Search results for: differential transform method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8899

Search results for: differential transform method

6049 Leveraging Hyperledger Iroha for the Issuance and Verification of Higher-Education Certificates

Authors: Vasiliki Vlachou, Christos Kontzinos, Ourania Markaki, Panagiotis Kokkinakos, Vagelis Karakolis, John Psarras

Abstract:

Higher Education is resisting the pull of technology, especially as this concerns the issuance and verification of degrees and certificates. It is widely known that education certificates are largely produced in paper form making them vulnerable to damage while holders of such certificates are dependent on the universities and other issuing organisations. QualiChain is an EU Horizon 2020 (H2020) research project aiming to transform and revolutionise the domain of public education and its ties with the job market by leveraging blockchain, analytics and decision support to develop a platform for the verification and sharing of education certificates. Blockchain plays an integral part in the QualiChain solution in providing a trustworthy environment to store, share and manage such accreditations. Under the context of this paper, three prominent blockchain platforms (Ethereum, Hyperledger Fabric, Hyperledger Iroha) were considered as a means of experimentation for creating a system with the basic functionalities that will be needed for trustworthy degree verification. The methodology and respective system developed and presented in this paper used Hyperledger Iroha and proved that this specific platform can be used to easily develop decentralize applications. Future papers will attempt to further experiment with other blockchain platforms and assess which has the best potential.

Keywords: Blockchain, degree verification, higher education certificates, Hyperledger Iroha.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
6048 Analysis of Histogram Asymmetry for Waste Recognition

Authors: Janusz Bobulski, Kamila Pasternak

Abstract:

Despite many years of effort and research, the problem of waste management is still current. There is a lack of fast and effective algorithms for classifying individual waste fractions. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants.

Keywords: Computer vision, environmental protection, image processing, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255
6047 Determining Occurrence in FMEA Using Hazard Function

Authors: Hazem J. Smadi

Abstract:

FMEA has been used for several years and proved its efficiency for system’s risk analysis due to failures. Risk priority number found in FMEA is used to rank failure modes that may occur in a system. There are some guidelines in the literature to assign the values of FMEA components known as Severity, Occurrence and Detection. This paper propose a method to assign the value for occurrence in more realistic manner representing the state of the system under study rather than depending totally on the experience of the analyst. This method uses the hazard function of a system to determine the value of occurrence depending on the behavior of the hazard being constant, increasing or decreasing.

Keywords: FMEA, Hazard Function, Risk Priority Number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3501
6046 Analysis of the Secondary Stationary Flow Around an Oscillating Circular Cylinder

Authors: Artem Nuriev, Olga Zaitseva

Abstract:

This paper is devoted to the study of a viscous incompressible flow around a circular cylinder performing harmonic oscillations, especially the steady streaming phenomenon. The research methodology is based on the asymptotic explanation method combined with the computational bifurcation analysis. The research approach develops Schlichting and Wang decomposition method. Present studies allow to identify several regimes of the secondary streaming with different flow structures. The results of the research are in good agreement with experimental and numerical simulation data.

Keywords: Oscillating cylinder, Secondary Streaming, Flow Regimes, Asymptotic and Bifurcation Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
6045 Transformability in Post-Earthquake Houses in Iran: with Special Focus on Lar City

Authors: M. Parva, K. Dola, F. Pour Rahimian

Abstract:

Earthquake is considered as one of the most catastrophic disasters in Iran, in terms of both short-term and long-term hazards. Due to the particular financial and time constraints in Iran, quickly constructed post-earthquake houses (PEHs) do not fulfill the minimum requirements to be considered as comfortable dwellings for people. Consequently, people often transform PEHs after they start to reside. However, lack of understanding about process, motivation, and results of housing transformation leads to construction of some houses not suitable for future transformations, hence resulting in eventually demolished or abandoned PEHs. This study investigated housing transformations in a natural bed of post-earthquake Lar. This paper reports results of the conducted survey for comparing normal condition housing transformation with post-earthquake housing transformation in order to reveal the factors that affect post-earthquake housing transformation in Iran. The findings proposed the use of a combination of ‘Temporary’ and ‘Permanent’ housing reconstruction models in Iran to provide victims with basic but permanent post-disaster dwellings. It is also suggested that needs for future transformation should be predicted and addressed during early stages of design and development. This study contributes to both research and practice regarding post-earthquake housing reconstruction in Iran by proposing new design approaches and guidelines.

Keywords: Housing transformation, Iran, Lar, post-earthquake housing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
6044 A 3D Approach for Extraction of the Coronaryartery and Quantification of the Stenosis

Authors: Mahdi Mazinani, S. D. Qanadli, Rahil Hosseini, Tim Ellis, Jamshid Dehmeshki

Abstract:

Segmentation and quantification of stenosis is an important task in assessing coronary artery disease. One of the main challenges is measuring the real diameter of curved vessels. Moreover, uncertainty in segmentation of different tissues in the narrow vessel is an important issue that affects accuracy. This paper proposes an algorithm to extract coronary arteries and measure the degree of stenosis. Markovian fuzzy clustering method is applied to model uncertainty arises from partial volume effect problem. The algorithm employs: segmentation, centreline extraction, estimation of orthogonal plane to centreline, measurement of the degree of stenosis. To evaluate the accuracy and reproducibility, the approach has been applied to a vascular phantom and the results are compared with real diameter. The results of 10 patient datasets have been visually judged by a qualified radiologist. The results reveal the superiority of the proposed method compared to the Conventional thresholding Method (CTM) on both datasets.

Keywords: 3D coronary artery tree extraction, segmentation, quantification, fuzzy clustering, and Markov random field

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
6043 The Study of the Interaction between Catanionic Surface Micelle SDS-CTAB and Insulin at Air/Water Interface

Authors: B. Tah, P. Pal, M. Mahato, R. Sarkar, G. B. Talapatra

Abstract:

Herein, we report the different types of surface morphology due to the interaction between the pure protein Insulin (INS) and catanionic surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cetyl Trimethyl Ammonium Bromide (CTAB) at air/water interface obtained by the Langmuir-Blodgett (LB) technique. We characterized the aggregations by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in LB films. We found that the INS adsorption increased in presence of catanionic surfactant at air/water interface. The presence of small amount of surfactant induces two-stage growth kinetics due to the pure protein absorption and protein-catanionic surface micelle interaction. The protein remains in native state in presence of small amount of surfactant mixture. Smaller amount of surfactant mixture with INS is producing surface micelle type structure. This may be considered for drug delivery system. On the other hand, INS becomes unfolded and fibrillated in presence of higher amount of surfactant mixture. In both the cases, the protein was successfully immobilized on a glass substrate by the LB technique. These results may find applications in the fundamental science of the physical chemistry of surfactant systems, as well as in the preparation of drug-delivery system.

Keywords: Air/water interface, Catanionic micelle, Insulin, Langmuir-Blodgett film

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
6042 Obtaining Constants of Johnson-Cook Material Model Using a Combined Experimental, Numerical Simulation and Optimization Method

Authors: F. Rahimi Dehgolan, M. Behzadi, J. Fathi Sola

Abstract:

In this article, the Johnson-Cook material model’s constants for structural steel ST.37 have been determined by a method which integrates experimental tests, numerical simulation, and optimization. In the first step, a quasi-static test was carried out on a plain specimen. Next, the constants were calculated for it by minimizing the difference between the results acquired from the experiment and numerical simulation. Then, a quasi-static tension test was performed on three notched specimens with different notch radii. At last, in order to verify the results, they were used in numerical simulation of notched specimens and it was observed that experimental and simulation results are in good agreement. Changing the diameter size of the plain specimen in the necking area was set as the objective function in the optimization step. For final validation of the proposed method, diameter variation was considered as a parameter and its sensitivity to a change in any of the model constants was examined and the results were completely corroborating.

Keywords: Constants, Johnson-Cook material model, notched specimens, quasi-static test, sensitivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3583
6041 Triple Diffusive Convection in a Vertically Oscillating Oldroyd-B Liquid

Authors: Sameena Tarannum, S. Pranesh

Abstract:

The effect of linear stability analysis of triple diffusive convection in a vertically oscillating viscoelastic liquid of Oldroyd-B type is studied. The correction Rayleigh number is obtained by using perturbation method which gives prospect to control the convection. The eigenvalue is obtained by using perturbation method by adopting Venezian approach. From the study, it is observed that gravity modulation advances the onset of triple diffusive convection.

Keywords: Gravity modulation, Oldroyd-B liquid, triple diffusive convection, Venezian approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
6040 Capability Prediction of Machining Processes Based on Uncertainty Analysis

Authors: Hamed Afrasiab, Saeed Khodaygan

Abstract:

Prediction of machining process capability in the design stage plays a key role to reach the precision design and manufacturing of mechanical products. Inaccuracies in machining process lead to errors in position and orientation of machined features on the part, and strongly affect the process capability in the final quality of the product. In this paper, an efficient systematic approach is given to investigate the machining errors to predict the manufacturing errors of the parts and capability prediction of corresponding machining processes. A mathematical formulation of fixture locators modeling is presented to establish the relationship between the part errors and the related sources. Based on this method, the final machining errors of the part can be accurately estimated by relating them to the combined dimensional and geometric tolerances of the workpiece – fixture system. This method is developed for uncertainty analysis based on the Worst Case and statistical approaches. The application of the presented method is illustrated through presenting an example and the computational results are compared with the Monte Carlo simulation results.

Keywords: Process capability, machining error, dimensional and geometrical tolerances, uncertainty analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209
6039 Ultrasound-Assisted Pd Activation Process for Electroless Silver Plating

Authors: Chang-Myeon Lee, Min-Hyung Lee, Jin-Young Hur, Ho-Nyun Lee, Hong-Kee Lee

Abstract:

An ultrasound-assisted activation method for electroless silver plating is presented in this study. When the ultrasound was applied during the activation step, the amount of the Pd species adsorbed on substrate surfaces was higher than that of sample pretreated with a conventional activation process without ultrasound irradiation. With this activation method, it was also shown that the adsorbed Pd species with a size of about 5 nm were uniformly distributed on the surfaces, thus a smooth and uniform coating on the surfaces was obtained by subsequent electroless silver plating. The samples after each step were characterized by AFM, XPS, FIB, and SEM.

Keywords: Cavitation, Electroless silver, Pd activation, Ultrasonic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
6038 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy

Authors: Aynur Aker, Hasan Kaya

Abstract:

In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in vacuum atmosphere. The samples were directionally solidified upwards with different growth rate V (8.3−165.45 μm/s) at constant temperature gradient G (7.73 K/mm). The flake spacings (λ), microhardness (HV), ultimate tensile strength (σ), electrical resistivity (ρ) and thermal properties (H, Cp, Tm) of the samples were measured. Influence of the growth rate and spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were obtained. According to results, λ values decrease with increasing V, but HV, σ and ρ values increase with increasing V. Variations of electrical resistivity (ρ) of solidified samples were also measured. The enthalpy of fusion (H) and specific heat (Cp) for the alloy was also determined by differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results in this work were compared with the previous similar experimental results.

Keywords: Electrical resistivity, enthalpy, microhardness, solidification, tensile stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
6037 Partial Stabilization of a Class of Nonlinear Systems Via Center Manifold Theory

Authors: Ping He

Abstract:

This paper addresses the problem of the partial state feedback stabilization of a class of nonlinear systems. In order to stabilization this class systems, the especial place of this paper is to reverse designing the state feedback control law from the method of judging system stability with the center manifold theory. First of all, the center manifold theory is applied to discuss the stabilization sufficient condition and design the stabilizing state control laws for a class of nonlinear. Secondly, the problem of partial stabilization for a class of plane nonlinear system is discuss using the lyapunov second method and the center manifold theory. Thirdly, we investigate specially the problem of the stabilization for a class of homogenous plane nonlinear systems, a class of nonlinear with dual-zero eigenvalues and a class of nonlinear with zero-center using the method of lyapunov function with homogenous derivative, specifically. At the end of this paper, some examples and simulation results are given show that the approach of this paper to this class of nonlinear system is effective and convenient.

Keywords: Partial stabilization, Nonlinear critical systems, Centermanifold theory, Lyapunov function, System reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
6036 A Genetic Algorithm Approach for Solving Fuzzy Linear and Quadratic Equations

Authors: M. Hadi Mashinchi, M. Reza Mashinchi, Siti Mariyam H. J. Shamsuddin

Abstract:

In this paper a genetic algorithms approach for solving the linear and quadratic fuzzy equations Ãx̃=B̃ and Ãx̃2 + B̃x̃=C̃ , where Ã, B̃, C̃ and x̃ are fuzzy numbers is proposed by genetic algorithms. Our genetic based method initially starts with a set of random fuzzy solutions. Then in each generation of genetic algorithms, the solution candidates converge more to better fuzzy solution x̃b . In this proposed method the final reached x̃b is not only restricted to fuzzy triangular and it can be fuzzy number.

Keywords: Fuzzy coefficient, fuzzy equation, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
6035 Main Control Factors of Fluid Loss in Drilling and Completion in Shunbei Oilfield by Unmanned Intervention Algorithm

Authors: Peng Zhang, Lihui Zheng, Xiangchun Wang, Xiaopan Kou

Abstract:

Quantitative research on the main control factors of lost circulation has few considerations and single data source. Using Unmanned Intervention Algorithm to find the main control factors of lost circulation adopts all measurable parameters. The degree of lost circulation is characterized by the loss rate as the objective function. Geological, engineering and fluid data are used as layers, and 27 factors such as wellhead coordinates and Weight on Bit (WOB) used as dimensions. Data classification is implemented to determine function independent variables. The mathematical equation of loss rate and 27 influencing factors is established by multiple regression method, and the undetermined coefficient method is used to solve the undetermined coefficient of the equation. Only three factors in t-test are greater than the test value 40, and the F-test value is 96.557%, indicating that the correlation of the model is good. The funnel viscosity, final shear force and drilling time were selected as the main control factors by elimination method, contribution rate method and functional method. The calculated values of the two wells used for verification differ from the actual values by -3.036 m3/h and -2.374 m3/h, with errors of 7.21% and 6.35%. The influence of engineering factors on the loss rate is greater than that of funnel viscosity and final shear force, and the influence of the three factors is less than that of geological factors. The best combination of funnel viscosity, final shear force and drilling time is obtained through quantitative calculation. The minimum loss rate of lost circulation wells in Shunbei area is 10 m3/h. It can be seen that man-made main control factors can only slow down the leakage, but cannot fundamentally eliminate it. This is more in line with the characteristics of karst caves and fractures in Shunbei fault solution oil and gas reservoir.

Keywords: Drilling fluid, loss rate, main controlling factors, Unmanned Intervention Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343
6034 Mixing Behaviors of Wet Granular Materials in Gas Fluidized Beds

Authors: Eldin Wee Chuan Lim

Abstract:

The mixing behaviors of dry and wet granular materials in gas fluidized bed systems were investigated computationally using the combined Computational Fluid Dynamics and Discrete Element Method (CFD-DEM). Dry particles were observed to mix fairly rapidly during the fluidization process due to vigorous relative motions between particles induced by the flow of gas. In contrast, due to the presence of strong cohesive forces arising from capillary liquid bridges between wet particles, the mixing efficiencies of wet granular materials under similar operating conditions were observed to be reduced significantly.

Keywords: Computational Fluid Dynamics, Discrete Element Method, Gas Fluidization, Mixing, Wet particles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
6033 A Semi-Classical Signal Analysis Method for the Analysis of Turbomachinery Flow Unsteadiness

Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati, Sofiane Khelladi, Farid Bakir

Abstract:

This paper presents the use of a semi-classical signal analysis method that has been developed recently for the analysis of turbomachinery flow unsteadiness. We will focus on the correlation between theSemi-Classical Signal Analysis parameters and some physical parameters in relation with turbomachinery features. To demonstrate the potential of the proposed approach, a static pressure signal issued from a rotor/stator interaction of a centrifugal pump is studied. Several configurations of the pump are compared.

Keywords: Semi-classical signal analysis, turbomachines, newindices, physical parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
6032 Rotation Invariant Fusion of Partial Image Parts in Vista Creation using Missing View Regeneration

Authors: H. B. Kekre, Sudeep D. Thepade

Abstract:

The automatic construction of large, high-resolution image vistas (mosaics) is an active area of research in the fields of photogrammetry [1,2], computer vision [1,4], medical image processing [4], computer graphics [3] and biometrics [8]. Image stitching is one of the possible options to get image mosaics. Vista Creation in image processing is used to construct an image with a large field of view than that could be obtained with a single photograph. It refers to transforming and stitching multiple images into a new aggregate image without any visible seam or distortion in the overlapping areas. Vista creation process aligns two partial images over each other and blends them together. Image mosaics allow one to compensate for differences in viewing geometry. Thus they can be used to simplify tasks by simulating the condition in which the scene is viewed from a fixed position with single camera. While obtaining partial images the geometric anomalies like rotation, scaling are bound to happen. To nullify effect of rotation of partial images on process of vista creation, we are proposing rotation invariant vista creation algorithm in this paper. Rotation of partial image parts in the proposed method of vista creation may introduce some missing region in the vista. To correct this error, that is to fill the missing region further we have used image inpainting method on the created vista. This missing view regeneration method also overcomes the problem of missing view [31] in vista due to cropping, irregular boundaries of partial image parts and errors in digitization [35]. The method of missing view regeneration generates the missing view of vista using the information present in vista itself.

Keywords: Vista, Overlap Estimation, Rotation Invariance, Missing View Regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
6031 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval

Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema

Abstract:

The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.

Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
6030 Comparison of Proportional Control and Fuzzy Logic Control to Develop an Ideal Thermoelectric Renal Hypothermia System

Authors: Hakan Işık, Esra Saraçoğlu

Abstract:

In this study, a comparison of two control methods, Proportional Control (PC) and Fuzzy Logic Control (FLC), which have been used to develop an ideal thermoelectric renal hypothermia system in order to use in renal surgery, has been carried out. Since the most important issues in long-lasting parenchymatous renal surgery are to provide an operation medium free of blood and to prevent renal dysfunction in the postoperative period, control of the temperature has become very important in renal surgery. The final product is seriously affected from the changes in temperature, therefore, it is necessary to reach some desired temperature points quickly and avoid large overshoot. PIC16F877 microcontroller has been used as controller for both of these two methods. Each control method can simply ensure extra renal hypothermia in the targeted way. But investigation of advantages and disadvantages of every control method to each other is aimed and carried out by the experimental implementations. Shortly, investigation of the most appropriate method to use for development of system and that can be applied to people safely in the future, has been performed. In this sense, experimental results show that fuzzy logic control gives out more reliable responses and efficient performance.

Keywords: renal hypothermia, renal cooling, temperature control, proportional control fuzzy logic control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
6029 Heat Transfer at Convective Solid Melting in Fixed Bed

Authors: Stelian Petrescu, Adina Frunzâ, Camelia Petrescu

Abstract:

A method to determine experimentally the melting rate, rm, and the heat transfer coefficients, αv (W/(m3K)), at convective melting in a fixed bed of particles under adiabatic regime is established in this paper. The method lies in the determining of the melting rate by measuring the fixed bed height in time. Experimental values of rm, α and α v were determined using cylindrical particles of ice (d = 6.8 mm, h = 5.5 mm) and, as a melting agent, aqueous NaCl solution with a temperature of 283 K at different values of the liquid flow rate (11.63·10-6, 28.83·10-6, 38.83·10-6 m3/s). Our experimental results were compared with those existing in literature being noticed a good agreement for Re values higher than 50.

Keywords: Convective melting, fixed bed, packed bed, heat transfer, ice melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
6028 Blockchain Security in MANETs

Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara

Abstract:

The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.

Keywords: Ad hoc networks, blockchain, MPR, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
6027 Face Recognition Using Double Dimension Reduction

Authors: M. A Anjum, M. Y. Javed, A. Basit

Abstract:

In this paper a new approach to face recognition is presented that achieves double dimension reduction making the system computationally efficient with better recognition results. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results improve with increase in face image resolution and levels off when arriving at a certain resolution level. In the proposed model of face recognition, first image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to better computational speed and feature extraction potential of Discrete Cosine Transform (DCT) it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A trade of between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL database, Yale database and a color database. The proposed technique has performed much better compared to other techniques. The significance of the model is two fold: (1) dimension reduction up to an effective and suitable face image resolution (2) appropriate DCT coefficients are retained to achieve best recognition results with varying image poses, intensity and illumination level.

Keywords: Biometrics, DCT, Face Recognition, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
6026 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation

Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang

Abstract:

In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building. Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that no more than 7% prediction error of annual cooling/heating load will be caused by the geometric simplification for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which means this method is applicable for building performance simulation.

Keywords: building energy model, simulation, geometric simplification, design, regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 580
6025 A Novel Method for Live Debugging of Production Web Applications by Dynamic Resource Replacement

Authors: Khalid Al-Tahat, Khaled Zuhair Mahmoud, Ahmad Al-Mughrabi

Abstract:

This paper proposes a novel methodology for enabling debugging and tracing of production web applications without affecting its normal flow and functionality. This method of debugging enables developers and maintenance engineers to replace a set of existing resources such as images, server side scripts, cascading style sheets with another set of resources per web session. The new resources will only be active in the debug session and other sessions will not be affected. This methodology will help developers in tracing defects, especially those that appear only in production environments and in exploring the behaviour of the system. A realization of the proposed methodology has been implemented in Java.

Keywords: Live debugging, web application, web resources, inconsistent bugs, tracing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
6024 Analysis of Electric Field and Potential Distributions along Surface of Silicone Rubber Insulators under Various Contamination Conditions Using Finite Element Method

Authors: B. Marungsri, W. Onchantuek, A. Oonsivilai, T. Kulworawanichpong

Abstract:

This paper presents the simulation results of electric field and potential distributions along surface of silicone rubber polymer insulators under clean and various contamination conditions with/without water droplets. Straight sheds insulator having leakage distance 290 mm was used in this study. Two type of contaminants, playwood dust and cement dust, have been studied the effect of contamination on the insulator surface. The objective of this work is to comparison the effect of contamination on potential and electric field distributions along the insulator surface when water droplets exist on the insulator surface. Finite element method (FEM) is adopted for this work. The simulation results show that contaminations have no effect on potential distribution along the insulator surface while electric field distributions are obviously depended on contamination conditions.

Keywords: electric field distribution, potential distribution, silicone rubber polymer insulator, finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3273
6023 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks

Authors: Yuichi Masukake, Yoshihisa Ishida

Abstract:

In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.

Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
6022 FEM Investigation of Induction Heating System for Pipe Brazing

Authors: Ilona I. Iatcheva, Rumena D. Stancheva, Mario Metodiev

Abstract:

The paper deals with determination of electromagnetic and temperature field distribution of induction heating system used for pipe brazing. The problem is considered as coupled – time harmonic electromagnetic and transient thermal field. It has been solved using finite element method. The detailed maps of electromagnetic and thermal field distribution have been obtained. The good understanding of the processes in the considered system ensures possibilities for control, management and increasing the efficiency of the welding process.

Keywords: Electromagnetic field, temperature field, finiteelement method, induction heating, pipe brazing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
6021 Genetic Algorithm Based Approach for Actuator Saturation Effect on Nonlinear Controllers

Authors: M. Mohebbi, K. Shakeri

Abstract:

In the real application of active control systems to mitigate the response of structures subjected to sever external excitations such as earthquake and wind induced vibrations, since the capacity of actuators is limited then the actuators saturate. Hence, in designing controllers for linear and nonlinear structures under sever earthquakes, the actuator saturation should be considered as a constraint. In this paper optimal design of active controllers for nonlinear structures by considering the actuator saturation has been studied. To this end a method has been proposed based on defining an optimization problem which considers the minimizing of the maximum displacement of the structure as objective when a limited capacity for actuator has been used as a constraint in optimization problem. To evaluate the effectiveness of the proposed method, a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of pre-stressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used as active control mechanism and algorithm. To enhance the efficiency of the controllers, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been found by using the Distributed Genetic Algorithm (DGA). According to the results it has been concluded that the proposed method has been effective in considering the actuator saturation in designing optimal controllers for nonlinear frames. Also it has been shown that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers for considering the actuator saturation.

Keywords: Active control, Actuator Saturation, Nonlinear, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
6020 Optimization of Hydraulic Fluid Parameters in Automotive Torque Converters

Authors: S. Venkateswaran, C. Mallika Parveen

Abstract:

The fluid flow and the properties of the hydraulic fluid inside a torque converter are the main topics of interest in this research. The primary goal is to investigate the applicability of various viscous fluids inside the torque converter. The Taguchi optimization method is adopted to analyse the fluid flow in a torque converter from a design perspective. Calculations are conducted in maximizing the pressure since greater the pressure, greater the torque developed. Using the values of the S/N ratios obtained, graphs are plotted. Computational Fluid Dynamics (CFD) analysis is also conducted.

Keywords: Hydraulic fluid, Taguchi's method, optimization, pressure, torque.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3057