Search results for: feedback error learning
678 Ranking - Convex Risk Minimization
Authors: Wojciech Rejchel
Abstract:
The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.
Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423677 Enhancing Cooperation Between LEAs and Citizens: The INSPEC2T Approach
Authors: George Leventakis, George Kokkinis, Nikos Moustakidis, George Papalexandratos, Ioanna Vasiliadou
Abstract:
Enhancing the feeling of public safety and crime prevention are tasks customarily assigned to the Police. Police departments have, however, recognized that traditional ways of policing methods are becoming obsolete; Community Policing (CP) philosophy; however, when applied appropriately, leads to seamless collaboration between various stakeholders like the Police, NGOs and the general public and provides the opportunity to identify risks, assist in solving problems of crime, disorder, safety and crucially contribute to improving the quality of life for everyone in a community. Social Media, on the other hand, due to its high level of infiltration in modern life, constitutes a powerful mechanism which offers additional and direct communication channels to reach individuals or communities. These channels can be utilized to improve the citizens’ perception of the Police and to capture individual and community needs, when their feedback is taken into account by Law Enforcement Agencies (LEAs) in a structured and coordinated manner. This paper presents research conducted under INSPEC2T (Inspiring CitizeNS Participation for Enhanced Community PoliCing AcTions), a project funded by the European Commission’s research agenda to bridge the gap between CP as a philosophy and as an organizational strategy, capitalizing on the use of Social Media. The project aims to increase transparency, trust, police accountability, and the role of civil society. It aspires to build strong, trusting relationships between LEAs and the public, supporting two-way, contemporary communication while at the same time respecting anonymity of all affected parties. Results presented herein summarize the outcomes of four online multilingual surveys, focus group interviews, desktop research and interviews with experts in the field of CP practices. The above research activities were conducted in various EU countries aiming to capture requirements of end users from diverse backgrounds (social, cultural, legal and ethical) and determine public expectations regarding CP, community safety and crime prevention.
Keywords: Community partnerships, next generation community policing, public safety, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540676 Forecasting Foreign Direct Investment with Modified Diffusion Model
Authors: Bi-Huei Tsai
Abstract:
Prior research has not effectively investigated how the profitability of Chinese branches affect FDIs in China [1, 2], so this study for the first time incorporates realistic earnings information to systematically investigate effects of innovation, imitation, and profit factors of FDI diffusions from Taiwan to China. Our nonlinear least square (NLS) model, which incorporates earnings factors, forms a nonlinear ordinary differential equation (ODE) in numerical simulation programs. The model parameters are obtained through a genetic algorithms (GA) technique and then optimized with the collected data for the best accuracy. Particularly, Taiwanese regulatory FDI restrictions are also considered in our modified model to meet the realistic conditions. To validate the model-s effectiveness, this investigation compares the prediction accuracy of modified model with the conventional diffusion model, which does not take account of the profitability factors. The results clearly demonstrate the internal influence to be positive, as early FDI adopters- consistent praises of FDI attract potential firms to make the same move. The former erects a behavior model for the latter to imitate their foreign investment decision. Particularly, the results of modified diffusion models show that the earnings from Chinese branches are positively related to the internal influence. In general, the imitating tendency of potential consumers is substantially hindered by the losses in the Chinese branches, and these firms would invest less into China. The FDI inflow extension depends on earnings of Chinese branches, and companies will adjust their FDI strategies based on the returns. Since this research has proved that earning is an influential factor on FDI dynamics, our revised model explicitly performs superior in prediction ability than conventional diffusion model.Keywords: diffusion model, genetic algorithms, nonlinear leastsquares (NLS) model, prediction error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618675 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models
Authors: Y. Z. Wu, Z. Dong, S. K. You
Abstract:
Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914674 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.
Keywords: DNA microarray, feature selection, missing data, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2813673 Thai Halal Products Brand Tips
Authors: Pibool Waijittragum
Abstract:
The purpose of this research is to analyze the marketing strategies of Thai Halal products which related to the way of life for Thai Muslims. The expected benefit is the marketing strategy for brand building process for Halal products in Thailand. 4 elements of marketing strategies which necessary for the brand identity creation is the research framework: consists of Attributes, Benefits, Values and Personality. The research methodology was applied using qualitative and quantitative; 19 marketing experts with dynamic roles in Thai consumer products were interviewed. In addition, a field survey of 122 Thai Muslims selected from 175 Muslim communities in Bangkok was studied. Data analysis will be according to 5 categories of Thai Halal product: 1) Meat 2) Vegetable and Fruits 3) Instant foods and Garnishing ingredient 4) Beverages, Desserts and Snacks 5) Hygienic daily products; such as soap, shampoo and body lotion.
Keywords: Marketing strategies, Product identity, Branding, Thai Halal products.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265672 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks
Authors: Yuichi Masukake, Yoshihisa Ishida
Abstract:
In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491671 Investigation of Combined use of MFCC and LPC Features in Speech Recognition Systems
Authors: К. R. Aida–Zade, C. Ardil, S. S. Rustamov
Abstract:
Statement of the automatic speech recognition problem, the assignment of speech recognition and the application fields are shown in the paper. At the same time as Azerbaijan speech, the establishment principles of speech recognition system and the problems arising in the system are investigated. The computing algorithms of speech features, being the main part of speech recognition system, are analyzed. From this point of view, the determination algorithms of Mel Frequency Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC) coefficients expressing the basic speech features are developed. Combined use of cepstrals of MFCC and LPC in speech recognition system is suggested to improve the reliability of speech recognition system. To this end, the recognition system is divided into MFCC and LPC-based recognition subsystems. The training and recognition processes are realized in both subsystems separately, and recognition system gets the decision being the same results of each subsystems. This results in decrease of error rate during recognition. The training and recognition processes are realized by artificial neural networks in the automatic speech recognition system. The neural networks are trained by the conjugate gradient method. In the paper the problems observed by the number of speech features at training the neural networks of MFCC and LPC-based speech recognition subsystems are investigated. The variety of results of neural networks trained from different initial points in training process is analyzed. Methodology of combined use of neural networks trained from different initial points in speech recognition system is suggested to improve the reliability of recognition system and increase the recognition quality, and obtained practical results are shown.Keywords: Speech recognition, cepstral analysis, Voice activation detection algorithm, Mel Frequency Cepstral Coefficients, features of speech, Cepstral Mean Subtraction, neural networks, Linear Predictive Coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920670 Exchange Rate Volatility, Its Determinants and Effects on the Manufacturing Sector in Nigeria
Authors: Chimaobi V. Okolo, Onyinye S. Ugwuanyi, Kenneth A. Okpala
Abstract:
This study evaluated the effect of exchange rate volatility on the manufacturing sector of Nigeria. The flow and stock market theories of exchange rate determination was adopted considering macroeconomic determinants such as balance of trade, trade openness, and net international investment. Furthermore, the influence of changes in parallel exchange rate, official exchange rate and real effective exchange rate was modeled on the manufacturing sector output. Vector autoregression techniques and vector error correction mechanism were adopted to explore the macroeconomic determinants of exchange rate fluctuation in Nigeria and to examine the influence of exchange rate volatility on the manufacturing sector output in Nigeria. The exchange rate showed an unstable and volatile movement in Nigeria. Official exchange rate significantly impacted on the manufacturing sector of Nigeria and shock to previous manufacturing sector output caused 60.76% of the fluctuation in the manufacturing sector output in Nigeria. Trade balance, trade openness and net international investments did not significantly determine exchange rate in Nigeria. However, own shock accounted for about 95% of the variation of exchange rate fluctuation in the short-run and long-run. Among other macroeconomic variables, net international investment accounted for about 2.85% variation of the real effective exchange rate fluctuation in the short-run and in the long-run. Monetary authorities should maintain stability of the exchange rates through proper management so as to encourage local production and government should formulate and implement policies that will develop other sectors of the economy as this will widen the country’s revenue base, reduce our over reliance on oil sector for our foreign exchange earnings and in turn reduce the shocks on our domestic economy.
Keywords: Exchange rate volatility, exchange rate determinants, manufacturing sector, official exchange rate, parallel exchange rate, real effective exchange rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943669 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System
Authors: Eronini Umez-Eronini
Abstract:
Compressed air energy storage (CAES) coupled with wind farms have gained attention as a means to address the intermittency and variability of wind power. However, most existing studies and implementations focus on bulk or centralized CAES plants. This study presents a dynamic model of a hybrid wind farm with distributed CAES, using air storage tanks and compressor and expander trains at each wind turbine station. It introduces the concept of a distributed CAES with linked air cooling and heating, and presents an approach to scheduling and regulating the production of compressed air and power in such a system. Mathematical models of the dynamic components of this hybrid wind farm system, including a simple transient wake field model, were developed and simulated using MATLAB, with real wind data and Transmission System Operator (TSO) absolute power reference signals as inputs. The simulation results demonstrate that the proposed ad hoc supervisory controller is able to track the minute-scale power demand signal within an error band size comparable to the electrical power rating of a single expander. This suggests that combining the global distributed CAES control with power regulation for individual wind turbines could further improve the system’s performance. The round trip electrical storage efficiency computed for the distributed CAES was also in the range of reported round trip storage electrical efficiencies for improved bulk CAES. These findings contribute to the enhancement of efficiency of wind farms without access to large-scale storage or underground caverns.
Keywords: Distributed CAES, compressed air, energy storage, hybrid wind farm, wind turbines, dynamic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98668 Classification Influence Index and its Application for k-Nearest Neighbor Classifier
Authors: Sejong Oh
Abstract:
Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.Keywords: accuracy, classification, dataset, data preprocessing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509667 Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers
Authors: Mehrdad N. Khajavi , Golamhassan Paygane, Ali Hakima
Abstract:
Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is capable of developing the required lateral forces at the tire-ground patch contact to attain the desired lateral acceleration for the vehicle to follow the desired path without slippage. This simulation model is our reference model. The logic for keeping the vehicle on the desired track in the cornering or maneuvering state is to have some braking forces on the inner or outer tires based on the direction of vehicle deviation from the desired path. The inputs to our vehicle simulation model is steer angle δ and vehicle velocity V , and the outputs can be any kinematical parameters like yaw rate, yaw acceleration, side slip angle, rate of side slip angle and so on. The proposed fuzzy controller is a feed forward controller. This controller has two inputs which are steer angle δ and vehicle velocity V, and the output of the controller is the correcting moment M, which guides the vehicle back to the desired track. To develop the membership functions for the controller inputs and output and the fuzzy rules, the vehicle simulation has been run for 1000 times and the correcting moment have been determined by trial and error. Results of the vehicle simulation with fuzzy controller are very promising and show the vehicle performance is enhanced greatly over the vehicle without the controller. In fact the vehicle performance with the controller is very near the performance of the reference ideal model.Keywords: Vehicle, Directional Stability, Fuzzy Logic Controller, ANFIS..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524666 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan
Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid
Abstract:
In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.
Keywords: Data quality, null hypothesis, seismic lines, seismic reflection survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624665 Teaching Students Collaborative Requirements Engineering: Case Study of Red:Wire
Authors: Dagmar Monett, Sven-Erik Kujat, Marvin Hartmann
Abstract:
This paper discusses the use of a template-based approach for documenting high-quality requirements as part of course projects in an undergraduate Software Engineering course. In order to ease some of the Requirements Engineering activities that are performed when defining requirements by using the template, a new CASE tool, RED:WIRE, was first developed and later tested by students attending the course. Two questionnaires were conceived around a study that aims to analyze the new tool’s learnability as well as other obtained results concerning its usability in particular and the Requirements Engineering skills developed by the students in general.Keywords: CASE tool, collaborative learning, requirements engineering, undergraduate teaching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360664 Multipath Routing Sensor Network for Finding Crack in Metallic Structure Using Fuzzy Logic
Authors: Dulal Acharjee, Punyaban Patel
Abstract:
For collecting data from all sensor nodes, some changes in Dynamic Source Routing (DSR) protocol is proposed. At each hop level, route-ranking technique is used for distributing packets to different selected routes dynamically. For calculating rank of a route, different parameters like: delay, residual energy and probability of packet loss are used. A hybrid topology of DMPR(Disjoint Multi Path Routing) and MMPR(Meshed Multi Path Routing) is formed, where braided topology is used in different faulty zones of network. For reducing energy consumption, variant transmission ranges is used instead of fixed transmission range. For reducing number of packet drop, a fuzzy logic inference scheme is used to insert different types of delays dynamically. A rule based system infers membership function strength which is used to calculate the final delay amount to be inserted into each of the node at different clusters. In braided path, a proposed 'Dual Line ACK Link'scheme is proposed for sending ACK signal from a damaged node or link to a parent node to ensure that any error in link or any node-failure message may not be lost anyway. This paper tries to design the theoretical aspects of a model which may be applied for collecting data from any large hanging iron structure with the help of wireless sensor network. But analyzing these data is the subject of material science and civil structural construction technology, that part is out of scope of this paper.Keywords: Metallic corrosion, Multi Path Routing, DisjointMPR, Meshed MPR, braided path, dual line ACK link, route rankingand Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524663 Identification of the Causes of Construction Delay in Malaysia
Authors: N. Hamzah, M.A. Khoiry, I. Arshad, W.H.W. Badaruzzaman, N. M. Tawil
Abstract:
Construction delay is unavoidable in developing countries including Malaysia. It is defined as time overrun or extension of time for completion of a project. The purpose of the study is to determine the causes of delay in Malaysian construction industries based on previous worldwide research. The field survey conducted includes the experienced developers, consultants and contractors in Malaysia. 34 causes of the construction delay have been determined and 24 have been selected using the Rasch model analysis. The analysis result will be used as the baseline for the next research to find the causes of delay in the Malaysian construction industry taking place in Malaysian higher learning institutions.Keywords: Causes of construction delay, construction projects, Malaysian construction industry, Rasch model analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7583662 The Relationship between Fluctuation of Biological Signal: Finger Plethysmogram in Conversation and Anthropophobic Tendency
Authors: Haruo Okabayashi
Abstract:
Human biological signals (pulse wave and brain wave, etc.) have a rhythm which shows fluctuations. This study investigates the relationship between fluctuations of biological signals which are shown by a finger plethysmogram (i.e., finger pulse wave) in conversation and anthropophobic tendency, and identifies whether the fluctuation could be an index of mental health. 32 college students participated in the experiment. The finger plethysmogram of each subject was measured in the following conversation situations: Fun memory talking/listening situation and regrettable memory talking/ listening situation for three minutes each. Lyspect 3.5 was used to collect the data of the finger plethysmogram. Since Lyspect calculates the Lyapunov spectrum, it is possible to obtain the largest Lyapunov exponent (LLE). LLE is an indicator of the fluctuation and shows the degree to which a measure is going away from close proximity to the track in a dynamical system. Before the finger plethysmogram experiment, each participant took the psychological test questionnaire “Anthropophobic Scale.” The scale measures the social phobia trend close to the consciousness of social phobia. It is revealed that there is a remarkable relationship between the fluctuation of the finger plethysmography and anthropophobic tendency scale in talking about a regrettable story in conversation: The participants (N=15) who have a low anthropophobic tendency show significantly more fluctuation of finger pulse waves than the participants (N=17) who have a high anthropophobic tendency (F (1, 31) =5.66, p<0.05). That is, the participants who have a low anthropophobic tendency make conversation flexibly using large fluctuation of biological signal; on the other hand, the participants who have a high anthropophobic tendency constrain a conversation because of small fluctuation. Therefore, fluctuation is not an error but an important drive to make better relationships with others and go towards the development of interaction. In considering mental health, the fluctuation of biological signals would be an important indicator.
Keywords: Anthropophobic tendency, finger plethymogram, fluctuation of biological signal, LLE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344661 Using Daily Light Integral Concept to Construct the Ecological Plant Design Strategy of Urban Landscape
Authors: Chuang-Hung Lin, Cheng-Yuan Hsu, Jia-Yan Lin
Abstract:
It is an indispensible strategy to adopt greenery approach on architectural bases so as to improve ecological habitats, decrease heat-island effect, purify air quality, and relieve surface runoff as well as noise pollution, all of which are done in an attempt to achieve sustainable environment. How we can do with plant design to attain the best visual quality and ideal carbon dioxide fixation depends on whether or not we can appropriately make use of greenery according to the nature of architectural bases. To achieve the goal, it is a need that architects and landscape architects should be provided with sufficient local references. Current greenery studies focus mainly on the heat-island effect of urban with large scale. Most of the architects still rely on people with years of expertise regarding the adoption and disposition of plantation in connection with microclimate scale. Therefore, environmental design, which integrates science and aesthetics, requires fundamental research on landscape environment technology divided from building environment technology. By doing so, we can create mutual benefits between green building and the environment. This issue is extremely important for the greening design of the bases of green buildings in cities and various open spaces. The purpose of this study is to establish plant selection and allocation strategies under different building sunshade levels. Initially, with the shading of sunshine on the greening bases as the starting point, the effects of the shades produced by different building types on the greening strategies were analyzed. Then, by measuring the PAR (photosynthetic active radiation), the relative DLI (daily light integral) was calculated, while the DLI Map was established in order to evaluate the effects of the building shading on the established environmental greening, thereby serving as a reference for plant selection and allocation. The discussion results were to be applied in the evaluation of environment greening of greening buildings and establish the “right plant, right place” design strategy of multi-level ecological greening for application in urban design and landscape design development, as well as the greening criteria to feedback to the eco-city greening buildings.Keywords: Daily light integral, plant design, urban open space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962660 Information Fusion for Identity Verification
Authors: Girija Chetty, Monica Singh
Abstract:
In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..
Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790659 Modelling Peer Group Dieting Behaviour
Authors: M. J. Cunha
Abstract:
The aim of this paper is to understand how peers can influence adolescent girls- dieting behaviour and their body image. Departing from imitation and social learning theories, we study whether adolescent girls tend to model their peer group dieting behaviours, thus influencing their body image construction. Our study was conducted through an enquiry applied to a cluster sample of 466 adolescent high school girls in Lisbon city public schools. Our main findings point to an association between girls- and peers- dieting behaviours, thus reinforcing the modelling hypothesis.Keywords: Modelling, Diet, Body image, Adolescent girls, Peer group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783658 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity
Authors: Hoda A. Abdel Hafez
Abstract:
Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487657 Computer-Assisted Piston-Driven Ventilator for Total Liquid Breathing
Authors: Miguel A. Gómez, Enrique Hilario, Francisco J. Alvarez, Elena Gastiasoro, Antonia Alvarez, Jose A. Casla, Jorge Arguinchona, Juan L. Larrabe
Abstract:
Total liquid ventilation can support gas exchange in animal models of lung injury. Clinical application awaits further technical improvements and performance verification. Our aim was to develop a liquid ventilator, able to deliver accurate tidal volumes, and a computerized system for measuring lung mechanics. The computer-assisted, piston-driven respirator controlled ventilatory parameters that were displayed and modified on a real-time basis. Pressure and temperature transducers along with a lineal displacement controller provided the necessary signals to calculate lung mechanics. Ten newborn lambs (<6 days old) with respiratory failure induced by lung lavage, were monitored using the system. Electromechanical, hydraulic and data acquisition/analysis components of the ventilator were developed and tested in animals with respiratory failure. All pulmonary signals were collected synchronized in time, displayed in real-time, and archived on digital media. The total mean error (due to transducers, A/D conversion, amplifiers, etc.) was less than 5% compared to calibrated signals. Improvements in gas exchange and lung mechanics were observed during liquid ventilation, without impairment of cardiovascular profiles. The total liquid ventilator maintained accurate control of tidal volumes and the sequencing of inspiration/expiration. The computerized system demonstrated its ability to monitor in vivo lung mechanics, providing valuable data for early decision-making.
Keywords: Immature lamb, perfluorocarbon, pressure-limited, total liquid ventilation, ventilator, volume-controlled.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808656 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery
Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado
Abstract:
Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.
Keywords: Biometrics, deep learning, handwriting, signature forgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130655 Multi-Channel Information Fusion in C-OTDR Monitoring Systems: Various Approaches to Classify of Targeted Events
Authors: Andrey V. Timofeev
Abstract:
The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-OTDR channels. The goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented.Keywords: Lipschitz Classifier, Classifiers Ensembles, LPBoost, C-OTDR systems, ν-OTDR systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673654 Analysis of Surface Hardness, Surface Roughness, and Near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.
Abstract:
In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the surface hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor hobson talysurf tester, micro vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.
Keywords: Surface hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811653 Multimedia Games for Elementary/Primary School Education and Entertainment
Authors: Andrew Laghos
Abstract:
Computers are increasingly being used as educational tools in elementary/primary schools worldwide. A specific application of such computer use, is that of multimedia games, where the aim is to combine pedagogy and entertainment. This study reports on a case-study whereby an educational multimedia game has been developed for use by elementary school children. The stages of the application-s design, implementation and evaluation are presented. Strengths of the game are identified and discussed, and its weaknesses are identified, allowing for suggestions for future redesigns. The results show that the use of games can engage children in the learning process for longer periods of time with the added benefit of the entertainment factor.Keywords: Education, entertainment, games, school
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255652 Denoising based on Wavelets and Deblurring via Self-Organizing Map for Synthetic Aperture Radar Images
Authors: Mario Mastriani
Abstract:
This work deals with unsupervised image deblurring. We present a new deblurring procedure on images provided by lowresolution synthetic aperture radar (SAR) or simply by multimedia in presence of multiplicative (speckle) or additive noise, respectively. The method we propose is defined as a two-step process. First, we use an original technique for noise reduction in wavelet domain. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the denoised image to take out it the blur. This technique has been successfully applied to real SAR images, and the simulation results are presented to demonstrate the effectiveness of the proposed algorithms.Keywords: Blur, Kohonen self-organizing map, noise, speckle, synthetic aperture radar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743651 E-learning: An Effective Approach for Enhancing Social and Behavior Change Communication Capacity in Bangladesh
Authors: Mohammad K. Abedin, Mohammad Shahjahan, Zeenat Sultana, Tawfique Jahan, Jesmin Akter
Abstract:
To strengthen social and behavior change communication (SBCC) capacity of Ministry of Health and Family Welfare (MoHFW) of the Government of Bangladesh, BCCP/BKMI developed two eLearning courses providing opportunities for professional development of SBCC Program Managers who have no access to training or refreshers training. The two eLearning courses – Message and Material Development (MMD) and Monitoring and Evaluation (MandE) of SBCC programs – went online in September 2015, where all users could register their participation so results could be monitored. Methodology: To assess the uses of these courses a randomly selected sample was collected to run a pre and post-test analyses and a phone survey were conducted. Systematic random sampling was used to select a sample of 75 MandE and 25 MMD course participants from a sampling frame of 179 and 51 respectively. Results: As of September 2016, more than 179 learners have completed the MandE course, and 49 learners have completed the MMD course. The users of these courses are program managers, university faculty members, and students. Encouraging results were revealed from the analysis of pre and post-test scores and a phone survey three months after course completion. Test scores suggested a substantial increase in knowledge. The pre-test scores findings suggested that about 19% learners scored high on the MandE. The post-test scores finding indicated a high score (92%) of the sample across 4 modules of MandE. For MMD course in pre-test scoring, 30% of the learners scored high, and 100% scored high at the post-test. It was found that all the learners in the phone survey have discussed the courses. Most of the sharing occurred with colleagues and friends, usually through face to face (70%) interaction. The learners reported that they did recommend the two courses to concerned people. About 67% MandE and 76% MMD learners stated that the concepts that they had to learn during the course were put into practice in their work settings. The respondents for both MandE and MMD courses have provided a valuable set of suggestions that would further strengthen the courses. Conclusions: The study showed that the initiative offered ample opportunities to build capacity in various ways in which the eLearning courses were used. It also highlighted the importance of scaling up these efforts to further strengthen the outcomes.
Keywords: E-learning course, message and material development, monitoring and evaluation, social and behavior change communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876650 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.
Keywords: Neural network, conformal prediction, cancer classification, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846649 Practical Aspects of Face Recognition
Authors: S. Vural, H. Yamauchi
Abstract:
Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been developed and connected with the recognition algorithm. As a result of it, we obtained an overall high-system performance compared with current systems. The proposed algorithm was tested on CMU, FERET, UNIBE, MIT face databases and significant performance has obtained.Keywords: Adaboost, Face Detection, Face recognition, SVM, Gabor filters, PCA-ICA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609