Search results for: disturbance tracking algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3893

Search results for: disturbance tracking algorithm

1013 Improving Cache Memory Utilization

Authors: Sami I. Serhan, Hamed M. Abdel-Haq

Abstract:

In this paper, an efficient technique is proposed to manage the cache memory. The proposed technique introduces some modifications on the well-known set associative mapping technique. This modification requires a little alteration in the structure of the cache memory and on the way by which it can be referenced. The proposed alteration leads to increase the set size virtually and consequently to improve the performance and the utilization of the cache memory. The current mapping techniques have accomplished good results. In fact, there are still different cases in which cache memory lines are left empty and not used, whereas two or more processes overwrite the lines of each other, instead of using those empty lines. The proposed algorithm aims at finding an efficient way to deal with such problem.

Keywords: Modified Set Associative Mapping, Locality of Reference, Miss Ratio, Hit Ratio, Cache Memory, Clustered Behavior, Index Address, Tag Field, Status Field, and Complement of Index Address.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
1012 Optimal Control of Viscoelastic Melt Spinning Processes

Authors: Shyam S.N. Perera

Abstract:

The optimal control problem for the viscoelastic melt spinning process has not been reported yet in the literature. In this study, an optimal control problem for a mathematical model of a viscoelastic melt spinning process is considered. Maxwell-Oldroyd model is used to describe the rheology of the polymeric material, the fiber is made of. The extrusion velocity of the polymer at the spinneret as well as the velocity and the temperature of the quench air and the fiber length serve as control variables. A constrained optimization problem is derived and the first–order optimality system is set up to obtain the adjoint equations. Numerical solutions are carried out using a steepest descent algorithm. A computer program in MATLAB is developed for simulations.

Keywords: Fiber spinning, Maxwell-Oldroyd, Optimal control, First-order optimality system, Adjoint system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888
1011 Finding Viable Pollution Routes in an Urban Network under a Predefined Cost

Authors: Dimitra Alexiou, Stefanos Katsavounis, Ria Kalfakakou

Abstract:

In an urban area the determination of transportation routes should be planned so as to minimize the provoked pollution taking into account the cost of such routes. In the sequel these routes are cited as pollution routes.

The transportation network is expressed by a weighted graph G=(V,E,D,P) where every vertex represents a location to be served and contains unordered pairs (edges) of elements in V that indicate a simple road. The distances / cost and a weight that depict the provoked air pollution by a vehicle transition at every road are assigned to each road as well. These are the items of set D andrespectively.

Furthermore the investigated pollution routes must not exceed predefined corresponding values concerning the route cost and the route pollution level during the vehicle transition.

In this paper we present an algorithm that generates such routes in order that the decision maker selects the most appropriate one. 

Keywords: bi-criteria, pollution, shortest paths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1010 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study

Authors: Faisal Aburub, Wael Hadi

Abstract:

Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.

Keywords: Classification, data mining, evaluation measures, groundwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
1009 Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index

Authors: Minjeong Kim, Seungchul Lee, Iman Janghorban Esfahani, Jeong Tai Kim, Chang Kyoo Yoo

Abstract:

This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station.

Keywords: Indoor air quality, iterative dynamic algorithm, outdoor air information, ventilation control system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
1008 A Recommender System Fusing Collaborative Filtering and User’s Review Mining

Authors: Seulbi Choi, Hyunchul Ahn

Abstract:

Collaborative filtering (CF) algorithm has been popularly used for recommender systems in both academic and practical applications. It basically generates recommendation results using users’ numeric ratings. However, the additional use of the information other than user ratings may lead to better accuracy of CF. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's review can be regarded as the new informative source for identifying user's preference with accuracy. Under this background, this study presents a hybrid recommender system that fuses CF and user's review mining. Our system adopts conventional memory-based CF, but it is designed to use both user’s numeric ratings and his/her text reviews on the items when calculating similarities between users.

Keywords: Recommender system, collaborative filtering, text mining, review mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
1007 Tuning of Thermal FEA Using Krylov Parametric MOR for Subsea Application

Authors: A. Suleng, T. Jelstad Olsen, J. Šindler, P. Bárta

Abstract:

A dead leg is a typical subsea production system component. CFD is required to model heat transfer within the dead leg. Unfortunately its solution is time demanding and thus not suitable for fast prediction or repeated simulations. Therefore there is a need to create a thermal FEA model, mimicking the heat flows and temperatures seen in CFD cool down simulations. This paper describes the conventional way of tuning and a new automated way using parametric model order reduction (PMOR) together with an optimization algorithm. The tuned FE analyses replicate the steady state CFD parameters within a maximum error in heat flow of 6 % and 3 % using manual and PMOR method respectively. During cool down, the relative error of the tuned FEA models with respect to temperature is below 5% comparing to the CFD. In addition, the PMOR method obtained the correct FEA setup five times faster than the manually tuned FEA.

Keywords: CFD, convective heat, FEA, model tuning, subseaproduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
1006 An Amalgam Approach for DICOM Image Classification and Recognition

Authors: J. Umamaheswari, G. Radhamani

Abstract:

This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.

Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
1005 Development of Variable Stepsize Variable Order Block Method in Divided Difference Form for the Numerical Solution of Delay Differential Equations

Authors: Fuziyah Ishak, Mohamed B. Suleiman, Zanariah A. Majid, Khairil I. Othman

Abstract:

This paper considers the development of a two-point predictor-corrector block method for solving delay differential equations. The formulae are represented in divided difference form and the algorithm is implemented in variable stepsize variable order technique. The block method produces two new values at a single integration step. Numerical results are compared with existing methods and it is evident that the block method performs very well. Stability regions of the block method are also investigated.

Keywords: block method, delay differential equations, predictor-corrector, stability region, variable stepsize variable order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
1004 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832
1003 Design of a Robust Controller for AGC with Combined Intelligence Techniques

Authors: R. N. Patel, S. K. Sinha, R. Prasad

Abstract:

In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.

Keywords: Artificial intelligence, Automatic generation control, Fuzzy control, Genetic Algorithm, Particle swarm optimization, Power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
1002 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.

Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6634
1001 Multi-Font Farsi/Arabic Isolated Character Recognition Using Chain Codes

Authors: H. Izakian, S. A. Monadjemi, B. Tork Ladani, K. Zamanifar

Abstract:

Nowadays, OCR systems have got several applications and are increasingly employed in daily life. Much research has been done regarding the identification of Latin, Japanese, and Chinese characters. However, very little investigation has been performed regarding Farsi/Arabic characters recognition. Probably the reason is difficulty and complexity of those characters identification compared to the others and limitation of IT activities in Farsi and Arabic speaking countries. In this paper, a technique has been employed to identify isolated Farsi/Arabic characters. A chain code based algorithm along with other significant peculiarities such as number and location of dots and auxiliary parts, and the number of holes existing in the isolated character has been used in this study to identify Farsi/Arabic characters. Experimental results show the relatively high accuracy of the method developed when it is tested on several standard Farsi fonts.

Keywords: Farsi characters, OCR, feature extraction, chain code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2393
1000 A Molding Surface Auto-Inspection System

Authors: Ssu-Han Chen, Der-Baau Perng

Abstract:

Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded,defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.

Keywords: Molding surface, machine vision, statistical texture, discrete Fourier transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
999 Periodic Control of a Reverse Osmosis Water Desalination Unit

Authors: Ali Emad

Abstract:

Enhancement of the performance of a reverse osmosis (RO) unit through periodic control is studied. The periodic control manipulates the feed pressure and flow rate of the RO unit. To ensure the periodic behavior of the inputs, the manipulated variables (MV) are transformed into the form of sinusoidal functions. In this case, the amplitude and period of the sinusoidal functions become the surrogate MV and are thus regulated via nonlinear model predictive control algorithm. The simulation results indicated that the control system can generate cyclic inputs necessary to enhance the closedloop performance in the sense of increasing the permeate production and lowering the salt concentration. The proposed control system can attain its objective with arbitrary set point for the controlled outputs. Successful results were also obtained in the presence of modeling errors.

Keywords: Reverse osmosis, water desalination, periodic control, model predictive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
998 A Sociocybernetics Data Analysis Using Causality in Tourism Networks

Authors: M. Lloret-Climent, J. Nescolarde-Selva

Abstract:

The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.

Keywords: Attractor, invariant set, orbits, tourist variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
997 Milling Simulations with a 3-DOF Flexible Planar Robot

Authors: Hoai Nam Huynh, Edouard Rivière-Lorphèvre, Olivier Verlinden

Abstract:

Manufacturing technologies are becoming continuously more diversified over the years. The increasing use of robots for various applications such as assembling, painting, welding has also affected the field of machining. Machining robots can deal with larger workspaces than conventional machine-tools at a lower cost and thus represent a very promising alternative for machining applications. Furthermore, their inherent structure ensures them a great flexibility of motion to reach any location on the workpiece with the desired orientation. Nevertheless, machining robots suffer from a lack of stiffness at their joints restricting their use to applications involving low cutting forces especially finishing operations. Vibratory instabilities may also happen while machining and deteriorate the precision leading to scrap parts. Some researchers are therefore concerned with the identification of optimal parameters in robotic machining. This paper continues the development of a virtual robotic machining simulator in order to find optimized cutting parameters in terms of depth of cut or feed per tooth for example. The simulation environment combines an in-house milling routine (DyStaMill) achieving the computation of cutting forces and material removal with an in-house multibody library (EasyDyn) which is used to build a dynamic model of a 3-DOF planar robot with flexible links. The position of the robot end-effector submitted to milling forces is controlled through an inverse kinematics scheme while controlling the position of its joints separately. Each joint is actuated through a servomotor for which the transfer function has been computed in order to tune the corresponding controller. The output results feature the evolution of the cutting forces when the robot structure is deformable or not and the tracking errors of the end-effector. Illustrations of the resulting machined surfaces are also presented. The consideration of the links flexibility has highlighted an increase of the cutting forces magnitude. This proof of concept will aim to enrich the database of results in robotic machining for potential improvements in production.

Keywords: Control, machining, multibody, robotic, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
996 CFD Predictions of Dense Slurry Flow in Centrifugal Pump Casings

Authors: Krishnan V. Pagalthivarthi, Pankaj K. Gupta, Vipin Tyagi, M. R. Ravi

Abstract:

Dense slurry flow through centrifugal pump casing has been modeled using the Eulerian-Eulerian approach with Eulerian multiphase model in FLUENT 6.1®. First order upwinding is considered for the discretization of momentum, k and ε terms. SIMPLE algorithm has been applied for dealing with pressurevelocity coupling. A mixture property based k-ε turbulence model has been used for modeling turbulence. Results are validated first against mesh independence and experiments for a particular set of operational and geometric conditions. Parametric analysis is then performed to determine the effect on important physical quantities viz. solid velocities, solid concentration and solid stresses near the wall with various operational geometric conditions of the pump.

Keywords: Centrifugal pump casing, Dense slurry, Solidsconcentration, Wall shear stress, Pump geometric parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4915
995 A New Approach to ECG Biometric Systems: A Comparitive Study between LPC and WPD Systems

Authors: Justin Leo Cheang Loong, Khazaimatol S Subari, Rosli Besar, Muhammad Kamil Abdullah

Abstract:

In this paper, a novel method for a biometric system based on the ECG signal is proposed, using spectral coefficients computed through linear predictive coding (LPC). ECG biometric systems have traditionally incorporated characteristics of fiducial points of the ECG signal as the feature set. These systems have been shown to contain loopholes and thus a non-fiducial system allows for tighter security. In the proposed system, incorporating non-fiducial features from the LPC spectrum produced a segment and subject recognition rate of 99.52% and 100% respectively. The recognition rates outperformed the biometric system that is based on the wavelet packet decomposition (WPD) algorithm in terms of recognition rates and computation time. This allows for LPC to be used in a practical ECG biometric system that requires fast, stringent and accurate recognition.

Keywords: biometric, ecg, linear predictive coding, wavelet packet decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2903
994 Choice of Efficient Information System with Service-Oriented Architecture using Multiple Criteria Threshold Algorithms (With Practical Example)

Authors: Irina Pyrlina

Abstract:

Author presents the results of a study conducted to identify criteria of efficient information system (IS) with serviceoriented architecture (SOA) realization and proposes a ranking method to evaluate SOA information systems using a set of architecture quality criteria before the systems are implemented. The method is used to compare 7 SOA projects and ranking result for SOA efficiency of the projects is provided. The choice of SOA realization project depends on following criteria categories: IS internal work and organization, SOA policies, guidelines and change management, processes and business services readiness, risk management and mitigation. The last criteria category was analyzed on the basis of projects statistics.

Keywords: multiple criteria threshold algorithm, serviceoriented architecture, SOA operational risks, efficiency criteria for IS architecture, projects ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
993 Automated Feature Points Management for Video Mosaic Construction

Authors: Jing Li, Quan Pan, Stan. Z. Li, Tao Yang

Abstract:

A novel algorithm for construct a seamless video mosaic of the entire panorama continuously by automatically analyzing and managing feature points, including management of quantity and quality, from the sequence is presented. Since a video contains significant redundancy, so that not all consecutive video images are required to create a mosaic. Only some key images need to be selected. Meanwhile, feature-based methods for mosaicing rely on correction of feature points? correspondence deeply, and if the key images have large frame interval, the mosaic will often be interrupted by the scarcity of corresponding feature points. A unique character of the method is its ability to handle all the problems above in video mosaicing. Experiments have been performed under various conditions, the results show that our method could achieve fast and accurate video mosaic construction. Keywords?video mosaic, feature points management, homography estimation.

Keywords: Video mosaic, feature points management, homography estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
992 Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application

Authors: K. A. Sumithradevi, Vijayalakshmi. M. N., Annamma Abraham., Dr. Vasanta

Abstract:

The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.

Keywords: VLSI, Circuit partitioning, DBSCAN, fuzzyARTMAP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
991 Two Wheels Balancing Robot with Line Following Capability

Authors: Nor Maniha Abdul Ghani, Faradila Naim, Tan Piow Yon

Abstract:

This project focuses on the development of a line follower algorithm for a Two Wheels Balancing Robot. In this project, ATMEGA32 is chosen as the brain board controller to react towards the data received from Balance Processor Chip on the balance board to monitor the changes of the environment through two infra-red distance sensor to solve the inclination angle problem. Hence, the system will immediately restore to the set point (balance position) through the implementation of internal PID algorithms at the balance board. Application of infra-red light sensors with the PID control is vital, in order to develop a smooth line follower robot. As a result of combination between line follower program and internal self balancing algorithms, we are able to develop a dynamically stabilized balancing robot with line follower function.

Keywords: infra-red sensor, PID algorithms, line followerBalancing robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7524
990 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping

Authors: Jose D. Herrera, Mario A. Rios

Abstract:

This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.

Keywords: Balanced realization, controllability Grammian, electromechanical oscillations, FACTS, Hankel singular values, observability Grammian, POD, PSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
989 Comparison of Three Versions of Conjugate Gradient Method in Predicting an Unknown Irregular Boundary Profile

Authors: V. Ghadamyari, F. Samadi, F. Kowsary

Abstract:

An inverse geometry problem is solved to predict an unknown irregular boundary profile. The aim is to minimize the objective function, which is the difference between real and computed temperatures, using three different versions of Conjugate Gradient Method. The gradient of the objective function, considered necessary in this method, obtained as a result of solving the adjoint equation. The abilities of three versions of Conjugate Gradient Method in predicting the boundary profile are compared using a numerical algorithm based on the method. The predicted shapes show that due to its convergence rate and accuracy of predicted values, the Powell-Beale version of the method is more effective than the Fletcher-Reeves and Polak –Ribiere versions.

Keywords: Boundary elements, Conjugate Gradient Method, Inverse Geometry Problem, Sensitivity equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
988 A Study on Creation of Human-Based Co-Design Service Platform

Authors: Chiung-Hui Chen

Abstract:

With the approaching of digital era, various interactive service platforms and systems support human beings- needs in lives by different contents and measures. Design strategies have gradually turned from function-based to user-oriented, and are often customized. In other words, how designers include users- value reaction in creation becomes the goal. Creative design service of interior design requires positive interaction and communication to allow users to obtain full design information, recognize the style and process of personal needs, develop creative service design, lower communication time and cost and satisfy users- sense of achievement. Thus, by constructing a co-design method, based on the communication between interior designers and users, this study recognizes users- real needs and provides the measure of co-design for designers and users.

Keywords: Co-Design, Customized, Design Service, Interactive Genetic Algorithm, Interior Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
987 Indoor Mobile Robot Positioning Based on Wireless Fingerprint Matching

Authors: Xu Huang, Jing Fan, Maonian Wu, Yonggen Gu

Abstract:

This paper discusses the design of an indoor mobile robot positioning system. The problem of indoor positioning is solved through Wi-Fi fingerprint positioning to implement a low cost deployment. A wireless fingerprint matching algorithm based on the similarity of unequal length sequences is presented. Candidate sequences selection is defined as a set of mappings, and detection errors caused by wireless hotspot stability and the change of interior pattern can be corrected by transforming the unequal length sequences into equal length sequences. The presented scheme was verified experimentally to achieve the accuracy requirements for an indoor positioning system with low deployment cost.

Keywords: Fingerprint match, indoor positioning, mobile robot positioning system, Wi-Fi, wireless fingerprint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
986 Kernel’s Parameter Selection for Support Vector Domain Description

Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid

Abstract:

Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.

Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
985 A new Adaptive Approach for Histogram based Mouth Segmentation

Authors: Axel Panning, Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

The segmentation of mouth and lips is a fundamental problem in facial image analyisis. In this paper we propose a method for lip segmentation based on rg-color histogram. Statistical analysis shows, using the rg-color-space is optimal for this purpose of a pure color based segmentation. Initially a rough adaptive threshold selects a histogram region, that assures that all pixels in that region are skin pixels. Based on that pixels we build a gaussian model which represents the skin pixels distribution and is utilized to obtain a refined, optimal threshold. We are not incorporating shape or edge information. In experiments we show the performance of our lip pixel segmentation method compared to the ground truth of our dataset and a conventional watershed algorithm.

Keywords: Feature extraction, Segmentation, Image processing, Application

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
984 Cost and Profit Analysis of Markovian Queuing System with Two Priority Classes: A Computational Approach

Authors: S. S. Mishra, D. K. Yadav

Abstract:

This paper focuses on cost and profit analysis of single-server Markovian queuing system with two priority classes. In this paper, functions of total expected cost, revenue and profit of the system are constructed and subjected to optimization with respect to its service rates of lower and higher priority classes. A computing algorithm has been developed on the basis of fast converging numerical method to solve the system of non linear equations formed out of the mathematical analysis. A novel performance measure of cost and profit analysis in view of its economic interpretation for the system with priority classes is attempted to discuss in this paper. On the basis of computed tables observations are also drawn to enlighten the variational-effect of the model on the parameters involved therein.

Keywords: Cost and Profit, Computing, Expected Revenue, Priority classes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716