of recycled aggregates from construction and demolition waste (CDW) in concrete mixes so as to improve upcycling. A review of most recent research and legislation applied in the UK is developed regarding the production of concrete blocks. As a case study, initial tests were developed with a CDW recycled aggregate sample from a CDW plant in Swansea. Composition by visual inspection and sieving tests of two samples were developed and compared to original aggregates. More than 70% was formed by soil waste from excavation, and the rest was a mix of waste from mortar, concrete, and ceramics with small traces of plaster, glass and organic matter. Two concrete mixes were made with 80% replacement of recycled aggregates and different water/cement ratio. Tests were carried out for slump, absorption, density and compression strength. The results were compared to a reference sample and showed a substantial reduction of quality in both mixes. Despite that, the discussion brings to identify different aspects to solve, such as heterogeneity or composition, and analyze them for the successful use of these recycled aggregates in the production of concrete blocks. The conclusions obtained can help increase upcycling processes ratio with mixed CDW as recycled aggregates in concrete mixes.

Keywords: Recycled aggregate, concrete, concrete block, construction and demolition waste, recycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
1882 Some (v + 1, b + r + λ + 1, r + λ + 1, k, λ + 1) Balanced Incomplete Block Designs (BIBDs) from Lotto Designs (LDs)

Authors: Oluwaseun. A. Alawode, Timothy. A. Bamiduro, Adekunle. A. Eludire

Abstract:

The paper considered the construction of BIBDs using potential Lotto Designs (LDs) earlier derived from qualifying parent BIBDs. The study utilized Li’s condition  pr t−1  ( t−1 2 ) + pr− pr t−1 (t−1) 2  < ( p 2 ) λ, to determine the qualification of a parent BIBD (v, b, r, k, λ) as LD (n, k, p, t) constrained on v ≥ k, v ≥ p, t ≤ min{k, p} and then considered the case k = t since t is the smallest number of tickets that can guarantee a win in a lottery. The (15, 140, 28, 3, 4) and (7, 7, 3, 3, 1) BIBDs were selected as parent BIBDs to illustrate the procedure. These BIBDs yielded three potential LDs each. Each of the LDs was completely generated and their properties studied. The three LDs from the (15, 140, 28, 3, 4) produced (9, 84, 28, 3, 7), (10, 120, 36, 3, 8) and (11, 165, 45, 3, 9) BIBDs while those from the (7, 7, 3, 3, 1) produced the (5, 10, 6, 3, 3), (6, 20, 10, 3, 4) and (7, 35, 15, 3, 5) BIBDs. The produced BIBDs follow the generalization (v + 1, b + r + λ + 1, r +λ+1, k, λ+1) where (v, b, r, k, λ) are the parameters of the (9, 84, 28, 3, 7) and (5, 10, 6, 3, 3) BIBDs. All the BIBDs produced are unreduced designs.

Keywords: Balanced Incomplete Block Designs, Lotto Designs, Unreduced Designs, Lottery games.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4041
1881 A Review on Recycled Use of Solid Wastes in Building Materials

Authors: Oriyomi M. Okeyinka, David A. Oloke, Jamal M. Khatib

Abstract:

Large quantities of solid wastes being generated worldwide from sources such as household, domestic, industrial, commercial and construction demolition activities, leads to environmental concerns. Utilization of these wastes in making building construction materials can reduce the magnitude of the associated problems. When these waste products are used in place of other conventional materials, natural resources and energy are preserved and expensive and/or potentially harmful waste disposal is avoided. Recycling which is regarded as the third most preferred waste disposal option, with its numerous environmental benefits, stand as a viable option to offset the environmental impact associated with the construction industry. This paper reviews the results of laboratory tests and important research findings, and the potential of using these wastes in building construction materials with focus on sustainable development. Research gaps, which includes; the need to develop standard mix design for solid waste based building materials; the need to develop energy efficient method of processing solid waste use in concrete; the need to study the actual behavior or performance of such building materials in practical application and the limited real life application of such building materials have also been identified. A research is being proposed to develop an environmentally friendly, lightweight building block from recycled waste paper, without the use of cement, and with properties suitable for use as walling unit. This proposed research intends to incorporate, laboratory experimentation and modeling to address the identified research gaps.

Keywords: Recycling, solid waste, construction, building materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7048
1880 Preliminary Study of Desiccant Cooling System under Algerian Climates

Authors: N. Hatraf, N. Moummi

Abstract:

The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.

Keywords: Dehumidification, efficiency, humidity, TRNSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
1879 Comparative Study of Sub-Critical and Supercritical ORC Applications for Exhaust Waste Heat Recovery

Authors: Buket Boz, Alvaro Diez

Abstract:

Waste heat recovery by means of Organic Rankine Cycle is a promising technology for the recovery of engine exhaust heat. However, it is complex to find out the optimum cycle conditions with appropriate working fluids to match exhaust gas waste heat due to its high temperature. Hence, this paper focuses on comparing sub-critical and supercritical ORC conditions with eight working fluids on a combined diesel engine-ORC system. The model employs two ORC designs, Regenerative-ORC and Pre-Heating-Regenerative-ORC respectively. The thermodynamic calculations rely on the first and second law of thermodynamics, thermal efficiency and exergy destruction factors are the fundamental parameters evaluated. Additionally, in this study, environmental and safety, GWP (Global Warming Potential) and ODP (Ozone Depletion Potential), characteristic of the refrigerants are taken into consideration as evaluation criteria to define the optimal ORC configuration and conditions. Consequently, the studys outcomes reveal that supercritical ORCs with alkane and siloxane are more suitable for high temperature exhaust waste heat recovery in contrast to sub-critical conditions.

Keywords: Internal combustion engine, organic rankine cycle, waste heat recovery, working fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
1878 Non-Burn Treatment of Health Care Risk Waste

Authors: Jefrey Pilusa, Tumisang Seodigeng

Abstract:

This research discusses a South African case study for the potential of utilizing refuse-derived fuel (RDF) obtained from non-burn treatment of health care risk waste (HCRW) as potential feedstock for green energy production. This specific waste stream can be destroyed via non-burn treatment technology involving high-speed mechanical shredding followed by steam or chemical injection to disinfect the final product. The RDF obtained from this process is characterised by a low moisture, low ash, and high calorific value which means it can be potentially used as high-value solid fuel. Due to the raw feed of this RDF being classified as hazardous, the final RDF has been reported to be non-infectious and can blend with other combustible wastes such as rubber and plastic for waste to energy applications. This study evaluated non-burn treatment technology as a possible solution for on-site destruction of HCRW in South African private and public health care centres. Waste generation quantities were estimated based on the number of registered patient beds, theoretical bed occupancy. Time and motion study was conducted to evaluate the logistics viability of on-site treatment. Non-burn treatment technology for HCRW is a promising option for South Africa, and successful implementation of this method depends upon the initial capital investment, operational cost and environmental permitting of such technology; there are other influencing factors such as the size of the waste stream, product off-take price as well as product demand.

Keywords: Autoclave, disposal, fuel, incineration, medical waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1118
1877 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed

Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam

Abstract:

Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established in order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.

Keywords: Computational Fluid Dynamics (CFD) model, Waste Incineration, Municipal Solid Waste (MSW), Fixed Bed, Primary air.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2668
1876 The Effect of Treated Waste-Water on Compaction and Compression of Fine Soil

Authors: M. Attom, F. Abed, M. Elemam, M. Nazal, N. ElMessalami

Abstract:

—The main objective of this paper is to study the effect of treated waste-water (TWW) on the compaction and compressibility properties of fine soil. Two types of fine soils (clayey soils) were selected for this study and classified as CH soil and Cl type of soil. Compaction and compressibility properties such as optimum water content, maximum dry unit weight, consolidation index and swell index, maximum past pressure and volume change were evaluated using both tap and treated waste water. It was found that the use of treated waste water affects all of these properties. The maximum dry unit weight increased for both soils and the optimum water content decreased as much as 13.6% for highly plastic soil. The significant effect was observed in swell index and swelling pressure of the soils. The swell indexed decreased by as much as 42% and 33% for highly plastic and low plastic soils, respectively, when TWW is used. Additionally, the swelling pressure decreased by as much as 16% for both soil types. The result of this research pointed out that the use of treated waste water has a positive effect on compaction and compression properties of clay soil and promise for potential use of this water in engineering applications. Keywords—Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Keywords: Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
1875 Tourism-Impact on Environment-Observations from North Coastal Districts of A.P, India

Authors: K. Mythili

Abstract:

This paper deals with the status of solid waste pollution in touristic spots of North coastal Andhra Pradesh. Case studies of Eco tourism, cultural tourism and pilgrim tourism are elaborately discussed and the study is based on both primary and secondary data. Data collection includes field collection of solid waste, semi structured interviews and observation of tourists. Results indicate generation of 72% Non biodegradable material in Eco touristic places like RK beach Visakhapatnam, Araku Valley. Pydithalli Jathra is a famous cultural touristic attraction and more than one lakh people converge here. The solid waste at this spot includes 20% coconut shells, 50% plastic bottles and covers, 20% Banana peelings and remaining are food materials. Radhasapthami is the most important festival celebrated at famous sun temple Arasavalli of Srikakulam. Here solid waste includes 50% water bottles, plastic covers, 10% papers, 10% hair, 30% left out food material and Banana peelings.

Keywords: Cultural tourism, Eco tourism, Pilgrimage tourism, Solid waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3257
1874 Plate Waste as an Indicator of Portions Inadequacy at School Lunch

Authors: D. Dinis, M. Liz Martins, A. Rocha

Abstract:

Quality of school meals is one of the major concerns of governments and international organizations worldwide. This study aims to evaluate nutritional compliance of meals served at a Portuguese primary school considering the portions stated by Portuguese Education Ministry. To evaluate adequacy of portions served, weighing of all meal components offered to students and leftovers was performed during ten consecutive days at two different moments. Plate waste (%) was calculated by the ratio of food discarded and food served to the children. Nutritional evaluation of menus was made using the Portuguese Food Composition Table. Meals evaluated showed a percent contribution to energetic daily intake higher than recommendations. Meals served to children were considered high energy and protein dense. No significant waste of soup was accounted and the main meal components wasted were fish and vegetables. It will be necessary to adjust portions indicated by Ministry of Education in order to comply with recommendations and reduce food waste. 

Keywords: Portions, waste, nutritional adequacy, school meals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2777
1873 Pre-Eliminary Design Adjustable Workstation for Piston Assembly Line Considering Anthropometric for Indonesian People

Authors: T. Yuri M. Zagloel, Inaki M. Hakim, A. M. Syarafi

Abstract:

Manufacturing process has been considered as one of the most important activity in business process. It correlates with productivity and quality of the product so industries could fulfill customer’s demand. With the increasing demand from customer, industries must improve their manufacturing ability such as shorten lead-time and reduce wastes on their process. Lean manufacturing has been considered as one of the tools to waste elimination in manufacturing or service industry. Workforce development is one practice in lean manufacturing that can reduce waste generated from operator such as waste of unnecessary motion. Anthropometric approach is proposed to determine the recommended measurement in operator’s work area. The method will get some dimensions from Indonesia people that related to piston workstation. The result from this research can be obtained new design for the work area considering ergonomic aspect.

Keywords: Adjustable, anthropometric, ergonomic, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
1872 Effect on Surface Temperature Reduction of Asphalt Pavements with Cement–Based Materials Containing Ceramic Waste Powder

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, O. Takahashi, S. Tsukuma

Abstract:

The heat island phenomenon becomes one of the environmental problems. As countermeasures in the field of road engineering, cool pavements such as water retaining pavements and solar radiation reflective pavements have been developed to reduce the surface temperature of asphalt pavements in the hot summer climate in Japan. The authors have studied on the water retaining pavements with cement–based grouting materials. The cement–based grouting materials consist of cement, ceramic waste powder, and natural zeolite. The ceramic waste powder is collected through the recycling process of electric porcelain insulators. In this study, mixing ratio between the ceramic waste powder and the natural zeolite and a type of cement for the cement–based grouting materials is investigated to measure the surface temperature of asphalt pavements in the outdoor. All of the developed cement–based grouting materials were confirmed to effectively reduce the surface temperature of the asphalt pavements. Especially, the cement–based grouting material using the ultra–rapid hardening cement with the mixing ratio of 0.7:0.3 between the ceramic waste powder and the natural zeolite reduced mostly the surface temperature by 20 °C and more.

Keywords: Ceramic waste powder, natural zeolite, road surface temperature, water retaining pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
1871 Comparing Spontaneous Hydrolysis Rates of Activated Models of DNA and RNA

Authors: Mohamed S. Sasi, Adel M. Mlitan, Abdulfattah M. Alkherraz

Abstract:

This research project aims to investigate difference in relative rates concerning phosphoryl transfer relevant to biological catalysis of DNA and RNA in the pH-independent reactions. Activated Models of DNA and RNA for alkyl-aryl phosphate diesters (with 4-nitrophenyl as a good leaving group) have successfully been prepared to gather kinetic parameters. Eyring plots for the pH– independent hydrolysis of 1 and 2 were established at different temperatures in the range 100–160 °C. These measurements have been used to provide a better estimate for the difference in relative rates between the reactivity of DNA and RNA cleavage. Eyring plot gave an extrapolated rate of kH2O = 1 × 10-10 s -1 for 1 (RNA model) and 2 (DNA model) at 25°C. Comparing the reactivity of RNA model and DNA model shows that the difference in relative rates in the pH-independent reactions is surprisingly very similar at 25°. This allows us to obtain chemical insights into how biological catalysts such as enzymes may have evolved to perform their current functions.

Keywords: DNA & RNA Models, Relative Rates, Reactivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
1870 Production of Biodiesel from Different Edible Oils

Authors: Amir Shafeeq, Ayyaz Muhammad, Noman Hassan, Rofice Dickson

Abstract:

Different vegetable oil based biodiesel (FAMES) were prepared by alkaline transesterification using refined oils as well as waste frying oil (WFO). Methanol and sodium hydroxide are used as catalyst under similar reaction conditions. To ensure the quality of biodiesel produced, a series of different ASTM Standard tests were carried out. In this context, various testwere done including viscosity, carbon residue, specific gravity, corrosion test, flash point, cloud point and pour point. Results revealed that characteristics of biodiesel depend on the feedstock and it is far better than petroleum diesel.

Keywords: Biodiesel, Edible oils, Separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
1869 Photocatalytic and Sonophotocatalytic Degradation of Reactive Red 120 using Dye Sensitized TiO2 under Visible Light

Authors: S.K.Kavitha, P.N.Palanisamy

Abstract:

The accelerated sonophotocatalytic degradation of Reactive Red (RR) 120 dye under visible light using dye sensitized TiO2 activated by ultrasound has been carried out. The effect of sonolysis, photocatalysis and sonophotocatalysis under visible light has been examined to study the influence on the degradation rates by varying the initial substrate concentration, pH and catalyst loading to ascertain the synergistic effect on the degradation techniques. Ultrasonic activation contributes degradation through cavitation leading to the splitting of H2O2 produced by both photocatalysis and sonolysis. This results in the formation of oxidative species, such as singlet oxygen (1O2) and superoxide (O2 -●) radicals in the presence of oxygen. The increase in the amount of reactive radical species which induce faster oxidation of the substrate and degradation of intermediates and also the deaggregation of the photocatalyst are responsible for the synergy observed under sonication. A comparative study of photocatalysis and sonophotocatalysis using TiO2, Hombikat UV 100 and ZnO was also carried out.

Keywords: Photocatalysis, Reactive Red 120, Sonophotocatalysis, Sonolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3363
1868 A Study of Performance of Wastewater Treatment Systems for Small Sites

Authors: Fu E. Tang, Vun J. Ngu

Abstract:

The pollutant removal efficiency of the Intermittently Decanted Extended Aeration (IDEA) wastewater treatment system at Curtin University Sarawak Campus, and conventional activated sludge wastewater treatment system at a local resort, Resort A, is monitored. The influent and effluent characteristics are tested during wet and dry weather conditions, and peak and off peak periods. For the wastewater treatment systems at Curtin Sarawak and Resort A, during dry weather and peak season, it was found that the BOD5 concentration in the influent is 121.7mg/L and 80.0mg/L respectively, and in the effluent, 18.7mg/L and and 18.0mg/L respectively. Analysis of the performance of the IDEA treatment system showed that the operational costs can be minimized by 3%, by decreasing the number of operating cycles. As for the treatment system in Resort A, by utilizing a smaller capacity air blower, a saving of 12% could be made in the operational costs.

Keywords: Conventional Activated Sludge, IDEA, Performance Monitoring, Wastewater Treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3347
1867 Adsorption of Textile Reactive Dye by Palm Shell Activated Carbon: Response Surface Methodology

Authors: Siti Maryam Rusly, Shaliza Ibrahim

Abstract:

The adsorption of simulated aqueous solution containing textile remazol reactive dye, namely Red 3BS by palm shell activated carbon (PSAC) as adsorbent was carried out using Response Surface Methodology (RSM). A Box-Behnken design in three most important operating variables; initial dye concentration, dosage of adsorbent and speed of impeller was employed for experimental design and optimization of results. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95% confidence limits. Model indicated that with the increasing of dosage and speed give the result of removal up to 90% with the capacity uptake more than 7 mg/g. High regression coefficient between the variables and the response (R-Sq = 93.9%) showed of good evaluation of experimental data by polynomial regression model.

Keywords: Adsorption, Box-Behnken Design, Palm ShellActivated Carbon, Red 3BS, RSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
1866 Biogas from Cover Crops and Field Residues: Effects on Soil, Water, Climate and Ecological Footprint

Authors: Manfred Szerencsits, Christine Weinberger, Maximilian Kuderna, Franz Feichtinger, Eva Erhart, Stephan Maier

Abstract:

Cover or catch crops have beneficial effects for soil, water, erosion, etc. If harvested, they also provide feedstock for biogas without competition for arable land in regions, where only one main crop can be produced per year. On average gross energy yields of approx. 1300 m³ methane (CH4) ha-1 can be expected from 4.5 tonnes (t) of cover crop dry matter (DM) in Austria. Considering the total energy invested from cultivation to compression for biofuel use a net energy yield of about 1000 m³ CH4 ha-1 is remaining. With the straw of grain maize or Corn Cob Mix (CCM) similar energy yields can be achieved. In comparison to catch crops remaining on the field as green manure or to complete fallow between main crops the effects on soil, water and climate can be improved if cover crops are harvested without soil compaction and digestate is returned to the field in an amount equivalent to cover crop removal. In this way, the risk of nitrate leaching can be reduced approx. by 25% in comparison to full fallow. The risk of nitrous oxide emissions may be reduced up to 50% by contrast with cover crops serving as green manure. The effects on humus content and erosion are similar or better than those of cover crops used as green manure when the same amount of biomass was produced. With higher biomass production the positive effects increase even if cover crops are harvested and the only digestate is brought back to the fields. The ecological footprint of arable farming can be reduced by approx. 50% considering the substitution of natural gas with CH4 produced from cover crops.

Keywords: Biogas, cover crops, catch crops, land use competition, sustainable agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
1865 Plastic Waste Utilization as Asphalt Binder Modifier in Asphalt Concrete Pavement

Authors: H. Naghawi, R. Al-Ajarmeh, R. Allouzi, A. AlKlub, K. Masarwah, A. AL-Quraini, M. Abu-Sarhan

Abstract:

The main objective of this paper is to evaluate the use of plastic waste as a low cost asphalt binder modifier. For this purpose Marshall mix design procedure was used. Marshall mix design procedure seeks to select the Optimum Binder Content (OBC) to be added to a specific aggregate blend resulting in a mixture that satisfies the desired properties of strength and durability. In order to evaluate the plastic waste modified (PWM) asphalt mixtures, the OBC for the conventional asphalt mix was first identified, and then different percentages of crushed plastic waste by weight of the identified OBC were tested. Marshall test results for the modified asphalt mixtures were analyzed to find the optimum PWM content. Finally, the static indirect tensile strength (IDT) was determined for all mixtures using the splitting tensile test. It was found that PWM content of 7.43% by weight of OBC is recommended as the optimum PWM content needed for enhancing the performance of asphalt mixtures. It enhanced stability by 42.56%, flow by 89.91% and strength by 13.54%. This would lead to a more durable pavement by improving the pavement resistance to fatigue cracking and rutting.

Keywords: Binder content modifier, Marshall test, plastic waste, polyethylene terephthalate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
1864 Enhanced Nutrients Removal in Conventional Anaerobic Digestion Processes

Authors: M. Z. Othman, S. Uludag-Demirer, G. N. Demirer

Abstract:

One of the main challenges for one phase anaerobic digestion processes is the high concentration of NH4+ and PO4 3- ions  in the digested sludge supernatant. This project focuses on enhancing the removal of nutrients during the anaerobic digestion process through fixing both NH4+ and PO4 3- ions in the form of struvite (magnesium ammonium phosphate, MAP, MgNH4PO4.6H2O) within the anaerobic sludge. Batch anaerobic digestion tests showed that Mg2+ concentration in the range 279 – 812 mg/L had insignificant effect on CGP but incurred a slight increase in COD removal. The reactor that had soluble Mg2+:NH4+:PO43- at a molar ratio of 1.28:1:00:1:00 achieved the best performance enhancement of 8% increase in COD removal and 32% reduction in NH4+ in the reactor supernatant. Overall, the results show that there is a potential to optimise conventional anaerobic digestion such that supernatant lean in P and N, and sludge rich in nutrients are obtained. 

Keywords: Anaerobic Digestion, Nutrients, Struvite, Waste Activated Sludge (WAS)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
1863 Comparison of Vermicompost and Vermiwash Bio-Fertilizers from Vermicomposting Waste Corn Pulp

Authors: M. M. Manyuchi, A. Phiri, P. Muredzi, T. Chitambwe

Abstract:

Vermicomposting is the conversion of organic waste into bio-fertilizers through the action of earthworm. This technology is widely used for organic solid waste management. Waste corn pulp blended with cow dung manure was vermicomposted over 30 days using Eisenia fetida earthworms species. pH, temperature, moisture content, and electrical conductivity were daily monitored. The feedstock, vermicompost and vermiwash were analyzed for nutrient composition. The average temperature and moisture content in the vermi-reactor was 22.5°C and 42.5% respectively. The vermicompost and vermiwash had an almost neutral pH whilst the electrical conductivity was 21% higher in the vermicompost. The nitrogen and potassium content was 57% and 79.6% richer in the vermicompost respectively compared to the vermiwash. However, the vermiwash was 84% richer in phosphorous as compared to vermicompost. Furthermore, the vermiwash was 89.1% and 97.6% richer in Ca and Mg respectively and was 97.8% richer in Na salts compared to the vermicompost. The vermiwash also indicated a significantly higher amount of micronutrients. Both bio-fertilizers were rich in nutrients specification for fertilizers.

Keywords: Vermicompost, vermiwash, nutrient composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6738
1862 A Survey on Ambient Intelligence in Agricultural Technology

Authors: C. Angel, S. Asha

Abstract:

Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope.

Keywords: Ambient Intelligence, Agricultural technology, smart agriculture, precise farming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
1861 An Overview of Sludge Utilization into Fired Clay Brick

Authors: Aeslina Binti Abdul Kadir, Ahmad Shayuti Bin Abdul Rahim

Abstract:

Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for example marble sludge, stone sludge, water sludge, sewage sludge, and ceramic sludge. The utilization of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. This paper reviews on utilization of different types of sludge wastes into fired clay bricks. Previous investigations have demonstrated positive effects on the physical and mechanical properties as well as less impact towards the environment. Thus, the utilizations of sludge waste could produce a good quality of brick and could be one of alternative disposal methods for the sludge wastes.

Keywords: Fired Clay Brick, Sludge waste, Compressive strength, Shrinkage, Water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5417
1860 Analysing Environmental Risks and Perceptions of Risks to Assess Health and Well-being in Poor Areas of Abidjan

Authors: Kouassi Dongo, Christian Zurbrügg, Gueladio Cissé1, Brigit Obrist, Marcel Tanner, Jean Biémi

Abstract:

This study analyzed environmental health risks and people-s perceptions of risks related to waste management in poor settlements of Abidjan, to develop integrated solutions for health and well-being improvement. The trans-disciplinary approach used relied on remote sensing, a geographic information system (GIS), qualitative and quantitative methods such as interviews and a household survey (n=1800). Mitigating strategies were then developed using an integrated participatory stakeholder workshop. Waste management deficiencies resulting in lack of drainage and uncontrolled solid and liquid waste disposal in the poor settlements lead to severe environmental health risks. Health problems were caused by direct handling of waste, as well as through broader exposure of the population. People in poor settlements had little awareness of health risks related to waste management in their community and a general lack of knowledge pertaining to sanitation systems. This unfortunate combination was the key determinant affecting the health and vulnerability. For example, an increased prevalence of malaria (47.1%) and diarrhoea (19.2%) was observed in the rainy season when compared to the dry season (32.3% and 14.3%). Concerted and adapted solutions that suited all the stakeholders concerned were developed in a participatory workshop to allow for improvement of health and well-being.

Keywords: Abidjan, environmental health risks, informalsettlements, vulnerability, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
1859 Carbothermic Reduction of Phosphoric Acid Extracted from Dephosphorization Slags to Produce Yellow Phosphorus

Authors: Ryoko Yoshida, Jyunpei Yoshida, Hua Fang Yu, Yasushi Sasaki, Tetsuya Nagasaka

Abstract:

Phosphorous is an important element for agriculture and industry and is a non-renewable resource. Especially, yellow phosphorus is an essential material in advanced industrial technology, but phosphorus resources were not produced in Japan at all, and all depend on imports. It has been suggested, however, that the remaining accessible reserves of phosphate ore will be depleted within 50 years. Therefore, alternative resources for phosphate ore must be found. In this research, we have developed a process that enables the production of high-purity yellow phosphorus from domestic unused phosphorus resources such as steelmaking slags. The process consists of two parts: (1) the production of crude phosphoric acid from wastes such as steelmaking slag; (2) producing high-purity yellow phosphorus by low-temperature carbothermic reduction of phosphoric acid (H3PO4). The details of the carbothermic reduction of phosphoric acid are presented in this paper. Yellow phosphorus is commercially produced by carbothermic reduction of phosphate ore in an electric arc furnace at more than 1673K. In the newly developed system, gaseous P4O10 evaporated from H3PO4 is successfully reduced to yellow phosphorus by using carbon packed bed at less than 1273K. To meet the depletion of phosphate ore, the proposed process in this study to produce yellow phosphorus by carbothermic reduction of H3PO4 that are extracted from dephosphorization slags will be one of the effective and economical solutions.

Keywords: Carbothermic reduction, dephosphorization slags, phosphoric acid, yellow phosphorus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
1858 Recovery of Post-Consumer PET Bottles in a Composite Material Preparation

Authors: Rafenomananjara Tsinjo Nirina, Tomoo Sekito, Andrianaivoravelona Jaconnet Oliva

Abstract:

Manufacturing a composite material from post-consumer bottles is an interesting outlet since Madagascar is still facing the challenges of managing plastic waste on the one hand and appropriate waste treatment facilities are not yet developed on the other hand. New waste management options are needed to divert End-Of-Life (EOL) soft plastic wastes from landfills and incineration. Waste polyethylene terephthalate (PET) bottles might be considered as a valuable resource and recovered into polymer concrete. The methodology is easy to implement and appropriate to the local context in Madagascar. This approach will contribute to the production of ecological building materials that might be profitable for the environment and the construction sector. This work aims to study the feasibility of using the post-consumer PET bottles as an alternative binding agent instead of the conventional Portland cement and water. Then, the mechanical and physical properties of the materials were evaluated.

Keywords: PET recycling, polymer concrete, ecological building materials, pollution mitigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
1857 A Review on the Usage of Ceramic Wastes in Concrete Production

Authors: O. Zimbili, W. Salim, M. Ndambuki

Abstract:

Construction and Demolition (C&D) wastes contribute the highest percentage of wastes worldwide (75%). Furthermore, ceramic materials contribute the highest percentage of wastes within the C&D wastes (54%). The current option for disposal of ceramic wastes is landfill. This is due to unavailability of standards, avoidance of risk, lack of knowledge and experience in using ceramic wastes in construction. The ability of ceramic wastes to act as a pozzolanic material in the production of cement has been effectively explored. The results proved that temperatures used in the manufacturing of these tiles (about 900⁰C) are sufficient to activate pozzolanic properties of clay. They also showed that, after optimization (11-14% substitution); the cement blend performs better, with no morphological difference between the cement blended with ceramic waste, and that blended with other pozzolanic materials. Sanitary ware and electrical insulator porcelain wastes are some wastes investigated for usage as aggregates in concrete production. When optimized, both produced good results, better than when natural aggregates are used. However, the research on ceramic wastes as partial substitute for fine aggregates or cement has not been overly exploited as the other areas. This review has been concluded with focus on investigating whether ceramic wall tile wastes used as partial substitute for cement and fine aggregates could prove to be beneficial since the two materials are the most high-priced during concrete production.

Keywords: Blended, morphological, pozzolanic properties, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8724
1856 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry

Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang

Abstract:

Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.

Keywords: Polymer, TGA, Pollution, Landfill, Waste, Plastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642
1855 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: Additive Manufacturing, Internal topologies, Porosity, Rapid Prototyping, Selective Laser Melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2316
1854 Vermicomposting of Waste Corn Pulp Blended with Cow Dung Manure using Eisenia Fetida

Authors: Musaida M. M. Manyuchi, Anthony Phiri, Ngoni Chirinda, Perkins Muredzi, Joseph Govhaand, Thamary Sengudzwa

Abstract:

Waste corn pulp was investigated as a potential feedstock during vermicomposting using Eisenia fetida. Corn pulp is the major staple food in Southern Africa and constitutes about 25% of the total organic waste. Wastecooked corn pulp was blended with cow dung in the ratio 6:1 respectively to optimize the vermicomposting process. The feedstock was allowed to vermicompost for 30 days. The vermicomposting took place in a 3- tray plastic worm bin. Moisture content, temperature, pH, and electrical conductivity were monitoreddaily. The NPK content was determined at day 30. During vermicomposting, moisture content increased from 27.68% to 52.41%, temperature ranged between 19- 25◦C, pH increased from 5.5 to 7.7, and electrical conductivity decreased from 80000μS/cm to 60000μS/cm. The ash content increased from 11.40% to 28.15%; additionally the volatile matter increased from 1.45% to 10.02%. An odorless, dark brown vermicompost was obtained. The vermicompost NPK content was 4.19%, 1.15%, and 6.18% respectively.

Keywords: Corn pulp, Eisenia fetida, vermicomposting, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3272