Search results for: Machine design
2946 SNC Based Network Layer Design for Underwater Wireless Communication Used in Coral Farms
Authors: T. T. Manikandan, Rajeev Sukumaran
Abstract:
For maintaining the biodiversity of many ecosystems the existence of coral reefs play a vital role. But due to many factors such as pollution and coral mining, coral reefs are dying day by day. One way to protect the coral reefs is to farm them in a carefully monitored underwater environment and restore it in place of dead corals. For successful farming of corals in coral farms, different parameters of the water in the farming area need to be monitored and maintained at optimal level. Sensing underwater parameters using wireless sensor nodes is an effective way for precise and continuous monitoring in a highly dynamic environment like oceans. Here the sensed information is of varying importance and it needs to be provided with desired Quality of Service(QoS) guarantees in delivering the information to offshore monitoring centers. The main interest of this research is Stochastic Network Calculus (SNC) based modeling of network layer design for underwater wireless sensor communication. The model proposed in this research enforces differentiation of service in underwater wireless sensor communication with the help of buffer sizing and link scheduling. The delay and backlog bounds for such differentiated services are analytically derived using stochastic network calculus.
Keywords: Underwater Coral Farms, SNC, differentiated service, delay bound, backlog bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672945 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology
Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester
Abstract:
Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.
Keywords: Composite material, Fiber metal laminate, Lightweight construction, Prepreg press technology, Large-series production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18932944 On-line Recognition of Isolated Gestures of Flight Deck Officers (FDO)
Authors: Deniz T. Sodiri, Venkat V S S Sastry
Abstract:
The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13322943 The Design and Applied of Learning Management System via Social Media on Internet: Case Study of Operating System for Business Subject
Authors: Pimploi Tirastittam, Sawanath Treesathon, Amornrath Ongkawat
Abstract:
Learning Management System (LMS) is the system which uses to manage the learning in order to grouping the content and learning activity between the lecturer and learner including online examination and evaluation. Nowadays, it is the borderless learning era so the learning activities can be accessed from everywhere in the world and also anytime via the information technology and media. The learner can easily access to the knowledge so the different in time and distance is not a constraint for learning anymore. The learning pattern which was used in this research is the integration of the in-class learning and online learning via internet and will be able to monitor the progress by the Learning management system which will create the fast response and accessible learning process via the social media. In order to increase the capability and freedom of the learner, the system can show the current and history of the learning document, video conference and also has the chat room for the learner and lecturer to interact to each other. So the objectives of the “The Design and Applied of Learning Management System via Social Media on Internet: Case Study of Operating System for Business Subject” are to expand the opportunity of learning and to increase the efficiency of learning as well as increase the communication channel between lecturer and student. The data of this research was collect from 30 users of the system which are students who enroll in the subject. And the result of the research is in the “Very Good” which is conformed to the hypothesis.
Keywords: Learning Management System, Social Media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18782942 Determination and Comparison of Fabric Pills Distribution Using Image Processing and Spatial Data Analysis Tools
Authors: Lenka Techniková, Maroš Tunák, Jiří Janáček
Abstract:
This work deals with the determination and comparison of pill patterns in 2 sets of fabric samples which differ in way of pill creation. The first set contains fabric samples with the pills created by simulation on a Martindale abrasion machine, while pills in the second set originated during normal wearing and maintenance. The goal of the study is to determine whether the pattern of the fabric pills created by simulation is the same as the pattern of naturally occurring pills. The system of determination and comparison of the pills is based on image processing and spatial data analysis tools. Firstly, 3D reconstruction of the fabric surfaces with the pills is realized with using a gradient fields method. The gradient fields method creates a 3D fabric surface from a set of 4 images. Thereafter, the pills are detected in 3D fabric surfaces using image-processing tools in the MATLAB software. Determination and comparison of the pills patterns of two sets of fabric samples is based on spatial data analysis using tools in R software.
Keywords: 3D reconstruction of the surface, image analysis tools, distribution of the pills, spatial data analysis tools.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21732941 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems
Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil
Abstract:
In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.
Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34232940 Automatic Verification Technology of Virtual Machine Software Patch on IaaS Cloud
Authors: Yoji Yamato
Abstract:
In this paper, we propose an automatic verification technology of software patches for user virtual environments on IaaS Cloud to decrease verification costs of patches. In these days, IaaS services have been spread and many users can customize virtual machines on IaaS Cloud like their own private servers. Regarding to software patches of OS or middleware installed on virtual machines, users need to adopt and verify these patches by themselves. This task increases operation costs of users. Our proposed method replicates user virtual environments, extracts verification test cases for user virtual environments from test case DB, distributes patches to virtual machines on replicated environments and conducts those test cases automatically on replicated environments. We have implemented the proposed method on OpenStack using Jenkins and confirmed the feasibility. Using the implementation, we confirmed the effectiveness of test case creation efforts by our proposed idea of 2-tier abstraction of software functions and test cases. We also evaluated the automatic verification performance of environment replications, test cases extractions and test cases conductions.
Keywords: OpenStack, Cloud Computing, Automatic verification, Jenkins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21722939 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17132938 Adhesive Connections in Timber: A Comparison between Rough and Smooth Wood Bonding Surfaces
Authors: Valentina Di Maria, Anton Ianakiev
Abstract:
The use OF adhesive anchors for wooden constructions is an efficient technology to connect and design timber members in new timber structures and to rehabilitate the damaged structural members of historical buildings. Due to the lack of standard regulation in this specific area of structural design, designers’ choices are still supported by test analysis that enables knowledge, and the prediction, of the structural behaviour of glued in rod joints. The paper outlines an experimental research activity aimed at identifying the tensile resistance capacity of several new adhesive joint prototypes made of epoxy resin, steel bar and timber, Oak and Douglas Fir species. The development of new adhesive connectors has been carried out by using epoxy to glue stainless steel bars into pre-drilled holes, characterised by smooth and rough internal surfaces, in timber samples. The realization of a threaded contact surface using a specific drill bit has led to an improved bond between wood and epoxy. The applied changes have also reduced the cost of the joints’ production. The paper presents the results of this parametric analysis and a Finite Element analysis that enables identification and study of the internal stress distribution in the proposed adhesive anchors.
Keywords: Glued in rod joints, adhesive anchors, timber, epoxy, rough contact surface, threaded hole shape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33232937 Defining a Semantic Web-based Framework for Enabling Automatic Reasoning on CIM-based Management Platforms
Authors: Fernando Alonso, Rafael Fernandez, Sonia Frutos, Javier Soriano
Abstract:
CIM is the standard formalism for modeling management information developed by the Distributed Management Task Force (DMTF) in the context of its WBEM proposal, designed to provide a conceptual view of the managed environment. In this paper, we propose the inclusion of formal knowledge representation techniques, based on Description Logics (DLs) and the Web Ontology Language (OWL), in CIM-based conceptual modeling, and then we examine the benefits of such a decision. The proposal is specified as a CIM metamodel level mapping to a highly expressive subset of DLs capable of capturing all the semantics of the models. The paper shows how the proposed mapping provides CIM diagrams with precise semantics and can be used for automatic reasoning about the management information models, as a design aid, by means of newgeneration CASE tools, thanks to the use of state-of-the-art automatic reasoning systems that support the proposed logic and use algorithms that are sound and complete with respect to the semantics. Such a CASE tool framework has been developed by the authors and its architecture is also introduced. The proposed formalization is not only useful at design time, but also at run time through the use of rational autonomous agents, in response to a need recently recognized by the DMTF.Keywords: CIM, Knowledge-based Information Models, OntologyLanguages, OWL, Description Logics, Integrated Network Management, Intelligent Agents, Automatic Reasoning Techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15562936 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems
Authors: Daniele Losanno, Giorgio Serino
Abstract:
This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.
Keywords: Brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9132935 A New Model for Economic Optimization of Water Diversion System during Dam Construction using PSO Algorithm
Authors: Saeed Sedighizadeh, Abbas Mansoori, Mohammad Reza Pirestani, Davoud Sedighizadeh
Abstract:
The usual method of river flow diversion involves construction of tunnels and cofferdams. Given the fact that the cost of diversion works could be as high as 10-20% of the total dam construction cost, due attention should be paid to optimum design of the diversion works. The cost of diversion works depends, on factors, such as: the tunnel dimensions and the intended tunneling support measures during and after excavation; quality and characterizes of the rock through which the tunnel should be excavated; the dimensions of the upstream (and downstream) cofferdams; and the magnitude of river flood the system is designed to divert. In this paper by use of the cost of unit prices for tunnel excavation, tunnel lining, tunnel support (rock bolt + shotcrete) and cofferdam fill the cost function was determined. The function is then minimized by the aid of PSO Algorithm (particle swarm optimization). It is found that the optimum diameter and the total diversion cost are directly related to the river flood discharge (Q). It has also shown that in addition to optimum diameter design discharge (Q), river length, tunnel length, is mainly a function of the ratios (not the absolute values) of the unit prices and does not depend on the overall price levels in the respective country. The results of optimization use in some of the case study lead us to significant changes in the cost.
Keywords: Diversion Tunnel, Optimization, PSO Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27322934 Detection of Cyberattacks on the Metaverse Based on First-Order Logic
Authors: Sulaiman Al Amro
Abstract:
There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies, and therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and thus the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.
Keywords: Cyberattacks, detection, first-order logic, Metaverse, privacy, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682933 Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques
Authors: Surinder Deswal
Abstract:
The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.Keywords: Oxygen-transfer, multiple plunging jets, support vector machines, Gaussian process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16412932 Surrogate based Evolutionary Algorithm for Design Optimization
Authors: Maumita Bhattacharya
Abstract:
Optimization is often a critical issue for most system design problems. Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, finding optimal solution to complex high dimensional, multimodal problems often require highly computationally expensive function evaluations and hence are practically prohibitive. The Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model presented in our earlier work [14] reduced computation time by controlled use of meta-models to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the meta-model are generated from a single uniform model. Situations like model formation involving variable input dimensions and noisy data certainly can not be covered by this assumption. In this paper we present an enhanced version of DAFHEA that incorporates a multiple-model based learning approach for the SVM approximator. DAFHEA-II (the enhanced version of the DAFHEA framework) also overcomes the high computational expense involved with additional clustering requirements of the original DAFHEA framework. The proposed framework has been tested on several benchmark functions and the empirical results illustrate the advantages of the proposed technique.Keywords: Evolutionary algorithm, Fitness function, Optimization, Meta-model, Stochastic method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15772931 Nonlinear Fuzzy Tracking Real-time-based Control of Drying Parameters
Authors: Marco Soares dos Santos, Camila Nicola Boeri, Jorge Augusto Ferreira, Fernando Neto da Silva
Abstract:
The highly nonlinear characteristics of drying processes have prompted researchers to seek new nonlinear control solutions. However, the relation between the implementation complexity, on-line processing complexity, reliability control structure and controller-s performance is not well established. The present paper proposes high performance nonlinear fuzzy controllers for a real-time operation of a drying machine, being developed under a consistent match between those issues. A PCI-6025E data acquisition device from National Instruments® was used, and the control system was fully designed with MATLAB® / SIMULINK language. Drying parameters, namely relative humidity and temperature, were controlled through MIMOs Hybrid Bang-bang+PI (BPI) and Four-dimensional Fuzzy Logic (FLC) real-time-based controllers to perform drying tests on biological materials. The performance of the drying strategies was compared through several criteria, which are reported without controllers- retuning. Controllers- performance analysis has showed much better performance of FLC than BPI controller. The absolute errors were lower than 8,85 % for Fuzzy Logic Controller, about three times lower than the experimental results with BPI control.Keywords: Drying control, Fuzzy logic control, Intelligent temperature-humidity control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23382930 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System
Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta
Abstract:
This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also, overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate, which minimize the total, incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality, which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.Keywords: Deterioration, simulation, subcontracting, production planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19022929 A Robust Diverged Localization and Recognition of License Registration Characters
Authors: M. Sankari, R. Bremananth, C.Meena
Abstract:
Localization and Recognition of License registration characters from the moving vehicle is a computationally complex task in the field of machine vision and is of substantial interest because of its diverse applications such as cross border security, law enforcement and various other intelligent transportation applications. Previous research used the plate specific details such as aspect ratio, character style, color or dimensions of the plate in the complex task of plate localization. In this paper, license registration character is localized by Enhanced Weight based density map (EWBDM) method, which is independent of such constraints. In connection with our previous method, this paper proposes a method that relaxes constraints in lighting conditions, different fonts of character occurred in the plate and plates with hand-drawn characters in various aspect quotients. The robustness of this method is well suited for applications where the appearance of plates seems to be varied widely. Experimental results show that this approach is suited for recognizing license plates in different external environments.
Keywords: Character segmentation, Connectivity checking, Edge detection, Image analysis, license plate localization, license number recognition, Quality frame selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18962928 Supervisor Controller-Based Colored Petri Nets for Deadlock Control and Machine Failures in Automated Manufacturing Systems
Authors: Husam Kaid, Abdulrahman Al-Ahmari, Zhiwu Li
Abstract:
This paper develops a robust deadlock control technique for shared and unreliable resources in automated manufacturing systems (AMSs) based on structural analysis and colored Petri nets, which consists of three steps. The first step involves using strict minimal siphon control to create a live (deadlock-free) system that does not consider resource failure. The second step uses an approach based on colored Petri net, in which all monitors designed in the first step are merged into a single monitor. The third step addresses the deadlock control problems caused by resource failures. For all resource failures in the Petri net model a common recovery subnet based on colored petri net is proposed. The common recovery subnet is added to the obtained system at the second step to make the system reliable. The proposed approach is evaluated using an AMS from the literature. The results show that the proposed approach can be applied to an unreliable complex Petri net model, has a simpler structure and less computational complexity, and can obtain one common recovery subnet to model all resource failures.
Keywords: Automated manufacturing system, colored Petri net, deadlock, siphon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4792927 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems
Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong
Abstract:
For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.
Keywords: Differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11732926 Thermomechanical Studies in Glass/Epoxy Composite Specimen during Tensile Loading
Authors: K. M. Mohamed Muneer, Raghu V. Prakash, Krishnan Balasubramaniam
Abstract:
This paper presents the results of thermo-mechanical characterization of Glass/Epoxy composite specimens using Infrared Thermography technique. The specimens used for the study were fabricated in-house with three different lay-up sequences and tested on a servo hydraulic machine under uni-axial loading. Infrared Camera was used for on-line monitoring surface temperature changes of composite specimens during tensile deformation. Experimental results showed that thermomechanical characteristics of each type of specimens were distinct. Temperature was found to be decreasing linearly with increasing tensile stress in the elastic region due to thermo-elastic effect. Yield point could be observed by monitoring the change in temperature profile during tensile testing and this value could be correlated with the results obtained from stress-strain response. The extent of prior plastic deformation in the post-yield region influenced the slopes of temperature response during tensile loading. Partial unloading and reloading of specimens post-yield results in change in slope in elastic and plastic regions of composite specimens.Keywords: Glass/Epoxy composites, Thermomechanical behavior, Infrared Thermography, Thermoelastic slope, Thermoplastic slope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20612925 A Study on the Attractiveness of Heavy Duty Motorcycle
Authors: Kaishuan Shen, Pan Changyu, Yuhsiang Lu, Zongshao Liu, Chishxsin Chuang, Minyuan Ma
Abstract:
The culture of riding heavy motorcycles originates from advanced countries and mainly comes from Europe, North America, and Japan. Heavy duty motorcycle riders are different from people who view motorcycles as a convenient mean of transportation. They regard riding them as a kind of enjoyment and high-level taste. The activities of riding heavy duty motorcycles have formes a distinctive landscape in domestic land in Taiwan. Previous studies which explored motorcycle culture in Taiwan still focused on the objects of motorcycle engine displacement under 50 cc.. The study aims to study the heavy duty motorcycles of engine displacement over 550 cc. and explores where their attractiveness is. For finding the attractiveness of heavy duty motorcycle, the study chooses Miryoku Engineering (Preference-Based Design) approach. Two steps are adopted to proceed the research. First, through arranging the letters obtained from interviewing experts, EGM (The Evaluation Grid Method) was applied to find out the structure of attractiveness. The attractive styles are eye-dazzling, leisure, classic, and racing competitive styles. Secondarily, Quantification Theory Type I analysis was adopted as a tool for analyzing the importance of attractiveness. The relationship between style and attractive parts was also discussed. The results could contribute to the design and research development of heavy duty motorcycle industry in Taiwan.Keywords: attractiveness, evaluation, heavy dutymotorcycle, miryoku engineering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19162924 Predicting Application Layer DDoS Attacks Using Machine Learning Algorithms
Authors: S. Umarani, D. Sharmila
Abstract:
A Distributed Denial of Service (DDoS) attack is a major threat to cyber security. It originates from the network layer or the application layer of compromised/attacker systems which are connected to the network. The impact of this attack ranges from the simple inconvenience to use a particular service to causing major failures at the targeted server. When there is heavy traffic flow to a target server, it is necessary to classify the legitimate access and attacks. In this paper, a novel method is proposed to detect DDoS attacks from the traces of traffic flow. An access matrix is created from the traces. As the access matrix is multi dimensional, Principle Component Analysis (PCA) is used to reduce the attributes used for detection. Two classifiers Naive Bayes and K-Nearest neighborhood are used to classify the traffic as normal or abnormal. The performance of the classifier with PCA selected attributes and actual attributes of access matrix is compared by the detection rate and False Positive Rate (FPR).
Keywords: Distributed Denial of Service (DDoS) attack, Application layer DDoS, DDoS Detection, K- Nearest neighborhood classifier, Naive Bayes Classifier, Principle Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52792923 Online Control of Knitted Fabric Quality: Loop Length Control
Authors: Dariush Semnani, Mohammad Sheikhzadeh
Abstract:
Circular knitting machine makes the fabric with more than two knitting tools. Variation of yarn tension between different knitting tools causes different loop length of stitches duration knitting process. In this research, a new intelligent method is applied to control loop length of stitches in various tools based on ideal shape of stitches and real angle of stitches direction while different loop length of stitches causes stitches deformation and deviation those of angle. To measure deviation of stitch direction against variation of tensions, image processing technique was applied to pictures of different fabrics with constant front light. After that, the rate of deformation is translated to needed compensation of loop length cam degree to cure stitches deformation. A fuzzy control algorithm was applied to loop length modification in knitting tools. The presented method was experienced for different knitted fabrics of various structures and yarns. The results show that presented method is useable for control of loop length variation between different knitting tools based on stitch deformation for various knitted fabrics with different fabric structures, densities and yarn types.Keywords: Circular knitting, Radon transformation, Knittedfabric, Regularity, Fuzzy control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36742922 Innovation and Technologies Synthesis of Various Components: A Contribution to the Precision Irrigation Development for Open-Field Fruit Orchards
Authors: P. Chatrabhuti, S. Visessri, T. Charinpanitkul
Abstract:
Precision irrigation (PI) technology has emerged as a solution to optimize water usage in agriculture, aiming to maximize crop yields while minimizing water waste. Developing a PI for commercialization requires developers to research, synthesize, evaluate, and select appropriate technologies and make use of such information to produce innovative products. The objective of this review is to facilitate innovators by providing them with a summary of existing knowledge and the identification of gaps in research linking to the innovative development of PI. This paper reviews and synthesizes technologies and components relevant to precision irrigation, highlighting its potential benefits and challenges. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework is used for the review. As a result of this review, the different technologies have limitations and may only be suitable for specific orchards or spatial settings. The current technologies are readily available in a range of options, from affordable controllers to high-performance systems that are both reliable and precise. Furthermore, the future prospects for incorporating artificial intelligence and machine learning techniques hold promise for advancing autonomous irrigation systems.
Keywords: Innovation synthesis, technology assessment, precision irrigation technologies, precision irrigation components, new product development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 312921 Advances in Artificial Intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: Speech recognition, acoustic phonetic, artificial intelligence, Hidden Markov Models (HMM), statistical models of speech recognition, human machine performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79782920 Influence of the Granular Mixture Properties on the Rheological Properties of Concrete: Yield Stress Determination Using Modified Chateau et al. Model
Authors: Rachid Zentar, Mokrane Bala, Pascal Boustingorry
Abstract:
The prediction of the rheological behavior of concrete is at the center of current concerns of the concrete industry for different reasons. The shortage of good quality standard materials combined with variable properties of available materials imposes to improve existing models to take into account these variations at the design stage of concrete. The main reasons for improving the predictive models are, of course, saving time and cost at the design stage as well as to optimize concrete performances. In this study, we will highlight the different properties of the granular mixtures that affect the rheological properties of concrete. Our objective is to identify the intrinsic parameters of the aggregates which make it possible to predict the yield stress of concrete. The work was done using two typologies of grains: crushed and rolled aggregates. The experimental results have shown that the rheology of concrete is improved by increasing the packing density of the granular mixture using rolled aggregates. The experimental program realized allowed to model the yield stress of concrete by a modified model of Chateau et al. through a dimensionless parameter following Krieger-Dougherty law. The modelling confirms that the yield stress of concrete depends not only on the properties of cement paste but also on the packing density of the granular skeleton and the shape of grains.
Keywords: Crushed aggregates, intrinsic viscosity, packing density, rolled aggregates, slump, yield stress of concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5972919 Design of an Intelligent Location Identification Scheme Based On LANDMARC and BPNs
Authors: S. Chaisit, H.Y. Kung, N.T. Phuong
Abstract:
Radio frequency identification (RFID) applications have grown rapidly in many industries, especially in indoor location identification. The advantage of using received signal strength indicator (RSSI) values as an indoor location measurement method is a cost-effective approach without installing extra hardware. Because the accuracy of many positioning schemes using RSSI values is limited by interference factors and the environment, thus it is challenging to use RFID location techniques based on integrating positioning algorithm design. This study proposes the location estimation approach and analyzes a scheme relying on RSSI values to minimize location errors. In addition, this paper examines different factors that affect location accuracy by integrating the backpropagation neural network (BPN) with the LANDMARC algorithm in a training phase and an online phase. First, the training phase computes coordinates obtained from the LANDMARC algorithm, which uses RSSI values and the real coordinates of reference tags as training data for constructing an appropriate BPN architecture and training length. Second, in the online phase, the LANDMARC algorithm calculates the coordinates of tracking tags, which are then used as BPN inputs to obtain location estimates. The results show that the proposed scheme can estimate locations more accurately compared to LANDMARC without extra devices.
Keywords: BPNs, indoor location, location estimation, intelligent location identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20112918 Sustainable Development of Medium Strength Concrete Using Polypropylene as Aggregate Replacement
Authors: Reza Keihani, Ali Bahadori-Jahromi, Timothy James Clacy
Abstract:
Plastic as an environmental burden is a well-rehearsed topic in the research area. This is due to its global demand and destructive impacts on the environment, which has been a significant concern to the governments. Typically, the use of plastic in the construction industry is seen across low-density, non-structural applications due to its diverse range of benefits including high strength-to-weight ratios, manipulability and durability. It can be said that with the level of plastic consumption experienced in the construction industry, an ongoing responsibility is shown for this sector to continually innovate alternatives for application of recycled plastic waste such as using plastic made replacement from polyethylene, polystyrene, polyvinyl and polypropylene in the concrete mix design. In this study, the impact of partially replaced fine aggregate with polypropylene in the concrete mix design was investigated to evaluate the concrete’s compressive strength by conducting an experimental work which comprises of six concrete mix batches with polypropylene replacements ranging from 0.5 to 3.0%. The results demonstrated a typical decline in the compressive strength with the addition of plastic aggregate, despite this reduction generally mitigated as the level of plastic in the concrete mix increased. Furthermore, two of the six plastic-containing concrete mixes tested in the current study exceeded the ST5 standardised prescribed concrete mix compressive strength requirement at 28-days containing 1.50% and 2.50% plastic aggregates, which demonstrated the potential for use of recycled polypropylene in structural applications, as a partial by mass, fine aggregate replacement in the concrete mix.
Keywords: Compressive strength, concrete, polypropylene, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9432917 Face Authentication for Access Control based on SVM using Class Characteristics
Authors: SeHun Lim, Sanghoon Kim, Sun-Tae Chung, Seongwon Cho
Abstract:
Face authentication for access control is a face membership authentication which passes the person of the incoming face if he turns out to be one of an enrolled person based on face recognition or rejects if not. Face membership authentication belongs to the two class classification problem where SVM(Support Vector Machine) has been successfully applied and shows better performance compared to the conventional threshold-based classification. However, most of previous SVMs have been trained using image feature vectors extracted from face images of each class member(enrolled class/unenrolled class) so that they are not robust to variations in illuminations, poses, and facial expressions and much affected by changes in member configuration of the enrolled class In this paper, we propose an effective face membership authentication method based on SVM using class discriminating features which represent an incoming face image-s associability with each class distinctively. These class discriminating features are weakly related with image features so that they are less affected by variations in illuminations, poses and facial expression. Through experiments, it is shown that the proposed face membership authentication method performs better than the threshold rule-based or the conventional SVM-based authentication methods and is relatively less affected by changes in member size and membership.Keywords: Face Authentication, Access control, member ship authentication, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508