Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12

Search results for: Timoshenko beam theory

12 Forced Vibration of a Planar Curved Beam on Pasternak Foundation

Authors: Akif Kutlu, Merve Ermis, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted.

Keywords: Curved beam, dynamic analysis, elastic foundation, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530
11 Free Vibration Analysis of Conical Helicoidal Rods Having Elliptical Cross Sections Positioned in Different Orientation

Authors: Merve Ermis, Akif Kutlu, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

In this study, the free vibration analysis of conical helicoidal rods with two different elliptically oriented cross sections is investigated and the results are compared by the circular cross-section keeping the net area for all cases equal to each other. Problems are solved by using the mixed finite element formulation. Element matrices based on Timoshenko beam theory are employed. The finite element matrices are derived by directly inserting the analytical expressions (arc length, curvature, and torsion) defining helix geometry into the formulation. Helicoidal rod domain is discretized by a two-noded curvilinear element. Each node of the element has 12 DOFs, namely, three translations, three rotations, two shear forces, one axial force, two bending moments and one torque. A parametric study is performed to investigate the influence of elliptical cross sectional geometry and its orientation over the natural frequencies of the conical type helicoidal rod.

Keywords: Conical helix, elliptical cross section, finite element, free vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
10 Static and Dynamic Analysis of Hyperboloidal Helix Having Thin Walled Open and Close Sections

Authors: Merve Ermis, Murat Yılmaz, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

The static and dynamic analyses of hyperboloidal helix having the closed and the open square box sections are investigated via the mixed finite element formulation based on Timoshenko beam theory. Frenet triad is considered as local coordinate systems for helix geometry. Helix domain is discretized with a two-noded curved element and linear shape functions are used. Each node of the curved element has 12 degrees of freedom, namely, three translations, three rotations, two shear forces, one axial force, two bending moments and one torque. Finite element matrices are derived by using exact nodal values of curvatures and arc length and it is interpolated linearly throughout the element axial length. The torsional moments of inertia for close and open square box sections are obtained by finite element solution of St. Venant torsion formulation. With the proposed method, the torsional rigidity of simply and multiply connected cross-sections can be also calculated in same manner. The influence of the close and the open square box cross-sections on the static and dynamic analyses of hyperboloidal helix is investigated. The benchmark problems are represented for the literature.

Keywords: Hyperboloidal helix, squared cross section, thin walled cross section, torsional rigidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 906
9 Out-of-Plane Free Vibrations of Circular Rods

Authors: Faruk Fırat Çalım, Nurullah Karaca, Hakan Tacettin Türker

Abstract:

In this study, out-of-plane free vibrations of a circular rods is investigated theoretically. The governing equations for naturally twisted and curved spatial rods are obtained using Timoshenko beam theory and rewritten for circular rods. Effects of the axial and shear deformations are considered in the formulations. Ordinary differential equations in scalar form are solved analytically by using transfer matrix method. The circular rods of the mass matrix are obtained by using straight rod of consistent mass matrix. Free vibrations frequencies obtained by solving eigenvalue problem. A computer program coded in MATHEMATICA language is prepared. Circular beams are analyzed through various examples for free vibrations analysis. Results are compared with ANSYS results based on finite element method and available in the literature.

Keywords: Circular rod, Out-of-plane free vibration analysis, Transfer Matrix Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
8 Vibration Analysis of Functionally Graded Engesser- Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Functionally Graded Beam, Free Vibration, Elastic Foundation, Engesser-Timoshenko Beam Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
7 Mechanical Buckling of Functionally Graded Engesser-Timoshenko Beams Located on a Continuous Elastic Foundation

Authors: M. Karami Khorramabadi, A. R. Nezamabadi

Abstract:

This paper studies mechanical buckling of functionally graded beams subjected to axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of dimensionless geometrical parameter, functionally graded index and foundation coefficient on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Mechanical Buckling, Functionally graded beam- Engesser-Timoshenko beam theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
6 Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method

Authors: M. M. Shokrieh, A. Karamnejad

Abstract:

This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.

Keywords: Composite beam, Finite difference method, Progressive damage modeling, Strain rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
5 Mechanical Buckling of Engesser-Timoshenko Beams with a Pair of Piezoelectric Layers

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper presents the elastic buckling of homogeneous beams with a pair of piezoelectric layers surface bonded on both sides of the beams. The displacement field of beam is assumed based on the Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of applied voltage, dimensionless geometrical parameter and piezoelectric thickness on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Mechanical Buckling, Engesser-Timoshenko beam theory - Piezoelectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
4 Vibration Suppression of Timoshenko Beams with Embedded Piezoelectrics Using POF

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

This paper deals with the design of a periodic output feedback controller for a flexible beam structure modeled with Timoshenko beam theory, Finite Element Method, State space methods and embedded piezoelectrics concept. The first 3 modes are considered in modeling the beam. The main objective of this work is to control the vibrations of the beam when subjected to an external force. Shear piezoelectric sensors and actuators are embedded into the top and bottom layers of a flexible aluminum beam structure, thus making it intelligent and self-adaptive. The composite beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. 4 state space SISO models are thus developed. Periodic Output Feedback (POF) Controllers are designed for the 4 SISO models of the same plant to control the flexural vibrations. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Conclusions are finally drawn.

Keywords: Smart structure, Timoshenko beam theory, Periodic output feedback control, Finite Element Method, State space model, SISO, Embedded sensors and actuators, Vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
3 Modeling and FOS Feedback Based Control of SISO Intelligent Structures with Embedded Shear Sensors and Actuators

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

Active vibration control is an important problem in structures. The objective of active vibration control is to reduce the vibrations of a system by automatic modification of the system-s structural response. In this paper, the modeling and design of a fast output sampling feedback controller for a smart flexible beam system embedded with shear sensors and actuators for SISO system using Timoshenko beam theory is proposed. FEM theory, Timoshenko beam theory and the state space techniques are used to model the aluminum cantilever beam. For the SISO case, the beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. Controllers are designed using FOS method and the performance of the designed FOS controller is evaluated for vibration control for 4 SISO models of the same plant. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Some of the limitations of the Euler-Bernoulli theory such as the neglection of shear and axial displacement are being considered here, thus giving rise to an accurate beam model. Embedded shear sensors and actuators have been considered in this paper instead of the surface mounted sensors and actuators for vibration suppression because of lot of advantages. In controlling the vibration modes, the first three dominant modes of vibration of the system are considered.

Keywords: Smart structure, Timoshenko beam theory, Fast output sampling feedback control, Finite Element Method, State space model, SISO, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
2 Multivariable Control of Smart Timoshenko Beam Structures Using POF Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

Active Vibration Control (AVC) is an important problem in structures. One of the ways to tackle this problem is to make the structure smart, adaptive and self-controlling. The objective of active vibration control is to reduce the vibration of a system by automatic modification of the system-s structural response. This paper features the modeling and design of a Periodic Output Feedback (POF) control technique for the active vibration control of a flexible Timoshenko cantilever beam for a multivariable case with 2 inputs and 2 outputs by retaining the first 2 dominant vibratory modes using the smart structure concept. The entire structure is modeled in state space form using the concept of piezoelectric theory, Timoshenko beam theory, Finite Element Method (FEM) and the state space techniques. Simulations are performed in MATLAB. The effect of placing the sensor / actuator at 2 finite element locations along the length of the beam is observed. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the smart system is evaluated for active vibration control.

Keywords: Smart structure, Timoshenko theory, Euler-Bernoulli theory, Periodic output feedback control, Finite Element Method, State space model, Vibration control, Multivariable system, Linear Matrix Inequality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
1 Mathematical Modeling of SISO based Timoshenko Structures – A Case Study

Authors: T.C. Manjunath, Student Member, B. Bandyopadhyay

Abstract:

This paper features the mathematical modeling of a single input single output based Timoshenko smart beam. Further, this mathematical model is used to design a multirate output feedback based discrete sliding mode controller using Bartoszewicz law to suppress the flexural vibrations. The first 2 dominant vibratory modes is retained. Here, an application of the discrete sliding mode control in smart systems is presented. The algorithm uses a fast output sampling based sliding mode control strategy that would avoid the use of switching in the control input and hence avoids chattering. This method does not need the measurement of the system states for feedback as it makes use of only the output samples for designing the controller. Thus, this methodology is more practical and easy to implement.

Keywords: Smart structure, Timoshenko beam theory, Discretesliding mode control, Bartoszewicz law, Finite Element Method, State space model, Vibration control, Mathematical model, SISO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046