Search results for: energy saving
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2997

Search results for: energy saving

87 Simulation of an Auto-Tuning Bicycle Suspension Fork with Quick Releasing Valves

Authors: Y. C. Mao, G. S. Chen

Abstract:

Bicycle configuration is not as large as those of motorcycles or automobiles, while it indeed composes a complicated dynamic system. People-s requirements on comfortability, controllability and safety grow higher as the research and development technologies improve. The shock absorber affects the vehicle suspension performances enormously. The absorber takes the vibration energy and releases it at a suitable time, keeping the wheel under a proper contact condition with road surface, maintaining the vehicle chassis stability. Suspension design for mountain bicycles is more difficult than that of city bikes since it encounters dynamic variations on road and loading conditions. Riders need a stiff damper as they exert to tread on the pedals when climbing, while a soft damper when they descend downhill. Various switchable shock absorbers are proposed in markets, however riders have to manually switch them among soft, hard and lock positions. This study proposes a novel design of the bicycle shock absorber, which provides automatic smooth tuning of the damping coefficient, from a predetermined lower bound to theoretically unlimited. An automatic quick releasing valve is involved in this design so that it can release the peak pressure when the suspension fork runs into a square-wave type obstacle and prevent the chassis from damage, avoiding the rider skeleton from injury. This design achieves the automatic tuning process by innovative plunger valve and fluidic passage arrangements without any electronic devices. Theoretical modelling of the damper and spring are established in this study. Design parameters of the valves and fluidic passages are determined. Relations between design parameters and shock absorber performances are discussed in this paper. The analytical results give directions to the shock absorber manufacture.

Keywords: Modelling, Simulation, Bicycle, Shock Absorber, Damping, Releasing Valve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2895
86 Microstructure and Corrosion Behavior of Laser Welded Magnesium Alloys with Silver Nanoparticles

Authors: M. Ishak, K. Yamasaki, K. Maekawa

Abstract:

Magnesium alloys have gained increased attention in recent years in automotive, electronics, and medical industry. This because of magnesium alloys have better properties than aluminum alloys and steels in respects of their low density and high strength to weight ratio. However, the main problems of magnesium alloy welding are the crack formation and the appearance of porosity during the solidification. This paper proposes a unique technique to weld two thin sheets of AZ31B magnesium alloy using a paste containing Ag nanoparticles. The paste containing Ag nanoparticles of 5 nm in average diameter and an organic solvent was used to coat the surface of AZ31B thin sheet. The coated sheet was heated at 100 °C for 60 s to evaporate the solvent. The dried sheet was set as a lower AZ31B sheet on the jig, and then lap fillet welding was carried out by using a pulsed Nd:YAG laser in a closed box filled with argon gas. The characteristics of the microstructure and the corrosion behavior of the joints were analyzed by opticalmicroscopy (OM), energy dispersive spectrometry (EDS), electron probe micro-analyzer (EPMA), scanning electron microscopy (SEM), and immersion corrosion test. The experimental results show that the wrought AZ31B magnesium alloy can be joined successfully using Ag nanoparticles. Ag nanoparticles insert promote grain refinement, narrower the HAZ width and wider bond width compared to weld without and insert. Corrosion rate of welded AZ31B with Ag nanoparticles reduced up to 44 % compared to base metal. The improvement of corrosion resistance of welded AZ31B with Ag nanoparticles due to finer grains and large grain boundaries area which consist of high Al content. β-phase Mg17Al12 could serve as effective barrier and suppressed further propagation of corrosion. Furthermore, Ag distribution in fusion zone provide much more finer grains and may stabilize the magnesium solid solution making it less soluble or less anodic in aqueous

Keywords: Laser welding, magnesium alloys, nanoparticles, mechanical property

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077
85 Ecolodging as an Answer for Sustainable Development and Successful Resource Management: The Case of North West Coast in Alexandria

Authors: I. Elrouby

Abstract:

The continued growth of tourism in the future relies on maintaining a clean environment by achieving sustainable development. The erosion and degradation of beaches, the deterioration of coastal water quality, visual pollution of coastlines by massive developments, all this has contributed heavily to the loss of the natural attractiveness for tourism. In light of this, promoting the concept of sustainable coastal development is becoming a central goal for governments and private sector. An ecolodge is a small hotel or guesthouse that incorporates local architectural, cultural and natural characteristics, promotes environmental conservation through minimizing the use of waste and energy and produces social and economic benefits for local communities. Egypt has some scattered attempts in some areas like Sinai in the field of ecolodging. This research tends to investigate the potentials of the North West Coast (NWC) in Alexandria as a new candidate for ecolodging investments. The area is full of primitive natural and man-made resources. These, if used in an environmental-friendly way could achieve cost reductions as a result of successful resource management for investors on the one hand, and coastal preservation on the other hand. In-depth interviews will be conducted with stakeholders in the tourism sector to examine their opinion about the potentials of the research area for ecolodging developments. The candidates will be also asked to rate the importance of the availability of certain environmental aspects in such establishments such as the uses of resources that originate from local communities, uses of natural power sources, uses of an environmental-friendly sewage disposal, forbidding the use of materials of endangered species and enhancing cultural heritage conservation. The results show that the area is full of potentials that could be effectively used for ecolodging investments. This if efficiently used could attract ecotourism as a supplementary type of tourism that could be promoted in Alexandria aside cultural, recreational and religious tourism.

Keywords: Alexandria, ecolodging, ecotourism, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
84 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

Keywords: Biomagnetic fluid, FHD, nonlinear stretching sheet, slip parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
83 Analytical Study of Sedimentation Formation in Lined Canals using the SHARC Software- A Case Study of the Western Intake Structure in Dez Diversion Weir in Dezful, Iran

Authors: A.H. Sajedipoor, N. Hedayat, M. Mashal

Abstract:

Sedimentation is a hydraulic phenomenon that is emerging as a serious challenge in river engineering. When the flow reaches a certain state that gather potential energy, it shifts the sediment load along channel bed. The transport of such materials can be in the form of suspended and bed loads. The movement of these along the river course and channels and the ways in which this could influence the water intakes is considered as the major challenges for sustainable O&M of hydraulic structures. This could be very serious in arid and semi-arid regions like Iran, where inappropriate watershed management could lead to shifting a great deal of sediments into the reservoirs and irrigation systems. This paper aims to investigate sedimentation in the Western Canal of Dez Diversion Weir in Iran, identifying factors which influence the process and provide ways in which to mitigate its detrimental effects by using the SHARC Software. For the purpose of this paper, data from the Dezful water authority and Dezful Hydrometric Station pertinent to a river course of about 6 Km were used. Results estimated sand and silt bed loads concentrations to be 193 ppm and 827ppm respectively. Given the available data on average annual bed loads and average suspended sediment loads of 165ppm and 837ppm, there was a significant statistical difference (16%) between the sand grains, whereas no significant difference (1.2%) was find in the silt grain sizes. One explanation for such finding being that along the 6 Km river course there was considerable meandering effects which explains recent shift in the hydraulic behavior along the stream course under investigation. The sand concentration in downstream relative to present state of the canal showed a steep descending curve. Sediment trapping on the other hand indicated a steep ascending curve. These occurred because the diversion weir was not considered in the simulation model.

Keywords: SHARC model, sedimentation, Western canal, Dezdiversion weir

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
82 Comparative Study on Productivity, Chemical Composition and Yield Quality of Some Alternative Crops in Romanian Organic Farming

Authors: Maria Toader, Gheorghe Valentin Roman, Alina Maria IonescuMaria Toader, Gheorghe Valentin Roman, Alina Maria Ionescu

Abstract:

Crops diversity and maintaining and enhancing the fertility of agricultural lands are basic principles of organic farming. With a wider range of crops in agroecosystem can improve the ability to control weeds, pests and diseases, and the performance of crops rotation and food safety. In this sense, the main objective of the research was to study the productivity and chemical composition of some alternative crops and their adaptability to soil and climatic conditions of the agricultural area in Southern Romania and to cultivation in the organic farming system. The alternative crops were: lentil (7 genotypes); five species of grain legumes (5 genotypes); four species of oil crops (5 genotypes). The seed production was, on average: 1343 kg/ha of lentil; 2500 kg/ha of field beans; 2400 kg/ha of chick peas and blackeyed peas; more than 2000 kg/ha of atzuki beans, over 1250 kg/ha of fenugreek; 2200 kg/ha of safflower; 570 kg/ha of oil pumpkin; 2150 kg/ha of oil flax; 1518 kg/ha of camelina. Regarding chemical composition, lentil seeds contained: 22.18% proteins, 3.03% lipids, 33.29% glucides, 4.00% minerals, and 259.97 kcal energy values. For field beans: 21.50% proteins, 4.40% lipids, 63.90% glucides, 5.85% minerals, 395.36 kcal energetic value. For chick peas: 21.23% proteins, 4.55% lipids, 53.00% glucides, 3.67% minerals, 348.22 kcal energetic value. For blackeyed peas: 23.30% proteins, 2.10% lipids, 68.10% glucides, 3.93% minerals, 350.14 kcal energetic value. For adzuki beans: 21.90% proteins, 2.60% lipids, 69.30% glucides, 4.10% minerals, 402.48 kcal energetic value. For fenugreek: 21.30% proteins, 4.65% lipids, 63.83% glucides, 5.69% minerals, 396.54 kcal energetic value. For safflower: 12.60% proteins, 28.37% lipids, 46.41% glucides, 3.60% minerals, 505.78 kcal energetic value. For camelina: 20.29% proteins, 31.68% lipids, 36.28% glucides, 4.29% minerals, 526.63 kcal energetic value. For oil pumpkin: 29.50% proteins, 36.92% lipids, 18.50% glucides, 5.41% minerals, 540.15 kcal energetic value. For oil flax: 22.56% proteins, 34.10% lipids, 27.73% glucides, 5.25% minerals, 558.45 kcal energetic value.

Keywords: Adaptability, alternative crops, chemical composition, organic farming productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
81 Effect of Anion and Amino Functional Group on Resin for Lipase Immobilization with Adsorption-Cross Linking Method

Authors: Heri Hermansyah, Annisa Kurnia, A. Vania Anisya, Adi Surjosatyo, Yopi Sunarya, Rita Arbianti, Tania Surya Utami

Abstract:

Lipase is one of biocatalyst which is applied commercially for the process in industries, such as bioenergy, food, and pharmaceutical industry. Nowadays, biocatalysts are preferred in industries because they work in mild condition, high specificity, and reduce energy consumption (high pressure and temperature). But, the usage of lipase for industry scale is limited by economic reason due to the high price of lipase and difficulty of the separation system. Immobilization of lipase is one of the solutions to maintain the activity of lipase and reduce separation system in the process. Therefore, we conduct a study about lipase immobilization with the adsorption-cross linking method using glutaraldehyde because this method produces high enzyme loading and stability. Lipase is immobilized on different kind of resin with the various functional group. Highest enzyme loading (76.69%) was achieved by lipase immobilized on anion macroporous which have anion functional group (OH). However, highest activity (24,69 U/g support) through olive oil emulsion method was achieved by lipase immobilized on anion macroporous-chitosan which have amino (NH2) and anion (OH-) functional group. In addition, it also success to produce biodiesel until reach yield 50,6% through interesterification reaction and after 4 cycles stable 63.9% relative with initial yield. While for Aspergillus, niger lipase immobilized on anion macroporous-kitosan have unit activity 22,84 U/g resin and yield biodiesel higher than commercial lipase (69,1%) and after 4 cycles stable reach 70.6% relative from initial yield. This shows that optimum functional group on support for immobilization with adsorption-cross linking is the support that contains amino (NH2) and anion (OH-) functional group because they can react with glutaraldehyde and binding with enzyme prevent desorption of lipase from support through binding lipase with a functional group on support.

Keywords: Adsorption-Cross linking, lipase, resin, immobilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
80 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome

Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco

Abstract:

Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.

Keywords: Data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
79 Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain

Authors: Madiha El Awamie, Catherine Rees

Abstract:

Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.

Keywords: Antibacterial activity, bioluminescence, Glycyrrhiza glabra, natural preservative.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
78 Changes in Subjective and Objective Measures of Performance in Ramadan

Authors: H. Alabed, K. Abuzayan, J. Waterhouse

Abstract:

The Muslim faith requires individuals to fast between the hours of sunrise and sunset during the month of Ramadan. Our recent work has concentrated on some of the changes that take place during the daytime when fasting. A questionnaire was developed to assess subjective estimates of physical, mental and social activities, and fatigue. Four days were studied: in the weeks before and after Ramadan (control days) and during the first and last weeks of Ramadan (experimental days). On each of these four days, this questionnaire was given several times during the daytime and once after the fast had been broken and just before individuals retired at night. During Ramadan, daytime mental, physical and social activities all decreased below control values but then increased to abovecontrol values in the evening. The desires to perform physical and mental activities showed very similar patterns. That is, individuals tried to conserve energy during the daytime in preparation for the evenings when they ate and drank, often with friends. During Ramadan also, individuals were more fatigued in the daytime and napped more often than on control days. This extra fatigue probably reflected decreased sleep, individuals often having risen earlier (before sunrise, to prepare for fasting) and retired later (to enable recovery from the fast). Some physiological measures and objective measures of performance (including the response to a bout of exercise) have also been investigated. Urine osmolality fell during the daytime on control days as subjects drank, but rose in Ramadan to reach values at sunset indicative of dehydration. Exercise performance was also compromised, particularly late in the afternoon when the fast had lasted several hours. Self-chosen exercise work-rates fell and a set amount of exercise felt more arduous. There were also changes in heart rate and lactate accumulation in the blood, indicative of greater cardiovascular and metabolic stress caused by the exercise in subjects who had been fasting. Daytime fasting in Ramadan produces widespread effects which probably reflect combined effects of sleep loss and restrictions to intakes of water and food.

Keywords: Drinking, Eating, Mental Performance, Physical Performance, Social Activity, Sleepiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
77 Real-Time Vision-based Korean Finger Spelling Recognition System

Authors: Anjin Park, Sungju Yun, Jungwhan Kim, Seungk Min, Keechul Jung

Abstract:

Finger spelling is an art of communicating by signs made with fingers, and has been introduced into sign language to serve as a bridge between the sign language and the verbal language. Previous approaches to finger spelling recognition are classified into two categories: glove-based and vision-based approaches. The glove-based approach is simpler and more accurate recognizing work of hand posture than vision-based, yet the interfaces require the user to wear a cumbersome and carry a load of cables that connected the device to a computer. In contrast, the vision-based approaches provide an attractive alternative to the cumbersome interface, and promise more natural and unobtrusive human-computer interaction. The vision-based approaches generally consist of two steps: hand extraction and recognition, and two steps are processed independently. This paper proposes real-time vision-based Korean finger spelling recognition system by integrating hand extraction into recognition. First, we tentatively detect a hand region using CAMShift algorithm. Then fill factor and aspect ratio estimated by width and height estimated by CAMShift are used to choose candidate from database, which can reduce the number of matching in recognition step. To recognize the finger spelling, we use DTW(dynamic time warping) based on modified chain codes, to be robust to scale and orientation variations. In this procedure, since accurate hand regions, without holes and noises, should be extracted to improve the precision, we use graph cuts algorithm that globally minimize the energy function elegantly expressed by Markov random fields (MRFs). In the experiments, the computational times are less than 130ms, and the times are not related to the number of templates of finger spellings in database, as candidate templates are selected in extraction step.

Keywords: CAMShift, DTW, Graph Cuts, MRF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
76 Designing Mobile Application to Motivate Young People to Visit Cultural Heritage Sites

Authors: Yuko Hiramatsu, Fumihiro Sato, Atsushi Ito, Hiroyuki Hatano, Mie Sato, Yu Watanabe, Akira Sasaki

Abstract:

This paper presents a mobile phone application developed for sightseeing in Nikko, one of the cultural world heritages in Japan, using the BLE (Bluetooth Low Energy) beacon. Based on our pre-research, we decided to design our application for young people who walk around the area actively, but know little about the tradition and culture of Nikko. One solution is to construct many information boards to explain; however, it is difficult to construct new guide plates in cultural world heritage sites. The smartphone is a good solution to send such information to such visitors. This application was designed using a combination of the smartphone and beacons, set in the area, so that when a tourist passes near a beacon, the application displays information about the area including a map, historical or cultural information about the temples and shrines, and local shops nearby as well as a bus timetable. It is useful for foreigners, too. In addition, we developed quizzes relating to the culture and tradition of Nikko to provide information based on the Zeigarnik effect, a psychological effect. According to the results of our trials, tourists positively evaluated the basic information and young people who used the quiz function were able to learn the historical and cultural points. This application helped young visitors at Nikko to understand the cultural elements of the site. In addition, this application has a function to send notifications. This function is designed to provide information about the local community such as shops, local transportation companies and information office. The application hopes to also encourage people living in the area, and such cooperation from the local people will make this application vivid and inspire young visitors to feel that the cultural heritage site is still alive today. This is a gateway for young people to learn about a traditional place and understand the gravity of preserving such areas.

Keywords: BLE beacon, smartphone application, Zeigarnik effect, world heritage site, school trip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
75 Engineering Education for Sustainable Development in China: Perceptions Bias between Experienced Engineers and Engineering Students

Authors: Liang Wang, Wei Zhang

Abstract:

Nowadays sustainable development has increasingly become an important research topic of engineering education all over the world. Engineering Education for Sustainable Development (EESD) highlighted the importance of addressing sustainable development in engineering practice. However, whether and how the professional engineering learning and experience affect those perceptions is an interesting research topic especially in Chinese context. Our study fills this gap by investigating perceptions bias of EESD among first-grade engineering students, fourth-grade engineering students and experienced engineers using a triple-dimensional model. Our goal is to find the effect of engineering learning and experience on sustainable development and make these learning and experiences more accessible for students and engineers in school and workplace context. The data (n = 138) came from a Likert questionnaire based on the triple-dimensional model of EESD adopted from literature reviews and the data contain 48 first-grade students, 56 fourth-grade students and 34 engineers with rich working experience from Environmental Engineering, Energy Engineering, Chemical Engineering and Civil Engineering in or graduated from Zhejiang University, China. One-way ANOVA analysis was used to find the difference in different dimensions among the three groups. The statistical results show that both engineering students and engineers have a well understanding of sustainable development in ecology dimension of EESD while there are significant differences among three groups as to the socio-economy and value rationality dimensions of EESD. The findings provide empirical evidence that both engineering learning and professional engineering experience are helpful to cultivate the cognition and perception of sustainable development in engineering education. The results of this work indicate that more practical content should be added to students’ engineering education while more theoretical content should be added to engineers’ training in order to promote the engineering students’ and engineers’ perceptions of sustainable development. In addition, as to the design of engineering courses and professional practice system for sustainable development, we should not only pay attention to the ecological aspects, but also emphasize the coordination of ecological, socio-economic and human-centered sustainable development (e.g., engineer's ethical responsibility).

Keywords: Engineering education, sustainable development, experienced engineers, engineering students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600
74 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: Lithium-Ion batteries, genetic algorithm optimization, battery aging test, and parameter identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
73 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization

Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu

Abstract:

Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.

Keywords: Flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
72 Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage

Authors: Faezeh Mosallat, Eric L. Bibeau, Tarek El Mekkawy

Abstract:

Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. A numerical dynamic model is developed to simulate troughs installed in cold climates and validated using a parabolic solar trough facility in Winnipeg. The model is developed in Simulink and will be utilized to simulate a trigeneration system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates and use the model to determine ways to improve the economics and address cold weather issues. In this paper the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using Organic Rankine Cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modelling provides dynamic performance results using measured meteorological data recorded every minute at the solar facility location. The purpose of this modeling approach is to accurately predict system performance at each time step considering the solar radiation fluctuations due to passing clouds. Optimization of the controller in cold temperatures is another goal of the simulation to for example minimize heat losses in winter when energy demand is high and solar resources are low. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. The results of the simulation are presented for a summer day in Winnipeg which includes comparison of performance parameters of the absorption cooling and ORC systems at different heat transfer fluid (HTF) temperatures.

Keywords: Absorption cooling, parabolic solar trough, remote community, organic Rankine cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3118
71 An Investigation into the Potential of Industrial Low Grade Heat in Membrane Distillation for Freshwater Production

Authors: Yehia Manawi, Ahmad Kayvani Fard

Abstract:

Membrane distillation is an emerging technology which has been used to produce freshwater and purify different types of aqueous mixtures. Qatar is an arid country where almost 100% of its freshwater demand is supplied through the energy-intensive thermal desalination process. The country’s need for water has reached an all-time high which stipulates finding an alternative way to augment freshwater without adding any drastic affect to the environment. The objective of this paper was to investigate the potential of using the industrial low grade waste heat to produce freshwater using membrane distillation. The main part of this work was conducting a heat audit on selected Qatari chemical industries to estimate the amounts of freshwater produced if such industrial waste heat were to be recovered. By the end of this work, the main objective was met and the heat audit conducted on the Qatari chemical industries enabled us to estimate both the amounts of waste heat which can be potentially recovered in addition to the amounts of freshwater which can be produced if such waste heat were to be recovered.

By the end, the heat audit showed that around 605 Mega Watts of waste heat can be recovered from the studied Qatari chemical industries which resulted in a total daily production of 5078.7 cubic meter of freshwater.

This water can be used in a wide variety of applications such as human consumption or industry. The amount of produced freshwater may look small when compared to that produced through thermal desalination plants; however, one must bear in mind that this water comes from waste and can be used to supply water for small cities or remote areas which are not connected to the water grid. The idea of producing freshwater from the two widely-available wastes (thermal rejected brine and waste heat) seems promising as less environmental and economic impacts will be associated with freshwater production which may in the near future augment the conventional way of producing freshwater currently being thermal desalination. This work has shown that low grade waste heat in the chemical industries in Qatar and perhaps the rest of the world can contribute to additional production of freshwater using membrane distillation without significantly adding to the environmental impact.

Keywords: Membrane distillation, desalination, heat recovery, environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
70 Tribological Investigation and the Effect of Karanja Biodiesel on Engine Wear in Compression Ignition Engine

Authors: Ajay V. Kolhe, R. E. Shelke, S. S. Khandare

Abstract:

Various biomass based resources, which can be used as an extender, or a complete substitute of diesel fuel may have very significant role in the development of agriculture, industrial and transport sectors in the energy crisis. Use of Karanja oil methyl ester biodiesel in a CI DI engine was found highly compatible with engine performance along with lower exhaust emission as compared to diesel fuel but with slightly higher NOx emission and low wear characteristics. The combustion related properties of vegetable oils are somewhat similar to diesel oil. Neat vegetable oils or their blends with diesel, however, pose various long-term problems in compression ignition engines. These undesirable features of vegetable oils are because of their inherent properties like high viscosity, low volatility, and polyunsaturated character. Pongamia methyl ester (PME) was prepared by transesterification process using methanol for long term engine operations. The physical and combustion-related properties of the fuels thus developed were found to be closer to that of the diesel. A neat biodiesel (PME) was selected as a fuel for the tribological study of biofuels. Two similar new engines were completely disassembled and subjected to dimensioning of various vital moving parts and then subjected to long-term endurance tests on neat biodiesel and diesel respectively. After completion of the test, both the engines were again disassembled for physical inspection and wear measurement of various vital parts. The lubricating oil samples drawn from both engines were subjected to atomic absorption spectroscopy (AAS) for measurement of various wear metal traces present. The additional lubricating property of biodiesel fuel due to higher viscosity as compared to diesel fuel resulted in lower wear of moving parts and thus improved the engine durability with a bio-diesel fuel. Results reported from AAS tests confirmed substantially lower wear and thus improved life for biodiesel operated engines.

Keywords: Transesterification, PME, wear of engine parts, Metal traces and AAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
69 MIMO Radar-Based System for Structural Health Monitoring and Geophysical Applications

Authors: Davide D’Aria, Paolo Falcone, Luigi Maggi, Aldo Cero, Giovanni Amoroso

Abstract:

The paper presents a methodology for real-time structural health monitoring and geophysical applications. The key elements of the system are a high performance MIMO RADAR sensor, an optical camera and a dedicated set of software algorithms encompassing interferometry, tomography and photogrammetry. The MIMO Radar sensor proposed in this work, provides an extremely high sensitivity to displacements making the system able to react to tiny deformations (up to tens of microns) with a time scale which spans from milliseconds to hours. The MIMO feature of the system makes the system capable of providing a set of two-dimensional images of the observed scene, each mapped on the azimuth-range directions with noticeably resolution in both the dimensions and with an outstanding repetition rate. The back-scattered energy, which is distributed in the 3D space, is projected on a 2D plane, where each pixel has as coordinates the Line-Of-Sight distance and the cross-range azimuthal angle. At the same time, the high performing processing unit allows to sense the observed scene with remarkable refresh periods (up to milliseconds), thus opening the way for combined static and dynamic structural health monitoring. Thanks to the smart TX/RX antenna array layout, the MIMO data can be processed through a tomographic approach to reconstruct the three-dimensional map of the observed scene. This 3D point cloud is then accurately mapped on a 2D digital optical image through photogrammetric techniques, allowing for easy and straightforward interpretations of the measurements. Once the three-dimensional image is reconstructed, a 'repeat-pass' interferometric approach is exploited to provide the user of the system with high frequency three-dimensional motion/vibration estimation of each point of the reconstructed image. At this stage, the methodology leverages consolidated atmospheric correction algorithms to provide reliable displacement and vibration measurements.

Keywords: Interferometry, MIMO RADAR, SAR, tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
68 Fire Resilient Cities: The Impact of Fire Regulations, Technological and Community Resilience

Authors: Fanny Guay

Abstract:

Building resilience, sustainable buildings, urbanization, climate change, resilient cities, are just a few examples of where the focus of research has been in the last few years. It is obvious that there is a need to rethink how we are building our cities and how we are renovating our existing buildings. However, the question remaining is how can we assure that we are building sustainable yet resilient cities? There are many aspects one can touch upon when discussing resilience in cities, but after the event of Grenfell in June 2017, it has become clear that fire resilience must be a priority. We define resilience as a holistic approach including communities, society and systems, focusing not only on resisting the effects of a disaster, but also how it will cope and recover from it. Cities are an example of such a system, where components such as buildings have an important role to play. A building on fire will have an impact on the community, the economy, the environment, and so the entire system. Therefore, we believe that fire and resilience go hand in hand when we discuss building resilient cities. This article aims at discussing the current state of the concept of fire resilience and suggests actions to support the built of more fire resilient buildings. Using the case of Grenfell and the fire safety regulations in the UK, we will briefly compare the fire regulations in other European countries, more precisely France, Germany and Denmark, to underline the difference and make some suggestions to increase fire resilience via regulation. For this research, we will also include other types of resilience such as technological resilience, discussing the structure of buildings itself, as well as community resilience, considering the role of communities in building resilience. Our findings demonstrate that to increase fire resilience, amending existing regulations might be necessary, for example, how we performed reaction to fire tests and how we classify building products. However, as we are looking at national regulations, we are only able to make general suggestions for improvement. Another finding of this research is that the capacity of the community to recover and adapt after a fire is also an essential factor. Fundamentally, fire resilience, technological resilience and community resilience are closely connected. Building resilient cities is not only about sustainable buildings or energy efficiency; it is about assuring that all the aspects of resilience are included when building or renovating buildings. We must ask ourselves questions as: Who are the users of this building? Where is the building located? What are the components of the building, how was it designed and which construction products have been used? If we want to have resilient cities, we must answer these basic questions and assure that basic factors such as fire resilience are included in our assessment.

Keywords: Buildings, cities, fire, resilience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
67 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application

Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian

Abstract:

The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.

Keywords: Hole transporting layer, lead-free, perovskite Solar cell, SCAPS-1D, Sn-Ge based material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
66 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment

Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos

Abstract:

Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.

Keywords: Acid pretreatment, Alginate, Brown seaweed, Microwave-assisted extraction, Response surface methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3354
65 An Appraisal of Coal Fly Ash Soil Amendment Technology (FASAT) of Central Institute of Mining and Fuel Research (CIMFR)

Authors: L.C. Ram, R.E. Masto, Smriti Singh, R.C. Tripathi, S.K. Jha, N.K. Srivastava, A.K. Sinha, V.A. Selvi, A. Sinha

Abstract:

Coal will continue to be the predominant source of global energy for coming several decades. The huge generation of fly ash (FA) from combustion of coal in thermal power plants (TPPs) is apprehended to pose the concerns of its disposal and utilization. FA application based on its typical characteristics as soil ameliorant for agriculture and forestry is the potential area, and hence the global attempt. The inferences drawn suffer from the variations of ash characteristics, soil types, and agro-climatic conditions; thereby correlating the effects of ash between various plant species and soil types is difficult. Indian FAs have low bulk density, high water holding capacity and porosity, rich silt-sized particles, alkaline nature, negligible solubility, and reasonable plant nutrients. Findings of the demonstrations trials for more than two decades from lab/pot to field scale long-term experiments are developed as FA soil amendment technology (FASAT) by Central Institute of Mining and Fuel Research (CIMFR), Dhanbad. Performance of different crops and plant species in cultivable and problematic soils, are encouraging, eco-friendly, and being adopted by the farmers. FA application includes ash alone and in combination with inorganic/organic amendments; combination treatments including bio-solids perform better than FA alone. Optimum dose being up to 100 t/ha for cultivable land and up to/ or above 200 t/ha of FA for waste/degraded land/mine refuse, depending on the characteristics of ash and soil. The elemental toxicity in Indian FA is usually not of much concern owing to alkaline ashes, oxide forms of elements, and elemental concentration within the threshold limits for soil application. Combating toxicity, if any, is possible through combination treatments with organic materials and phytoremediation. Government initiatives through extension programme involving farmers and ash generating organizations need to be accelerated

Keywords: Fly ash, soil quality, CIMFR, FASAT, agriculture, forestry, toxicity, remediation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3068
64 Circular Economy Maturity Models: A Systematic Literature Review

Authors: D. Kreutzer, S. Müller-Abdelrazeq, I. Isenhardt

Abstract:

Resource scarcity, energy transition and the planned climate neutrality pose enormous challenges for manufacturing companies. In order to achieve these goals and a holistic sustainable development, the European Union has listed the circular economy as part of the Circular Economy Action Plan. In addition to a reduction in resource consumption, reduced emissions of greenhouse gases and a reduced volume of waste, the principles of the circular economy also offer enormous economic potential for companies, such as the generation of new circular business models. However, many manufacturing companies, especially small and medium-sized enterprises, do not have the necessary capacity to plan their transformation. They need support and strategies on the path to circular transformation because this change affects not only production but also the entire company. Maturity models offer an approach to determine the current status of companies’ transformation processes. In addition, companies can use the models to identify transformation strategies and thus promote the transformation process. While maturity models are established in other areas, e.g., IT or project management, only a few circular economy maturity models can be found in the scientific literature. The aim of this paper is to analyze the identified maturity models of the circular economy through a systematic literature review (SLR) and, besides other aspects, to check their completeness as well as their quality. For this purpose, circular economy maturity models at the company's (micro) level were identified from the literature, compared, and analyzed with regard to their theoretical and methodological structure. A specific focus was placed, on the one hand, on the analysis of the business units considered in the respective models and, on the other hand, on the underlying metrics and indicators in order to determine the individual maturity level of the entire company. The results of the literature review show, for instance, a significant difference in the number and types of indicators as well as their metrics. For example, most models use subjective indicators and very few objective indicators in their surveys. It was also found that there are rarely well-founded thresholds between the levels. Based on the generated results, concrete ideas and proposals for a research agenda in the field of circular economy maturity models are made.

Keywords: Circular economy, maturity model, maturity assessment, systematic literature review.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235
63 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications

Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik

Abstract:

Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).

Keywords: Polymer treatment, laser, periodic pattern, cell response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
62 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology

Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi

Abstract:

The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.

Keywords: Emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
61 Pose-Dependency of Machine Tool Structures: Appearance, Consequences, and Challenges for Lightweight Large-Scale Machines

Authors: S. Apprich, F. Wulle, A. Lechler, A. Pott, A. Verl

Abstract:

Large-scale machine tools for the manufacturing of large work pieces, e.g. blades, casings or gears for wind turbines, feature pose-dependent dynamic behavior. Small structural damping coefficients lead to long decay times for structural vibrations that have negative impacts on the production process. Typically, these vibrations are handled by increasing the stiffness of the structure by adding mass. This is counterproductive to the needs of sustainable manufacturing as it leads to higher resource consumption both in material and in energy. Recent research activities have led to higher resource efficiency by radical mass reduction that is based on controlintegrated active vibration avoidance and damping methods. These control methods depend on information describing the dynamic behavior of the controlled machine tools in order to tune the avoidance or reduction method parameters according to the current state of the machine. This paper presents the appearance, consequences and challenges of the pose-dependent dynamic behavior of lightweight large-scale machine tool structures in production. It starts with the theoretical introduction of the challenges of lightweight machine tool structures resulting from reduced stiffness. The statement of the pose-dependent dynamic behavior is corroborated by the results of the experimental modal analysis of a lightweight test structure. Afterwards, the consequences of the pose-dependent dynamic behavior of lightweight machine tool structures for the use of active control and vibration reduction methods are explained. Based on the state of the art of pose-dependent dynamic machine tool models and the modal investigation of an FE-model of the lightweight test structure, the criteria for a pose-dependent model for use in vibration reduction are derived. The description of the approach for a general posedependent model of the dynamic behavior of large lightweight machine tools that provides the necessary input to the aforementioned vibration avoidance and reduction methods to properly tackle machine vibrations is the outlook of the paper.

Keywords: Dynamic behavior, lightweight, machine tool, pose-dependency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
60 Study of Proton-9,11Li Elastic Scattering at 60~75 MeV/Nucleon

Authors: Arafa A. Alholaisi, Jamal H. Madani, M. A. Alvi

Abstract:

The radial form of nuclear matter distribution, charge and the shape of nuclei are essential properties of nuclei, and hence, are of great attention for several areas of research in nuclear physics. More than last three decades have witnessed a range of experimental means employing leptonic probes (such as muons, electrons etc.) for exploring nuclear charge distributions, whereas the hadronic probes (for example alpha particles, protons, etc.) have been used to investigate the nuclear matter distributions. In this paper, p-9,11Li elastic scattering differential cross sections in the energy range  to  MeV have been studied by means of Coulomb modified Glauber scattering formalism. By applying the semi-phenomenological Bhagwat-Gambhir-Patil [BGP] nuclear density for loosely bound neutron rich 11Li nucleus, the estimated matter radius is found to be 3.446 fm which is quite large as compared to so known experimental value 3.12 fm. The results of microscopic optical model based calculation by applying Bethe-Brueckner–Hartree–Fock formalism (BHF) have also been compared. It should be noted that in most of phenomenological density model used to reproduce the p-11Li differential elastic scattering cross sections data, the calculated matter radius lies between 2.964 and 3.55 fm. The calculated results with phenomenological BGP model density and with nucleon density calculated in the relativistic mean-field (RMF) reproduces p-9Li and p-11Li experimental data quite nicely as compared to Gaussian- Gaussian or Gaussian-Oscillator densities at all energies under consideration. In the approach described here, no free/adjustable parameter has been employed to reproduce the elastic scattering data as against the well-known optical model based studies that involve at least four to six adjustable parameters to match the experimental data. Calculated reaction cross sections σR for p-11Li at these energies are quite large as compared to estimated values reported by earlier works though so far no experimental studies have been performed to measure it.

Keywords: Bhagwat-Gambhir-Patil density, coulomb modified Glauber model, halo nucleus, optical limit approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
59 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel

Abstract:

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Keywords: Sanitation systems, nano membrane toilet, LCA, stochastic uncertainty analysis, Monte Carlo Simulations, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
58 Effects of Cellular Insulin Receptor Stimulators with Alkaline Water on Performance, Plasma Cholesterol, Glucose, Triglyceride Levels and Hatchability in Breeding Japanese Quail

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

Aim of this study is to determine the effects of cellular insulin receptor stimulators on performance, plasma glucose, high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol, triglyceride, triiodothyronine (T3) and thyroxine (T4) hormone levels, and incubation features in the breeding Japanese quails (Coturnix japonica). In the study, a total of 84 breeding quails was used, 6 weeks’ age, 24 are male and 60, female. Rations used in experiment are 2900 kcal/kg metabolic energy and 20% crude protein. Water pH is calibrated to 7.45. Ration and water were administered ad-libitum to the animals. As metformin source, metformin-HCl was used and as chrome resource, chromium picolinate was used. Trial groups were formed as control group (basal ration), metformin group (basal ration, added metformin at the level of feed of 20 mg/kg), and chromium picolinate (basal ration, added feed of 1500 ppb Cr) group. When regarded to the results of performance at the end of experiment, it is seen that live weight gain, feed consumption, egg weight, feed conversion ratio (Feed consumption/ egg weight), and egg production were affected at the significant level (p < 0.05). When the results are evaluated in terms of incubation features, hatchability and hatchability of fertile egg ratio were not affected from the treatments. Fertility ratio was significantly affected by metformin and chromium picolinate treatments and fertility rose at the significant level compared to control group (p < 0.05). According to results of experiment, plasma glucose level was not affected by metformin and chromium picolinate treatments. Plasma, total cholesterol, HDL, LDL, and triglyceride levels were significantly affected from insulin receptor stimulators added to ration (p < 0.05). Hormone level of Plasma T3 and T4 were also affected at the significant level from insulin receptor stimulators added to ration (p < 0.05).

Keywords: Chromium picolinate, cholesterol, hormone, metformin, quail.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336