Search results for: variable spinning speed washing machine.
407 Face Authentication for Access Control based on SVM using Class Characteristics
Authors: SeHun Lim, Sanghoon Kim, Sun-Tae Chung, Seongwon Cho
Abstract:
Face authentication for access control is a face membership authentication which passes the person of the incoming face if he turns out to be one of an enrolled person based on face recognition or rejects if not. Face membership authentication belongs to the two class classification problem where SVM(Support Vector Machine) has been successfully applied and shows better performance compared to the conventional threshold-based classification. However, most of previous SVMs have been trained using image feature vectors extracted from face images of each class member(enrolled class/unenrolled class) so that they are not robust to variations in illuminations, poses, and facial expressions and much affected by changes in member configuration of the enrolled class In this paper, we propose an effective face membership authentication method based on SVM using class discriminating features which represent an incoming face image-s associability with each class distinctively. These class discriminating features are weakly related with image features so that they are less affected by variations in illuminations, poses and facial expression. Through experiments, it is shown that the proposed face membership authentication method performs better than the threshold rule-based or the conventional SVM-based authentication methods and is relatively less affected by changes in member size and membership.Keywords: Face Authentication, Access control, member ship authentication, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508406 Power System with PSS and FACTS Controller: Modelling, Simulation and Simultaneous Tuning Employing Genetic Algorithm
Authors: Sidhartha Panda, Narayana Prasad Padhy
Abstract:
This paper presents a systematic procedure for modelling and simulation of a power system installed with a power system stabilizer (PSS) and a flexible ac transmission system (FACTS)-based controller. For the design purpose, the model of example power system which is a single-machine infinite-bus power system installed with the proposed controllers is developed in MATLAB/SIMULINK. In the developed model synchronous generator is represented by model 1.1. which includes both the generator main field winding and the damper winding in q-axis so as to evaluate the impact of PSS and FACTS-based controller on power system stability. The model can be can be used for teaching the power system stability phenomena, and also for research works especially to develop generator controllers using advanced technologies. Further, to avoid adverse interactions, PSS and FACTS-based controller are simultaneously designed employing genetic algorithm (GA). The non-linear simulation results are presented for the example power system under various disturbance conditions to validate the effectiveness of the proposed modelling and simultaneous design approach.
Keywords: Genetic algorithm, modelling and simulation, MATLAB/SIMULINK, power system stabilizer, thyristor controlledseries compensator, simultaneous design, power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3157405 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.
Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271404 Data Recording for Remote Monitoring of Autonomous Vehicles
Authors: Rong-Terng Juang
Abstract:
Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.
Keywords: Autonomous vehicle, data recording, remote monitoring, controller area network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351403 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer
Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner
Abstract:
Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.
Keywords: Calculation of risk factor, fuzzy logic, fuzzy programming for ship, safe navigation of ships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825402 Detecting Email Forgery using Random Forests and Naïve Bayes Classifiers
Authors: Emad E Abdallah, A.F. Otoom, ArwaSaqer, Ola Abu-Aisheh, Diana Omari, Ghadeer Salem
Abstract:
As emails communications have no consistent authentication procedure to ensure the authenticity, we present an investigation analysis approach for detecting forged emails based on Random Forests and Naïve Bays classifiers. Instead of investigating the email headers, we use the body content to extract a unique writing style for all the possible suspects. Our approach consists of four main steps: (1) The cybercrime investigator extract different effective features including structural, lexical, linguistic, and syntactic evidence from previous emails for all the possible suspects, (2) The extracted features vectors are normalized to increase the accuracy rate. (3) The normalized features are then used to train the learning engine, (4) upon receiving the anonymous email (M); we apply the feature extraction process to produce a feature vector. Finally, using the machine learning classifiers the email is assigned to one of the suspects- whose writing style closely matches M. Experimental results on real data sets show the improved performance of the proposed method and the ability of identifying the authors with a very limited number of features.Keywords: Digital investigation, cybercrimes, emails forensics, anonymous emails, writing style, and authorship analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5254401 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies
Authors: Kanika Sood, Sijie Shang
Abstract:
A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.
Keywords: Bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, Natural Language Processing, online learning, sentiment analysis, teaching pedagogy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81400 Overview Studies of High Strength Self-Consolidating Concrete
Authors: Raya Harkouss, Bilal Hamad
Abstract:
Self-Consolidating Concrete (SCC) is considered as a relatively new technology created as an effective solution to problems associated with low quality consolidation. A SCC mix is defined as successful if it flows freely and cohesively without the intervention of mechanical compaction. The construction industry is showing high tendency to use SCC in many contemporary projects to benefit from the various advantages offered by this technology.
At this point, a main question is raised regarding the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete.
A three phase research program was conducted at the American University of Beirut (AUB) to address this concern. The first two phases consisted of comparative studies conducted on concrete and mortar mixes prepared with second generation Sulphonated Naphtalene-based superplasticizer (SNF) or third generation Polycarboxylate Ethers-based superplasticizer (PCE). The third phase of the research program investigates and compares the structural performance of high strength reinforced concrete beam specimens prepared with two different generations of superplasticizers that formed the unique variable between the concrete mixes. The beams were designed to test and exhibit flexure, shear, or bond splitting failure.
The outcomes of the experimental work revealed comparable resistance of beam specimens cast using self-compacting concrete and conventional vibrated concrete. The dissimilarities in the experimental values between the SCC and the control VC beams were minimal, leading to a conclusion, that the high consistency of SCC has little effect on the flexural, shear and bond strengths of concrete members.
Keywords: Self-consolidating concrete (SCC), high-strength concrete, concrete admixtures, mechanical properties of hardened SCC, structural behavior of reinforced concrete beams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2970399 Overall Stability of Welded Q460GJ Steel Box Columns: Experimental Study and Numerical Simulations
Authors: Zhou Xiong, Kang Shao Bo, Yang Bo
Abstract:
To date, high-performance structural steel has been widely used for columns in construction practices due to its significant advantages over conventional steel. However, the same design approach with conventional steel columns is still adopted in the design of high-performance steel columns. As a result, its superior properties cannot be fully considered in design. This paper conducts a test and finite element analysis on the overall stability behaviour of welded Q460GJ steel box columns. In the test, four steel columns with different slenderness and width-to-thickness ratio were compressed under an axial compression testing machine. And finite element models were established in which material nonlinearity and residual stress distributions of test columns were included. Then, comparisons were made between test results and finite element result, it showed that finite element analysis results are agree well with the test result. It means that the test and finite element model are reliable. Then, we compared the test result with the design value calculated by current code, the result showed that Q460GJ steel box columns have the higher overall buckling capacity than the design value. It is necessary to update the design curves for Q460GJ steel columns so that the overall stability capacity of Q460GJ box columns can be designed appropriately.
Keywords: Axial compression, Finite element analysis, Overall stability, Q460GJ steel, Welded box columns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861398 FPGA Implementation of Generalized Maximal Ratio Combining Receiver Diversity
Authors: Rafic Ayoubi, Jean-Pierre Dubois, Rania Minkara
Abstract:
In this paper, we study FPGA implementation of a novel supra-optimal receiver diversity combining technique, generalized maximal ratio combining (GMRC), for wireless transmission over fading channels in SIMO systems. Prior published results using ML-detected GMRC diversity signal driven by BPSK showed superior bit error rate performance to the widely used MRC combining scheme in an imperfect channel estimation (ICE) environment. Under perfect channel estimation conditions, the performance of GMRC and MRC were identical. The main drawback of the GMRC study was that it was theoretical, thus successful FPGA implementation of it using pipeline techniques is needed as a wireless communication test-bed for practical real-life situations. Simulation results showed that the hardware implementation was efficient both in terms of speed and area. Since diversity combining is especially effective in small femto- and picocells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to the hardware of IP-based 4th generation networks.Keywords: Femto-internet cells, field-programmable gate array, generalized maximal-ratio combining, Lyapunov fractal dimension, pipelining technique, wireless SIMO channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601397 The Effect of Micro Tools Fabricated Dent on Alumina/Alumina Oxide Interface
Authors: Taposh Roy, Dipankar Choudhury, Belinda Pingguan-Murphy
Abstract:
The tribological outcomes of micro dent are found to be outstanding in many engineering and natural surfaces. Ceramic (Al2O3) is considered one of the most potential material to bearing surfaces particularly, artificial hip or knee implant. A well-defined micro dent on alumina oxide interface could further decrease friction and wear rate, thus increase their stability and durability. In this study we fabricated circular micro dent surface profiles (Dia: 400µm, Depth 20µm, P: 1.5mm; Dia: 400µm, Depth 20µm, P: 2mm) on pure Al2O3 (99.6%) substrate by using a micro tool machines. A preliminary tribological experiment was carried out to compare friction coefficient of these fabricated dent surfaces with that of non-textured surfaces. The experiment was carried on well know pin-on-disk specimens while other experimental parameters such as hertz pressure, speed, lubrication, and temperature were maintained to standard of simulated hip joints condition. The experiment results revealed that micro dent surface texture reduced 15%, 8% and 4% friction coefficient under 0.132,0.162, 0.187 GPa contact pressure respectively. Since this is a preliminary tribological study, we will pursue further experiments considering higher ranges of dent profiles and longer run experiments. However, the preliminary results confirmed the suitability of fabricating dent profile to ceramic surfaces by using micro tooling, and also their improved tribological performance in simulated hip joints.
Keywords: Micro dent, tribology, ceramic on ceramic hipjoints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344396 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data
Authors: Arnaud Nougues
Abstract:
This paper describes a two-stage methodology derived from IMC (Internal Model Control) for tuning a PID (Proportional-Integral-Derivative) controller for levels or other integrating processes in an industrial environment. Focus is ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need of time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary PI (Proportional-Integral) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.
Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577395 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis
Authors: Mohamed A. Mahfouz, M. A. Ismail
Abstract:
Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963394 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials
Authors: O. Alelweet, S. Pavia
Abstract:
In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.
Keywords: Reactivity, water demand, alkali-activated materials, brick, bauxite, illitic clay, fly ash, slag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778393 Face Recognition Using Double Dimension Reduction
Authors: M. A Anjum, M. Y. Javed, A. Basit
Abstract:
In this paper a new approach to face recognition is presented that achieves double dimension reduction making the system computationally efficient with better recognition results. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results improve with increase in face image resolution and levels off when arriving at a certain resolution level. In the proposed model of face recognition, first image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to better computational speed and feature extraction potential of Discrete Cosine Transform (DCT) it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A trade of between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL database, Yale database and a color database. The proposed technique has performed much better compared to other techniques. The significance of the model is two fold: (1) dimension reduction up to an effective and suitable face image resolution (2) appropriate DCT coefficients are retained to achieve best recognition results with varying image poses, intensity and illumination level.
Keywords: Biometrics, DCT, Face Recognition, Feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492392 Testing Loaded Programs Using Fault Injection Technique
Authors: S. Manaseer, F. A. Masooud, A. A. Sharieh
Abstract:
Fault tolerance is critical in many of today's large computer systems. This paper focuses on improving fault tolerance through testing. Moreover, it concentrates on the memory faults: how to access the editable part of a process memory space and how this part is affected. A special Software Fault Injection Technique (SFIT) is proposed for this purpose. This is done by sequentially scanning the memory of the target process, and trying to edit maximum number of bytes inside that memory. The technique was implemented and tested on a group of programs in software packages such as jet-audio, Notepad, Microsoft Word, Microsoft Excel, and Microsoft Outlook. The results from the test sample process indicate that the size of the scanned area depends on several factors. These factors are: process size, process type, and virtual memory size of the machine under test. The results show that increasing the process size will increase the scanned memory space. They also show that input-output processes have more scanned area size than other processes. Increasing the virtual memory size will also affect the size of the scanned area but to a certain limit.Keywords: Complex software systems, Error detection, Fault tolerance, Injection and testing methodology, Memory faults, Process and virtual memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886391 Information Requirements for Vessel Traffic Service Operations
Authors: Fan Li, Chun-Hsien Chen, Li Pheng Khoo
Abstract:
Operators of vessel traffic service (VTS) center provides three different types of services; namely information service, navigational assistance and traffic organization to vessels. To provide these services, operators monitor vessel traffic through computer interface and provide navigational advice based on the information integrated from multiple sources, including automatic identification system (AIS), radar system, and closed circuit television (CCTV) system. Therefore, this information is crucial in VTS operation. However, what information the VTS operator actually need to efficiently and properly offer services is unclear. The aim of this study is to investigate into information requirements for VTS operation. To achieve this aim, field observation was carried out to elicit the information requirements for VTS operation. The study revealed that the most frequent and important tasks were handling arrival vessel report, potential conflict control and abeam vessel report. Current location and vessel name were used in all tasks. Hazard cargo information was particularly required when operators handle arrival vessel report. The speed, the course, and the distance of two or several vessels were only used in potential conflict control. The information requirements identified in this study can be utilized in designing a human-computer interface that takes into consideration what and when information should be displayed, and might be further used to build the foundation of a decision support system for VTS.
Keywords: Vessel traffic service, information requirements, hierarchy task analysis, field observation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591390 Upgraded Cuckoo Search Algorithm to Solve Optimisation Problems Using Gaussian Selection Operator and Neighbour Strategy Approach
Authors: Mukesh Kumar Shah, Tushar Gupta
Abstract:
An Upgraded Cuckoo Search Algorithm is proposed here to solve optimization problems based on the improvements made in the earlier versions of Cuckoo Search Algorithm. Short comings of the earlier versions like slow convergence, trap in local optima improved in the proposed version by random initialization of solution by suggesting an Improved Lambda Iteration Relaxation method, Random Gaussian Distribution Walk to improve local search and further proposing Greedy Selection to accelerate to optimized solution quickly and by “Study Nearby Strategy” to improve global search performance by avoiding trapping to local optima. It is further proposed to generate better solution by Crossover Operation. The proposed strategy used in algorithm shows superiority in terms of high convergence speed over several classical algorithms. Three standard algorithms were tested on a 6-generator standard test system and the results are presented which clearly demonstrate its superiority over other established algorithms. The algorithm is also capable of handling higher unit systems.
Keywords: Economic dispatch, Gaussian selection operator, prohibited operating zones, ramp rate limits, upgraded cuckoo search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684389 Material Analysis for Temple Painting Conservation in Taiwan
Authors: Chen-Fu Wang, Lin-Ya Kung
Abstract:
For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently.
Keywords: Temple painting, painting material, conservation, FT-IR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275388 Effective Scheduling of Semiconductor Manufacturing using Simulation
Authors: Ingy A. El-Khouly, Khaled S. El-Kilany, Aziz E. El-Sayed
Abstract:
The process of wafer fabrication is arguably the most technologically complex and capital intensive stage in semiconductor manufacturing. This large-scale discrete-event process is highly reentrant, and involves hundreds of machines, restrictions, and processing steps. Therefore, production control of wafer fabrication facilities (fab), specifically scheduling, is one of the most challenging problems that this industry faces. Dispatching rules have been extensively applied to the scheduling problems in semiconductor manufacturing. Moreover, lot release policies are commonly used in this manufacturing setting to further improve the performance of such systems and reduce its inherent variability. In this work, simulation is used in the scheduling of re-entrant flow shop manufacturing systems with an application in semiconductor wafer fabrication; where, a simulation model has been developed for the Intel Five-Machine Six Step Mini-Fab using the ExtendTM simulation environment. The Mini-Fab has been selected as it captures the challenges involved in scheduling the highly re-entrant semiconductor manufacturing lines. A number of scenarios have been developed and have been used to evaluate the effect of different dispatching rules and lot release policies on the selected performance measures. Results of simulation showed that the performance of the Mini-Fab can be drastically improved using a combination of dispatching rules and lot release policy.Keywords: Dispatching rules, lot release policy, re-entrant flowshop, semiconductor manufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571387 SIFT Accordion: A Space-Time Descriptor Applied to Human Action Recognition
Authors: Olfa.Ben Ahmed, Mahmoud. Mejdoub, Chokri. Ben Amar
Abstract:
Recognizing human action from videos is an active field of research in computer vision and pattern recognition. Human activity recognition has many potential applications such as video surveillance, human machine interaction, sport videos retrieval and robot navigation. Actually, local descriptors and bag of visuals words models achieve state-of-the-art performance for human action recognition. The main challenge in features description is how to represent efficiently the local motion information. Most of the previous works focus on the extension of 2D local descriptors on 3D ones to describe local information around every interest point. In this paper, we propose a new spatio-temporal descriptor based on a spacetime description of moving points. Our description is focused on an Accordion representation of video which is well-suited to recognize human action from 2D local descriptors without the need to 3D extensions. We use the bag of words approach to represent videos. We quantify 2D local descriptor describing both temporal and spatial features with a good compromise between computational complexity and action recognition rates. We have reached impressive results on publicly available action data setKeywords: Accordion, Bag of Features, Human action, Motion, Moving point, Space-Time Descriptor, SIFT, Video.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108386 Performances Assessment of Direct Torque Controlled IM Drives Using Fuzzy Logic Control and Space Vector Modulation Strategy
Authors: L. Moussaoui, L. Rahmani
Abstract:
This paper deals with the direct torque control (DTC) of the induction motor. This type of control allows decoupling control between the flux and the torque without the need for a transformation of coordinates. However, as with other hysteresis-based systems, the classical DTC scheme represents a high ripple, in both the electromagnetic torque and the stator flux and a distortion in the stator current. As well, it suffers from variable switching frequency. To solve these problems various modifications, in conventional DTC scheme, have been made during the last decade. Indeed the DTC based on space vector modulation (SVM) has proved to generate very low ripples in torque and flux with constant switching frequency. It also shows almost the same dynamic performances as the classical DTC system. On the other hand, fuzzy logic is considered as an interesting alternative approach for its advantages: Analysis close to the exigencies of user, ability of nonlinear systems control, best dynamic performances and inherent quality of robustness.
Therefore, two fuzzy direct torque control approaches, for the induction motor fed by SVM-voltage source inverter, are proposed in this paper. By using these two approaches of DTC, the advantages of fuzzy logic control, space vector modulation, and direct torque control method are combined. The performances of these DTC schemes are evaluated through digital simulation using Matlab/Simulink platform and fuzzy logic tools. Simulation results illustrate the effectiveness and the superiority of the proposed Fuzzy DTC-SVM schemes in comparison to the classical DTC.
Keywords: Direct torque control, Fuzzy logic control, Induction motor, Switching frequency, Space vector modulation, Torque and flux ripples.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398385 End-to-End Spanish-English Sequence Learning Translation Model
Authors: Vidhu Mitha Goutham, Ruma Mukherjee
Abstract:
The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.
Keywords: Attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475384 Comparison of Welding Fumes Exposure during Standing and Sitting Welder’s Position
Authors: Azian Hariri, M. Z. M Yusof, A. M. Leman
Abstract:
Experimental study was conducted to assess personal welding fumes exposure toward welders during an aluminum metal inert gas (MIG) process. The welding process was carried out by a welding machine attached to a Computer Numerical Control (CNC) workbench. A dummy welder was used to replicate welder during welding works and was attached with sampling pumps and filter cassettes for welding fumes sampling. Direct reading instruments to measure air velocity, humidity, temperature and particulate matter with diameter size 10µm or less (PM10) were located behind the dummy welder and parallel to the neck collar level to make sure the measured welding fumes exposure were not being influenced by other factors. Welding fumes exposure during standing and sitting position with and without the usage of local exhaust ventilation (LEV) was investigated. Welding fume samples were then digested and analyzed by using inductively coupled plasma mass spectroscopy (ICP-MS) according to ASTM D7439-08 method. The results of the study showed the welding fume exposure during sitting was lower compared to standing position. LEV helped reduce aluminum and lead exposure to acceptable levels during standing position. However during sitting position reduction of exposure was smaller. It can be concluded that welder position and the correct positioning of LEV should be implemented for effective exposure reduction.
Keywords: ICP-MS, MIG process, personal sampling, welding fumes exposure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2610383 The Relationship between Land Use Factors and Feeling of Happiness at the Neighbourhood Level
Authors: M. Moeinaddini, Z. Asadi-Shekari, Z. Sultan, M. Zaly Shah
Abstract:
Happiness can be related to everything that can provide a feeling of satisfaction or pleasure. This study tries to consider the relationship between land use factors and feeling of happiness at the neighbourhood level. Land use variables (beautiful and attractive neighbourhood design, availability and quality of shopping centres, sufficient recreational spaces and facilities, and sufficient daily service centres) are used as independent variables and the happiness score is used as the dependent variable in this study. In addition to the land use variables, socio-economic factors (gender, race, marital status, employment status, education, and income) are also considered as independent variables. This study uses the Oxford happiness questionnaire to estimate happiness score of more than 300 people living in six neighbourhoods. The neighbourhoods are selected randomly from Skudai neighbourhoods in Johor, Malaysia. The land use data were obtained by adding related questions to the Oxford happiness questionnaire. The strength of the relationship in this study is found using generalised linear modelling (GLM). The findings of this research indicate that increase in happiness feeling is correlated with an increasing income, more beautiful and attractive neighbourhood design, sufficient shopping centres, recreational spaces, and daily service centres. The results show that all land use factors in this study have significant relationship with happiness but only income, among socio-economic factors, can affect happiness significantly. Therefore, land use factors can affect happiness in Skudai more than socio-economic factors.
Keywords: Neighbourhood land use, neighbourhood design, happiness, socio-economic factors, generalised linear modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713382 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis
Abstract:
This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.
Keywords: Sliding mode control, pulse-width modulation, hysteresis modulation, DC-DC converter, parallel multi-cells converter, robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778381 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T
Authors: M. N. Islam, B. Boswell, Y. R. Ginting
Abstract:
The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.Keywords: Circularity, diameter error, drilling canned cycle, Pareto ANOVA, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143380 ECG-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.
Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188379 Low-Cost Monitoring System for Hydroponic Urban Vertical Farms
Authors: Francesco Ruscio, Paolo Paoletti, Jens Thomas, Paul Myers, Sebastiano Fichera
Abstract:
This paper presents the development of a low-cost monitoring system for a hydroponic urban vertical farm, enabling its automation and a quantitative assessment of the farm performance. Urban farming has seen increasing interest in the last decade thanks to the development of energy efficient and affordable LED lights; however, the optimal configuration of such systems (i.e. amount of nutrients, light-on time, ambient temperature etc.) is mostly based on the farmers’ experience and empirical guidelines. Moreover, even if simple, the maintenance of such systems is labor intensive as it requires water to be topped-up periodically, mixing of the nutrients etc. To unlock the full potential of urban farming, a quantitative understanding of the role that each variable plays in the growth of the plants is needed, together with a higher degree of automation. The low-cost monitoring system proposed in this paper is a step toward filling this knowledge and technological gap, as it enables collection of sensor data related to water and air temperature, water level, humidity, pressure, light intensity, pH and electric conductivity without requiring any human intervention. More sensors and actuators can also easily be added thanks to the modular design of the proposed platform. Data can be accessed remotely via a simple web interface. The proposed platform can be used both for quantitatively optimizing the setup of the farms and for automating some of the most labor-intensive maintenance activities. Moreover, such monitoring system can also potentially be used for high-level decision making, once enough data are collected.
Keywords: Automation, hydroponics, internet of things, monitoring system, urban farming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848378 Flame Kernel Growth and Related Effects of Spark Plug Electrodes: Fluid Motion Interaction in an Optically Accessible DISI Engine
Authors: A. Schirru, A. Irimescu, S. Merola, A. d’Adamo, S. Fontanesi
Abstract:
One of the aspects that are usually neglected during the design phase of an engine is the effect of the spark plug on the flow field inside the combustion chamber. Because of the difficulties in the experimental investigation of the mutual interaction between flow alteration and early flame kernel convection effect inside the engine combustion chamber, CFD-3D simulation is usually exploited in such cases. Experimentally speaking, a particular type of engine has to be used in order to directly observe the flame propagation process. In this study, a double electrode spark plug was fitted into an optically accessible engine and a high-speed camera was used to capture the initial stages of the combustion process. Both the arc and the kernel phases were observed. Then, a morphologic analysis was carried out and the position of the center of mass of the flame, relative to the spark plug position, was calculated. The crossflow orientation was chosen for the spark plug and the kernel growth process was observed for different air-fuel ratios. It was observed that during a normal cycle the flow field between the electrodes tends to transport the arc deforming it. Because of that, the kernel growth phase takes place away from the electrodes and the flame propagates with a preferential direction dictated by the flow field.
Keywords: Combustion, Kernel growth, optically accessible engine, spark-ignition engine, spark plug orientation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755